Basic Project 1
Vector spaces and operators
Due December 15

1. Let W_1 and W_2 be linear subspaces of a vector space V. Prove that the following three conditions are equivalent.
 (1) $W_1 + W_2 = V$ and $W_1 \cap W_2 = \{0\}$.
 (2) For each vector $\alpha \in V$ there are unique vectors $\alpha_1 \in W_1$ and $\alpha_2 \in W_2$ such that $\alpha = \alpha_1 + \alpha_2$.
 (3) There exists a basis in V such that each vector in this basis belongs either to W_1 or to W_2.
2. Consider the vectors in \mathbb{R}^4 defined by
 $$\alpha_1 = (1, 0, 1, 1), \quad \alpha_2 = (1, 0, 2, 1), \quad \alpha_3 = (1, 2, 0, 1), \quad \alpha_4 = (3, 2, 3, 3)$$
 (a) What is the dimension of the subspace W of \mathbb{R}^4 spanned by the four given vectors? Find a basis for W and extend it to a basis B of \mathbb{R}^4.
 (b) Use a basis B of \mathbb{R}^4 as in (a) to characterize all linear transformations $T : \mathbb{R}^4 \to \mathbb{R}^4$ that have the same null space W. What can you say about the rank of such a T? What is therefore the precise condition on the values of T on B?
 (c) Give an explicit example of an operator $T : \mathbb{R}^4 \to \mathbb{R}^4$ such that the range of T is W.
3. Prove that vectors
 $$\alpha_1 = (1, 1, 1, 1), \quad \alpha_2 = (1, 1, 2, 1), \quad \alpha_3 = (0, 1, 0, 1), \quad \alpha_4 = (1, 1, 1, 0)$$
form a basis for \mathbb{R}^4. What are the coordinates of the vector (a, b, c, d) in this basis?
4. Let V be the vector space over \mathbb{R} of all real polynomial functions p of degree at most 2.
 (a) What are the coordinates of the polynomial function $a + bx + cx^2$ with respect to the ordered basis $\{1 - x^2, \; 1 + x + x^2, \; 1\}$ in V?
 (b) For any fixed $a \in \mathbb{R}$ consider the shift operator $T : V \to V$ with $(Tp)(x) = p(x+a)$. Consider also the differentiation operator $D : V \to V$ with $Dp = p'$. Find the range, null space, rank and nullity of the operators TD, DT, D^2 and T^2. Which of these operators are isomorphisms? Write down the matrices of the operators TD, D^2 and T^2 with respect to the ordered basis $B = \{1, x, x^2\}$.
5. Let T be the linear operator on \mathbb{R}^2 defined by $T(x_1, x_2) = (-\frac{\sqrt{2}}{2}(x_1 + x_2), \frac{\sqrt{2}}{2}(x_1 - x_2))$.
 (a) What is the matrix of T in the standard ordered basis for \mathbb{R}^2?
 (b) Interpret the operation of T geometrically.
 (c) What is the matrix of T in the ordered basis $B = \{\alpha_1, \alpha_2\}$, where $\alpha_1 = (1, 1)$ and $\alpha_2 = (2, 0)$?
 (d) Prove that for every real number c the operator $(T - cI)$ is invertible.
 (e) Find all complex numbers c such that the operator $(T - cI)$ is not invertible.
6. Let $T \in L(V, V)$ be an operator on the vector space V with the null space W_1 and the range W_2. Suppose that $U \in L(V, V)$ is another linear operator on V such that $TU = UT$. Prove that $U(W_1)$ is the subspace of W_1, and $U(W_2)$ is the subspace of W_2.

Due December 15

MAT 310 – LINEAR ALGEBRA – FALL 2004