Exercise 1. Which of the following sets of vectors $\alpha = (a_1, \ldots, a_n) \in \mathbb{R}^n$ are subspaces of \mathbb{R}^n ($n \geq 3$)?

(a) all α such that $a_1 \geq 0$;
(b) all α such that $a_1 + 3a_2 = a_3$;
(c) all α such that $a_2 = a_1^2$;
(d) all α such that $a_1a_2 = 0$;
(e) all α such that a_2 is rational.

Exercise 2. Let V be the (real) vector space of all functions f from \mathbb{R} into \mathbb{R}. Which of the following sets of functions are subspaces of V?

(a) all f such that $f(x^2) = f(x)^2$;
(b) all f such that $f(0) = f(1)$;
(c) all f such that $f(3) = 1 + f(-5)$;
(d) all f such that $f(-1) = 0$;
(e) all f that are continuous.

Exercise 3. Is a vector $(3, -1, 0, -1)$ in the subspace of \mathbb{R}^5 spanned by the vectors $(2, -1, 3, 2), (-1, 1, 1, -1)$ and $(1, 1, 9, -5)$?

Exercise 4. Let W be the set of all vectors $(x_1, x_2, x_3, x_4, x_5)$ in \mathbb{R}^5 which satisfy

$$
\begin{align*}
2x_1 & - x_2 + \frac{4}{3}x_3 - x_4 &= 0 \\
x_1 & + \frac{2}{3}x_3 - x_5 &= 0 \\
9x_1 & - 3x_2 + 6x_3 - 3x_4 - 3x_5 &= 0.
\end{align*}
$$

Find a finite set of vectors that spans W.

Exercise 7. Let W_1 and W_2 be subspaces of a vector space such that the set-theoretic union of W_1 and W_2 is also a subspace. Prove that one of the spaces W_i is contained in the other.

Exercise 1. Prove that if two vectors are linearly dependent, one of them is a scalar multiple of the other.

Exercise 3. Find a basis for the subspace of \mathbb{R}^4 spanned by the vectors

$$
\alpha_1 = (1, 1, 2, 4) \quad \alpha_2 = (2, -1, -5, 2) \\
\alpha_3 = (1, -1, -4, 0) \quad \alpha_4 = (2, 1, 1, 6).
$$

Exercise 6. Let V be the vector space of all 2×2 matrices over the field
Prove that V has dimension 4 by exhibiting a basis for V that has four elements.

Exercise 7. Let V be the vector space of Exercise 6. Let W_1 be the set of matrices of the form

$$\begin{pmatrix} x & -x \\ y & z \end{pmatrix},$$

and W_2 set of matrices of the form

$$\begin{pmatrix} a & b \\ -b & c \end{pmatrix}.$$

(a) Prove that W_1 and W_2 are subspaces of V.
(b) Find the dimensions of W_1, W_2, $W_1 + W_2$, and $W_1 \cap W_2$.

Exercise 10. Let V be a vector space over the field F. Suppose there are a finite number of vectors v_1, \ldots, v_n in V that span V. Prove that V is finite-dimensional.

Bonus exercise 14. Let V be the set of real numbers. Regard V as a vector space over the field of *rational* numbers, with the usual operations. Prove that this vector space is *not* finite-dimensional.