
Summary of 5.4:

(o) Zero Columns (Rows): If A has a column or a row with only zero entries then detA = 0.
This follows in many ways, for example from (1), since any term there contains exactly one factor
from each column (row). One can also use (2) as easily, directly for columns, recursively for rows.
Another argument is to add a different row to the zero row, thus producing a matrix with two equal
rows. For columns one could transpose and use (ii).

(i) Upper (Lower) Triangular Matrices A: This means Aij = 0 for i > j (i < j). In that
case the determinant is simply the product of the diagonal elements,

detA = A11 · · · Ann .

This follows immediately from Laplace Expansion (2) with respect to the first (last) column, by
induction. Alternatively, in (1) all terms but one (for the identity permutation) vanish. Why?

(ii) Transposed Matrix: If A is any m× n matrix, then the transposed of A is defined to be
the n ×m matrix At with (At)ij = Aji. So, A and At have their rows and columns interchanged
(in order), and one is obtained from the other by reflection of all entries in the main diagonal. For
square n× n matrices we have

detAt = detA .

One can argue directly with (1), as in the text. Even simpler is the following recursive argu-
ment based on Laplace Expansion: Symmetrize (2) by summing also over j to obtain n detA =
∑n

i,j=1(−1)i+jAij det 
Aij =
∑n

i,j=1(−1)j+iAji det 
Aji =
∑n

i,j=1(−1)i+j(At)ij det 
Atij = n detAt.

Observe that 
Atij = ( 
Aji)
t and 
Aji are transposed matrices of size (n− 1)× (n− 1), and thus have

the same determinant, by the induction assumption.

(iii) Row and Column Operations: Except possibly for small size matrices or special sit-
uations, the best way to compute determinants numerically is by elementary row operations and
reduction to upper triangular form and using (i). Note that adding any multiple of one row to
another does not change the determinant, as it is n-linear and alternating. However, one has to
keep track of multiplying a row by a scalar, or switching rows. In light of (ii), column operation
can be used as well, or any combination with row operations.

(iv) Invertibility: Recall that the row (column) rank of A is the dimension of the span of
the rows (columns) of A, and these numbers are equal and called the rank rkA. If rkA is not
maximal, i.e. rkA < n, then the rows (columns) of A are linearly dependent, and A is singular or
not invertible. In this case detA = 0. Why? Some row must be a linear combination of the others.
Expanding the determinant by linearity in this row yields a linear combination of determinants of
matrices with two equal rows, which are all zero.

On the other hand, assume A has maximal rank rkA = n. Then A has an inverse A−1 so that
AA−1 = I. It follows that detA · detA−1 = det I = 1, so

detA−1 =
1

detA
.

In particular, detA 6= 0. Therefore, A is invertible precisely when detA 6= 0, and singular when
detA = 0.



(v) The Classical Adjoint: For any n × n matrix A define the classical adjoint adjA as a
matrix of same size by (adjA)ij = (−1)i+j det 
Aji. Note the transposition, which is essential for the
following identity,

adjA · A = A · adjA = detA · In .

This is an immediate consequence of Laplace Expansion. We have (adjA·A)ij =
∑n

k=1(adjA)ikAkj =
∑n

k=1(−1)i+kAkj det 
Aki. Now for j = i, the last sum is simply detA by (2). It is zero when j 6= i.
Why? Simply replace the ith column of A by its jth column. The last sum then becomes the
Laplace Expansion of the determinant of this new matrix with two equal columns, which is zero.
The computation for A · adjA is carried out analogously, but with Laplace Expansion taken with
respect to rows.

As A is invertible iff detA 6= 0, the above identity gives an explicit formula for the inverse,

A−1 =
1

detA
adjA .

This formula is not very important from a numerical point of view (where Gauss-Jordan reduction
is quite efficient), but it has considerable theoretical interest.

(vi) Cramer’s Rule: Another situation where explicit solutions are possible, but again mostly
of theoretical value, is a non-homogeneous linear system AX = Y of n equations in n unknowns.
Multiplying both sides by adjA and using (v) yields detA · X = adjA · Y . If xj is the j-th
component of the solution column vector X we now have detA · xj =

∑n
i=1(adjA)ji · yi =

∑n
i=1(−1)i+jyi det 
Aij = detBj, where Bj is obtained from A by replacing its jth column with Y .

When A is invertible one therefore has Cramer’s Rule,

xj =
detBj

detA
.

(vii) Determinants of Linear Operators: For a linear transformation T : V → V the
determinant detT can be defined as follows: If A = [T ]B is the matrix of T with respect to any
ordered basis B set detT = detA. This is well defined since the matrix of T with respect to
another basis will be similar to A, i.e. is of the form P−1AP for some invertible matrix P , and thus
has the same determinant by (v). Determinants are invariants of linear operators. The geometric
interpretation of determinants in a real vecor space is that detT is the ratio of the volume distortion
under the mapping T (as soon as a natural volume measurement is given).


