ROCHLIN’S THEOREM, A PROBLEM AND A CONJECTURE
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Closed oriented two manifolds were understood in Riemann’s time. Poincaré discovered
three manifolds were complicated. Dimensions four, five and more were even more so.

Therefore, it came as a surprise in the 50’s that closed manifolds up to cobounding a mani-
fold of one higher dimension could be completely understood in terms of numerical invariants
called Pontryagin numbers (integers) and Stiefel-Whitney numbers (integers modulo two).

Rochlin began the pattern by showing in dimension four the cobordism classes of oriented
closed smooth manifolds form an infinite cyclic group. The integer, called the signature,
attached to M* was computed from the intersection of 2-cycles in M* as the difference
between the number of positive squares and the number of negative squares of the symmetric
intersection form. Rochlin proved the formula ” the signature equals one-third the first
Pontryagin number”

Thom extended this Rochlin pattern to all dimensions using the geometric techniques
of Pontryagin and Rochlin plus the algebraic topology techniques of Serre, showing up to
two torsion the class of a manifold was determined by the set of Pontryagin numbers, these
being the evaluation of products of Pontryagin classes on the fundamental homology class of
the oriented manifold.

Hirzebruch using Thom extended Rochlin’s formula in a rich but explicit fashion to
all dimensions , for example in dimension 8 the signature is one 45th of (seven times the
second Pontryagin number minus the evaluation of the first pontryagin class squared on the
fundamental class of the manifold).

Milnor used the seven in that formula to show the 7-sphere had at least seven different
smooth structures. The final answer is 28 where the factor of 4 is related to the Dirac operator
continuation of Rochlin’s contribution discussed below. The figure shows one construction of
Milnor’s generating exotic seven sphere, which is done by taking the boundary of the eight
manifold obtained by connecting up like party rings , tangent disk bundles of the 4-sphere
as in the Eg Dynkin diagram.

Back to dimension four.

Rochlin’s cobordism pattern depended on showing first that the cobordism group in di-
mension four was determined by the value of the first Pontryagin class evaluated on the
fundamental class of the manifold. Then secondly showing the signature of any bounding
manifold had to be zero. This last proposition is elementary but one of the most important
facts in manifold topology.

But the most profound point comes now.
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Rochlin also calculated by a geometric argument a la Pontryagin that if M* was almost
parallelizable, ie parallelizable in the complement of a point, then the first Pontryagin number
was actually divisible by 48. Thus the signature of such a closed four manifold , which
Rochlin proved was one third of the first Pontryagin number, had to be divisibly by 16. This
divisibility by 16 is the celebrated Rochlin Theorem about smooth four manifolds.

This was at first glance a curious result for the following reason: being almost parallelizable
for the oriented closed four manifold meant exactly that the self intersection number of any 2-
cycle was even, the value mod two being determined by evaluating the second Stiefel-Whitney
class on the cycle.

The intersection form was non-degenerate over the integers by Poincaré duality. Such even
unimodular forms inside all quadratic forms taking integral values were studied in number
theory. There it was known these properties meant the signature was divisible by 8 and by
no more in general. A basic example being the Eg matrix where the (inner) products for

a special basis is illustrated by the Fg Dynkin diagram:

Where each nodal basis element has self intersection number 2 and two nodal basis ele-
ments intersect exactly once if and only if there is an edge between them , otherwise the
inner product is zero. Fg is an even unimodular symmetric form of signature 8.

One knows that Eg generates the indefinite even unimodular forms in the sense any such

form is a direct sum of Fg’s and hyperbolic forms <(1) é)

Thus Rochlin’s theorem shows half of the elements in the infinite set of even indefinite
unimodular forms cannot appear as the intersection form of any smooth closed four manifold.
Namely those with an odd number of Eg’s. An example that does appear is the ubiquitous
K3 complex surface whose intersection form is two Eg ’s and three hyperbolic forms. .

This result set the stage for another important development in Topology, Geometry and
Analysis.
This relates to definite forms.

In number theory one also knows that there are finitely many unimodular definite sym-
metric forms of a given rank, the number growing exponentially with the rank.

Donaldson proved none of those definite forms except the identity form occurs as the
intersection form of a smooth four manifold. This is the first theorem of the unexpected
Donaldson theory discovered three decades after Rochlin’s theorem.
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Freedman at the same time showed remarkably that every unimodular form occurs for
closed topological four manifolds.

Donaldson theory does not prove Rochlin’s theorem because Rochlin’s statement involves
hyperbolic forms.

In fact there is an intermediate class of manifolds between smooth and topological where
the analysis of Donaldson theory is perfectly valid.

There are two such intermediate classes of manifolds , the ones with coordinate charts
where the transition mappings are bi-Lipschitz, and ones where the transition mappings are
quasiconformal.

Lets call these Sobolev manifolds.

Problem:
Is Rochlin’s theorem true for these Sobolev four manifolds?

Conjecture:
If Rochlin’s theorem is true for Sobolev four manifolds , then Sobolev four manifolds are
actually smoothable.

Information:

Closed topological four manifolds are almost smoothable , namely they are smoothable in
the complement of a point (see surveys and book by Frank Quinn.)

Also outside dimension four all topological manifolds carry unique Sobolov structures of
each type.

The proof makes heavy use of the Kirby-Edwards completely elementary and very
ingenious construction of paths of homeomorphisms between nearby homeomorphisms in all
dimensions (late 60’s).

These paths allowed Seibenmann ’69 to construct higher dimensional manifold coun-
terexamples to the Hauptvermutung soon after he understood the precise role played by
Rochlin’s Theorem about four dimensions in this question.

Operators on Hilbert Space

The signature operator twisted by a vector bundle exists in the Sobolev context. The
unbounded version exists in the Lipschitz context. The bounded version, just using the
phase of the operator (which contains all of the topological information), exists in the quasi-
conformal context. Stiefel- Whitney classes make sense in these settings so the possibility of
constructing Dirac operators also makes sense. This is unknown at present ( more below).

Physics

Donaldson theory is part of a larger quantum field theory which has an effective version
obtained by integrating out certain variables.

This effective version has expression in terms of Dirac operators which depend on the
tangent bundle. One knows Rochlin’s theorem can be deduced in a context using Dirac
operators, the Atiyah-Singer Index theorem and quaternions (more below).

Physicists believe Donaldson theory and its effective version Seiberg-Witten theory
are equivalent. From the perspective of Sobolev manifolds Rochlin’s theorem provides a
challenge to and an opportunity for understanding better this belief.
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More history:

In the middle 60’s this author as a second year Princeton topology grad student was
following the evidently powerful constructive cobordism techniques of Browder-Novikov
classifying smooth manifolds in a homotopy type with stable tangent vector bundle
specified plus the covering space method of Novikov for showing the rational Pontryagin
classes were homeomorphism invariants. The motivation was to study firstly , PL mani-
folds in a given homotopy type without PL stable tangent micro bundle specified and
secondly to study PL manifolds in a given homeomorphism type without PL stable
tangent microbundle specified. These formulations suggested by the influence of Milnor and
Steenrod had completely calculable outcomes, whereas every other formulation did not have
such completely calculable outcomes.

Given a homotopy equivalence f : L — M one could define in all dimensions numerical
obstructions to f being homotopic to a PL-homeomorphism via differences of signatures of
V and f~'V where V is a manifold cycle in M and f~! is its transversal preimage in L.
These differences were divisible by 8 because f is a homotopy equivalence and so pulls back
Stiefel Whitney classes. There were also modulo n versions of this picture where V' is a mod
n manifold cycle.

The vanishing for a finite generating set of these characteristic invariants of f was nec-
essary for f to be homotopic to a homeomorphism , and further to be homotopic to a PL
homeomorphism if when for the mod n characteristic cycles of dimension four the division
by 8 was upgraded to a division by 16 using Rochlin’s Theorem. In higher dimensions than
four this vanishing and this refined vanishing were also respectively sufficient in the simply
connected case.

( This description for simplicitly has absorbed the mod two Arf-Kervaire invariants in
dim 4k-2; (first encountered for k=1 by Pontryagin in his misstep of ’42) into the mod two
signature invariants in dimension 4k by crossing them with RP?, described in the work with
John Morgan, Annals of Math,1972)

The refined vanishing sufficiency was achieved in 66’ for the PL homeomorphism case
(("On the Hauptvermutung for Manifolds "BAMS July ’'67) and the vanishing sufficiency
became valid for the homeomorphism case as a corollary in ’69 of the general topological
manifold theory achieved by Kirby-Siebenmann.

The Rochlin refinement gave an order two class in the integral fourth cohomology of
L canonically defined when f is a homeomorphism. This seems an appropriate time to
name this heretofore unnamed class the order two integral Rochlin class in the four
dimensional cohomology with integer coefficients.

In the hands of Kirby-Seibenmann the entire difference between the PL and topological
manifold categories in higher dimensions could be completely understood by the profound
factor of 2 implied by Rochlin’s 16. They proved ’69 the homeomorphism f was connected
by a path of homeomorphisms to a PL-homemorphism ( higher dimensions and no sim-
ply connected hypothesis required ) iffi a “mod two Rochlin class” in the degree three
cohomology of L with Z/2Z coefficients vanished, and all of these classes, referred to as
Kirby-Siebenmann classes are realized by geometric examples.

These two Rochlin classes, the mod two Rochlin type class in degree three obstructing an
isotopy of the homeomorphism to a Pl homeomorphism and the integral Rochlin class of order
two in degree four obstructing a homotopy of the homeomorphism to a PL. homeomorphism
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are related by the integral Bockstein operation. The Bockstein operation takes an integral
cochain representative of the mod two class and forms 1/2 of its coboundary to obtain an
integral cocycle in degree four ( so that two times it is obviously a coboundary).

This ” Bockstein of the mod two Kirby-Siebenmann class is the order two integral Rochlin
class” discussion is related to the important discovery in recent times by Manolescu re-
ported at this conference of the existence of higher dimensional topological manifolds not
homeomorphic to a triangulated topological manifold.

More information for the Rochlin problem and the Rochlin conjecture:

Work of Kirby-Edwards (mentioned above) and work of Kirby depending on that of
Novikov was used to show ’76 that topological manifolds in all dimensions, except for di-
mension four, could be provided with unique Sobolev structures of either type. This used
a substitution of the d-torus used in those works by an almost parallizable closed hyper-
bolic d-manifold. (”Hyperbolic Geometry and Homeomorphisms” in the book “Geometric
Topology” 1979 Academic Press).

Interestingly, the existence of these almost parallelizable hyperbolic manifolds depends on
an argument learned from (Deligne and Mazur) that the algebraic topology modulo n
of a complex algebraic variety can be defined for the algebraic variety reduced mod p for p
prime and not dividing n and not involved awkwardly in the defining equations of the variety.

After the opposite results of Donaldson and Freedman in '82 it was natural to ask about
their results for the intermediate class of Sobolev four manifolds. The answer was: Donaldson
theory works for both classes of Sobolev four manifolds. (” Quasiconformal 4-Manifolds” Acta
Mathematica 1989).

In studying Rochlin’s Theorem in the Sobolev context , it is useful to know that the
index theorem holds there (IN.Teleman) and that there are local representatives for the
Pontryagin classes defined using the bounded phase of the signature operator in Alain
Conne’s perspective of non commutative geometry. (“Quasiconformal mappings, Operators
on Hilbert Space and Local formulae for Characteristic Classes” Topology 1994).

Considerations related to the construction of Dirac operators and the context of smooth
versus Sobolev manifolds plus a smoothability and a Dirac operator conjecture are discussed
in ”Foundations of Geometry, Analysis and the Differentiable Structure for Manifolds” in
the book ”Low Dimensional Topology” World Scientific 1999.



