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“One imagines trying to push the input circles through levels of a harmonic function on the
surface. As critical levels are passed the circles are cut and reconnected near the critical points.
The Poincaré dual cocycle creates the possibility of positioning the surface inside the target
manifold.”

Abstract. (from [12]) The data of a “2D field theory with a closed string compactification”

is an equivariant chain level action of a cell decomposition of the union of all moduli spaces

of punctured Riemann surfaces with each component compactified as a pseudomanifold with
boundary. The axioms on the data are contained in the following assumptions. It is assumed

the punctures are labeled and divided into nonempty sets of inputs and outputs. The inputs

are marked by a tangent direction and the outputs are weighted by nonnegative real numbers
adding to unity. It is assumed the gluing of inputs to outputs lands on the pseudomanifold

boundary of the cell decomposition and the entire pseudomanifold boundary is decomposed

into pieces by all such factorings. It is further assumed that the action is equivariant with
respect to the toroidal action of rotating the markings. A main result of compactified string

topology is the

Theorem 1. (closed strings) Each oriented smooth manifold has a 2D field theory with a
closed string compactification on the equivariant chains of its free loop space mod constant

loops. The sum over all surface types of the top pseudomanifold chain yields a chain X

satisfying the master equation dX + X ∗ X = 0 where ∗ is the sum over all gluings. This
structure is well defined up to homotopy*.

The genus zero parts yields an infinity Lie bialgebra on the equivariant chains of the free

loop space mod constant loops. The higher genus terms provide further elements of algebraic

structure* called a “quantum Lie bialgebra” partially resolving the involutive identity.
There is also a compactified discussion and a Theorem 2 for open strings as the first step

to a more complete theory. We note a second step for knots.

*See the Appendix “Homotopy theory of the master equation” for more explanation.
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1. Part I. Sketch of string topology results and proofs from [11, 12]

1.1. The classical intersection product, infinity structures and the loop product in
homology. One knows from classical topology the homology H∗ of an oriented manifold of
dimension d has a ring structure of degree −d:

Hi ⊗Hj
m−→ Hk

where k − (i+ j) = −d.
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One way to define m is by taking two cycles z1 and z2 and intersecting them transversally.
In other words, after perturbing (z1, z2) to (z′1, z

′
2), intersecting z′1 × z′2 with the diagonal M12

in M1 ×M2 where M1 and M2 are two copies of M , ((z′1, z
′
2) tM12) ⊆M12 ⊆M1 ×M2.

One also knows that this intersection operation can be extended to the chain level by
using a Poincaré dual cocycle U in a neighborhood of the diagonal by considering

z1 ◦ z2 = (projection onto diagonal)((z1 × z2) ∩ U).

In this formula ∩ means the cap product operation Ci ⊗ Ck+i → Ck on the chain level. On
homology this intersection product is graded commutative and associative while this chain level
“diffuse intersection” product is infinitely chain homotopy graded commutative and associative
[55].

Such a structure on chains is called an E∞ structure and such objects have a natural
homotopy theory [55]. They can be deformed at Q or at a prime p to give higher tensors on
the homology. Besides giving back the intersection product on homology, at Q they give rise
to Massey products. At p they give Massey products and the Steenrod powers. At Q and at p
these E∞ chain level structures up to homotopy determine the entire homotopy type of simply
connected or even nilpotent spaces. See [68, 63] for Q and [55] for p. This is true literally for
closed manifolds while for manifolds with boundary it is literally true for relative chains mod
the boundary.

At Q this result may also be stated for the at Q equivalent notion of Lie infinity or
commutative infinity structure [63] which can also be calculated from Q-differential forms [68].
At p the E∞ structure over the algebraic closure of the prime field must be used [55].

These theorems provide a strong motivation for studying algebraic structures at the chain
level and also for treating them up to homotopy. One perspective on homotopy theory of
algebraic structures is sketched in the Appendix. There are others; see [27, 75, 82].

One knows from string topology [11] how to embed this classical intersection ring structure
into a ring structure on the homology H∗ of the free loop space of Md:

Hi ⊗Hj
m−→ Hk

where k − (i+ j) = −d.

Starting with two cycles Z1 and Z2 of maps of S1 into M , evaluate at p ∈ S1 to get two
cycles z1 and z2 in M . Perturb Z1 and Z2 to Z ′1 and Z ′2 so that the evaluation cycles z′1 and z′2
are transversal to M12 ⊆M1×M2. Then on the locus (z′1× z′2 tM12) in M12 compose the loop
of Z1 with the loop of Z2 to get the intersection cycle of loops representing m([Z1]⊗ [Z2]).

The evaluation Zi → zi determines a ring homomorphism retracting the string topology
product on H∗ onto the intersection product on H∗, where the embedding of H∗ in H∗ is effected
by the embedding of points of M into constant loops in the free loop space of M . These rings
have a unit if and only if M is closed. In the next section we define this product on the chain
level.

1.2. The chain level generalization [12] of the loop product and the BV and bracket
structures of [11]. One may also define this loop product on the chain level using the diffuse
intersection product z1 ◦ z2. On the support of z1 ◦ z2 the marked points of z1 and z2 determine
a point in the neighborhood of the diagonal. The corresponding loops can be composed by
using a short path between these nearly equal points in M . This chain level product is infinitely
homotopy associative and so defines an A∞ structure in the sense of Stasheff [67]. It may be
transferred to an A∞ structure on the homology of the free loop space. There are other infinity
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structures on the chain level based on this diffuse string topology construction associated to
further homology structures which we will now describe.

There is a circle action on the free loop space rotating the domain of maps S1 → M
which determines a degree +1 operator ∆ on the homology. More generally, there is the S1

equivariant homology HS1

∗ of the free loop space and the long exact sequence relating ordinary
and equivariant homology,

. . . M // Hi+2
E // HS1

i+2

∩c // HS1

i

M // Hi+1
E // . . .

whereM marks a point on an equivariant loop and E erases the marked point on a nonequivariant
loop and, by definition, ∆ = M ◦ E. Thus

∆ ◦∆ = (M ◦ E) ◦ (M ◦ E) = M ◦ (E ◦M) ◦ E = 0.

It turns out that ∆ is not a derivation of the loop product • but the two-variable operator
{, } defined by

{x, y} = ∆(x • y)− (∆x • y + (−1)|x|x •∆y)
is a graded derivation in each variable [11].

Since the loop product is graded commutative and associative one can say that (HS1

∗ , •,∆)
forms a Batalin Vilkovisky or BV algebra since these properties are the definition of a BV algebra
[35]. Batalin and Vilkovisky observed these structures exist on the functionals on fields of a wide
variety of theories and used them to formalize quantization algorithms [5, 6].

It follows from the mentioned properties of a BV algebra that {a, b} on the ordinary
homology, satisfies the jacobi identity and that the binary operation on the equivariant homology
defined by

[a, b] = E(Ma •Mb)
also satisfies the jacobi identity [11]. Note from the definition { , } has degree −d+ 1, [ , ] has
degree −d+ 2, and HS1

i
M→ Hi+1 is a Lie algebra homomorphism. For d = 2, [ , ] is identical to

the Goldman bracket for surfaces [11]. See section 2.1.

Question 1. How can these results from [11] be explained and what is the general picture?

1.3. String diagrams for closed strings, dessins d’enfants, the combinatorial model
and the general construction for the equivariant loop space. A string diagram is a
special type of ribbon graph. A ribbon graph is by definition a graph provided with a cyclic
order on the half edges at each vertex where graph means one-dimensional CW complex. The
data of the cyclic ordering allows one to construct a jet of oriented surface along the ribbon
graph for which the ribbon graph is a deformation retract or spine. One can add disks to each
boundary component of the surface jet to form a closed surface with a natural cell decomposition.
To be a string diagram means the cells can be labeled input or output so no two cells of the
same label meet along an edge.

String diagrams were described in terms of permutations and partitions in [13]. They
are also the same as Grothendieck’s “dessins d’enfants” and from that context [91] admit a
mysterious action of the Galois group of the algebraic closure of Q.

We can form stacks 1 of string diagrams where the output boundary of one is provided
with a combinatorial identification to the input boundary of the diagram just below.

1We use the word “stacks” as in ordinary parlance, not as in the mathematics concept.
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Stacks of string diagrams can be given a geometric interpretation by providing the input
circles with metrics. Then the output circles of one string diagram inherit a metric obtained
by cutting and reconnecting the input circles. This metric is transported to the next input by
the identification. The choices correspond to the parameters of cells which are labeled by the
combinatorial type of the stacks of string diagrams. Continuing on down, each point in the cell
is represented by a cylindrical geometric surface. See figure 1.

input inputinput

output output

“combinatorial 
harmonic function”

Figure 1. Combinatorial harmonic function

The proofs in [11] work with partially defined chain level operations defined using certain
string diagrams that describe by transversality these operations. In [12] the chain level version
of [11], narrated here, we complete the picture of this construction, replacing transversality by
cap product with a local Poincaré dual cocycle to obtain globally defined operations on chains,
and we use all possible string diagram operations.

The string diagrams when arranged in vertical stacks are separated by cylinders where
heights vary in tandem between 0 and 1. The stacks exactly describe all possible compositions
of cutting and reconnecting strings on the one hand with the spacings allowing deformations or
homotopies between operations. On the other hand, stacks of string diagrams give a combina-
torial cell decomposition of moduli spaces of Riemann surfaces as pseudomanifolds with corners
which adapts to our compactification to be discussed below.

Stacking stacks by adding a new spacing of height 1 between two stacks describes a part
of the codimension one pseudomanifold boundary of these combinatorial models of moduli space
called the composition or gluing boundary.

The basic transversal string topology constructions of [11], reformulated with Poincaré
dual cocycles defined near the diagonal in [12], determine completely defined chain operations
for each of these stacks of string diagrams (see section 3.2). These operations fit together like the
cells of the model and on the composition pseudomanifold boundary give composition gluing of
chain operations. Finally the models can be filled in or zipped up on the rest of the codimension
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one pseudomanifold boundary corresponding to small topology. We find the string topology
construction extends over this extended model, in the case of closed strings.

The string topology construction starting from families of maps of the input boundary
of a combinatorial surface Σ into M builds families of maps of Σ into M . This reverses the
direction of the left solid arrow in the following diagram. Here, I and O are restrictions to input
and output boundary, respectively.

{input boundary→M}
,,e b _ \ Y
{surface→M}

I
oo

O
// {output boundary→M}

Then composing with the right arrow gives string-to-string operations from string-to-
surface operations.

1.4. Zipping up the noncomposition type A boundary of the combinatorial moduli
space. In all the cases, higher genus or multiple outputs or both, there will be noncomposition
boundary which we want to deal with. There are two types of pseudomanifold boundary in the
complement of the stacking or composition pseudomanifold boundary. For the combinatorial
model we start with input circles of equal length totaling 1. As we go down through the levels
and vary parameters, some part of the model carrying nontrivial topology may become small and
then we reach the boundary of the model. Consider a connected subgraph Γ of the combinatorial
model surface with small combinatorial metric diameter. There are three cases depending on
the Euler characteristic of Γ. See figure 7.

i) If χ(Γ) = 1 (one less “equation” than “unknowns”) we pass to a lower cell of the model,
i.e., Γ is a tree and we can collapse Γ and stay in the moduli space of stacks of string
diagrams without going beyond the pseudomanifold boundary. We are still in a lower
cell of the model where the string topology construction is already defined and there is
nothing further to do. (Here the approximate solutions to the “equation” are the support
of the pulled back Poincaré dual cocycle and the “unknowns” are the evaluations.)

ii) If χ(Γ) = 0 (same number of equations as unknowns) the regular neighborhood of Γ is
homotopy equivalent to a circle and we consider the unique circuit α embedded in Γ
which is homotopy equivalent to Γ. The combinatorial surface may be analyzed as a
local connected sum near two marked points or the circle lies on a level. Let one marked
point run around a small circle with center the other in the first case; or cut along α,
twisting and regluing in the second case. This shows there is a circle action in the region
of the combinatorial moduli space where Γ has small combinatorial metric diameter,
when χ(Γ) = 0. If Γ is small in the combinatorial model, it is also small in M because
the construction (section 3.2) uses only short geodesic pieces together with pieces from
the model. Thus the image of α may be filled by a two-disk in M . This means we can
add a disk onto the circle orbit in the model and extend the geometric part of the string
topology construction over the two-disk. The Poincaré part of the construction works by
pull back as the combinatorial length of Γ, the radial coordinate of the two-disk, tends
to zero.

This way of filling in the combinatorial moduli space and the string topology con-
struction is familiar from the nodal curve compactification in algebraic geometry.

iii) If χ(Γ) < 0 (more equations than unknowns) a convenient miracle happens. As we pull
back the Poicaré dual cocycle to the domain of specializing evaluation – we have, because
of having more equations than unknowns, a product cocycle of bigger dimension than the
specialized domain. Thus it is identically zero and the string topology construction has
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a vacuous locus. In this situation we can collapse to a point this part of the boundary
and extend by zero. If d > 1 this argument applies as well to chain homotopies between
Poicaré dual cocycles. This is used in the arguments showing the “2D field theory with
closed string compactification” is well defined up to homotopy.

Together, these two arguments zip up the type A boundary of moduli space, where some
topologically essential part of the cylindrical surface model becomes geometrically small.

1.5. Zipping up type B boundary in the equivariant case of closed strings, indication
of main theorem and its first six components. Type B boundary: when there are multiple
outputs, the input length (and the short geodesic pieces) distribute themselves among the output
components. The input length distribution among the output components is described by a
point in a k-simplex if there are k + 1 output components. The boundary of this simplex × the
combinatorial model defined without weights is by definition the type B boundary.

In the equivariant case we take care of the type B boundary by working in a quotient
complex obtained by dividing out by the subcomplex of small loops. See section 3.6.

Then there is an argument that the subcomplex of equivariant chains with at least one
output component very small in M is mapped by any equivariant string operation into an
essentially degenerate chain (section 3.6). In particular, by modding out by degenerate chains,
the equivariant operations act on the quotient by the subcomplex with at least one small output
component.

This removes the type B boundary from consideration in the equivariant or closed string
theory.

The combinatorial model of stacks in the equivariant case has marks on the input boundary
components and no marks on the output boundary components. We have weights on the outputs
adding to one which record the simplex of output length distribution of the total input length.
The dimension of the combinatorial model is −3χ− 1 where χ is the Euler characteristic of the
combinatorial surface Σ, χ = 2− 2g −#inputs−#outputs.

In stacking or gluing, χ gains one by adding a mark to the output before gluing and
loses one upon erasing the mark after gluing – resulting in a net gain of zero parameters for
each equivariant gluing. The fact that gluing lands in the pseudomanifold boundary of the
combinatorial model is consistent with the equation

(−3χ1 − 1) + (−3χ2 − 1) = (3χ− 1)− 1

since χ = χ1 + χ2.

Corollary in the general equivariant case: In the above discussion, we have indicated there
are operations on equivariant chains parametrized by the equivariant cells in a zipping up of the
equivariant combinatorial moduli spaces M ⊆ M̃ except for the composition boundary. We can
apply this to the top chains of M̃ (g, k, l) of dimension 3|χ| − 1. Let X =

∐
g,k,l top chain of

M̃ (g, k, l). Then X satisfies the master equation

∂X +X ∗X = 0,

where ∗ means the sum over all possible gluings. In other words the completed chain with type
A and type B boundary filled in only has composition terms in its boundary. This is the main
result. It is discussed in more detail in section 3.2. We will explain in part III how the terms
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corresponding to and define a bracket and cobracket operation of degree −d + 2 while
those corresponding to figure 2 yield four relations among these i.e., jacobi, cojacobi, drinfeld
compatibility, and the involutive relation of an “involutive” Lie bialgebra.

jacobi cojacobi drinfeld compatibility involutive relation

input

output

Figure 2.

The other surfaces give a hierarchy of higher homotopies. Restricting to the genus zero
part gives a structure precisely equivalent to ∞ Lie bialgebra (as a dioperad). The higher genus
terms give a quantum version of this infinity Lie bialgebra, called a quantum Lie bialgebra,
which may be embedded in a general discussion of algebraic structures up to homotopy. (See
the Appendix.)

1.6. String diagrams for open strings, general string topology construction and the
nonequivariant loop space extending [11, 70]. By open strings we mean oriented families
of paths in an ambient manifold with endpoints on prescribed submanifolds.

For example the space of chains on the free loop space on M is isomorphic to the linear
space generated by equivalence classes of open strings in M ×M with endpoints on the diagonal
in M ×M .

There is a string topology construction associated to general open strings organized by
the cells of a combinatorial model of the moduli space of surfaces with boundary having marked
points or punctures on the boundary. Some are designated as input open strings, some are
designated as output open strings. Now we need to choose a Poincaré dual cocycle for each sub-
manifold; one for the diagonal in the product of the ambient manifold and one for each diagonal
in the product of each prescribed submanifold with itself. A cell that labels an operation corre-
sponds to a combinatorial harmonic function like in figure 1 for closed strings that is proper, plus
infinity at the input boundary punctures and minus infinity at the output boundary punctures.
The strength of the poles at the inputs are equal to one another while they are allowed to vary
at the outputs. Now there are no marked points on the input open strings.

A typical combinatorial harmonic function will have Morse-type singularities on the
boundary or in the interior and all of these are at different levels. There are two types of
boundary critical points: one type increasing by two and the other type decreasing by two the
number of boundary components of the level. There are two types of interior critical points: one
type increasing by one, the other type decreasing by one the number of components of the level.

Starting with some input open strings, i.e., families of paths in M with various boundaries,
we read down the combinatorial surface using a Poicaré dual cocycle to impose each approximate
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equation at a critical point. Then as before we position the surface in the ambient manifold by
using short geodesics to build the spine.

Each critical point on the boundary imposes the number of constraints equal to the codi-
mension of the submanifold in one case and the dimension of the submanifold in the other case.
Each interior critical point imposes the ambient dimension number of constraints.By number
of constraints we mean the dimension of the Poincaré dual cocycle that is used to impose the
approximate equations.

If we glue two combinatorial surfaces together, output to input, the number of constraints
is additive.

On the other hand the number of free parameters in such a top cell corresponding to a
combinatorial type of combinatorial harmonic function is two for each interior critical point, one
for the increasing type of boundary critical point, zero for the the other, one for each spacing
between critical levels and one less than the number of output punctures because of the variable
weights. These weights must add up to the total length of the input. These quantities in total
are additive less one. This dimension count checks with the fact that composition gluing puts
us on the codimension one boundary of the model.

As in the closed string case, there are more types of boundary besides the composition
or gluing boundary. There is the simplex boundary associated to the varying output lengths.
There are also types of boundary associated to metrically small subcomplexes with nontrivial
topology in the surface relative to the boundary.

The negative euler characteristic argument in the closed string case has an analogue
here. The pulled-back Poincaré cocycle is zero for dimension reasons if the small complex has
complicated topology. (A quick calculation shows we are left with collapsing circles in the interior
or collapsing arcs between surface boundary as well as the simplex pseudomanifold boundary.
This calculation needs to be done more carefully in general.) We treat the collapsing circles in
the interior as before. Each of these remaining pseudomanifold boundary pieces of the model
can be described in terms of earlier moduli spaces.

We arrive at the result:

Theorem 2. (open strings) The top chain in each moduli space yields an operation from strings
to surfaces so that the total sum X satisfies a master equation

dX +X ∗X + δ1X + δ2X + · · · = 0

where ∗ denotes the sum over all input output gluings, δ1 refers to the operation inverse to
erasing an output boundary puncture, δ2 refers to the operation of gluing which is inverse to
cutting along the small arc,... The δ operations involve capping with Poincaré dual cocycles.

Remark 1. We say more in [12] about the anomalies δ1, δ2 . . . in the nonequivariant case.

1.7. Classical knots and open string topology. We can consider open strings in 3-space
with endpoints on an embedded closed curve in 3-space.

With M. Sullivan we are developing an argument [72]to deform the δ terms to zero. This
will yield a structure motivated by contact homology in the relative case. It is known from work
of Ng [60] and Ekholm, Etnyre, Ng and Sullivan [30] that nontrivial knot invariants arise from
consideration of the zeroth homology level of these invariants.
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2. Part II. History, background, different perspectives and related work

2.1. Thurston’s work, Wolpert’s formula, Goldman’s bracket and Turaev’s question.
The story of string topology begins for this author2 with the general background question, “What
characterizes the algebraic topology of manifolds?” The immediate answer is the characterization
should be some form of Poincaré Duality. In particular, the intersection ring of chains, C∗ ⊗
C∗ → C∗, defined for manifolds and its compatibility with the coalgebra structures on chains,
C∗ → C∗⊗C∗, defined for all spaces, should play a role in any answer. See the CUNY theses of
Mahmoud Zeinalian [92] and Thomas Tradler [76] for discussions related to duality characteristic
classes and Hochschild complexes.

A second strand of the background to string topology relates to closed curves on a compact
surface up to free homotopy. Their position via intersections counted geometrically rather than
algebraically was important in Thurston’s use of the Teichmuller space of surfaces in the study
of 3D manifolds. Again, in Thurston’s analysis of surface transformations he studies the orbits
of embedded closed curves and how they geometrically intersect a fixed finite set of embedded
closed curves instead of the usual idea in dynamics to study the orbits of points. There is also a
“cosine formula” of Scott Wolpert for measuring the infinitesimal change of hyperbolic lengths
for any geodesic β induced by Thurston’s α earthquake deformation, where α is an embedded
geodesic [89]. It is a weighted sum over the intersection points of α and β of the cosines of the
directed angles between them.

The Teichmuller space T of the hyperbolic structures up to isotopy is a symplectic manifold
and, by a change of variables from the cosine formula, Wolpert showed the functions Lβ on T
given by 2 cosh( 1

2 lengthβ) formed a Lie subalgebra of the Poisson Lie algebra of functions on T
[89].

Scott Wolpert suggested a Lie bracket on homotopy classes of undirected closed curves and
an explanation in terms of a Lie algebra homomorphism for this remarkable Lie subalgebra fact.
This was fully illuminated by Bill Goldman [38] who was interested in the symplectic structure
on other representation manifolds into Lie groups of the fundamental group of compact surfaces.
He embedded as the invariant part under direction reversal Wolpert’s construction for undirected

curves into a Lie bracket V ⊗ V [,]→ V on the vector space V of directed closed curves up to free
homotopy. In the example of figure 3 [a, b] = (a ·q b)− (a ·p b) Here (a ·x b) means compose loops
a and b at x and then take the free homotopy class.

q

p

a

b

Figure 3. Goldman bracket [a, b] = (a ·q b)− (a ·p b)

2This account, as expected, describes the story as known and remembered by the author.
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Recently, Moira Chas managed to show for embedded curves there is no cancellation in
the Goldman bracket i.e., the number of terms in the bracket of two embedded closed curves is
actually equal to the minimal number of intersection points [10]. This relates the string bracket
or Goldman bracket even more forcefully to Thurston’s work and suggests an algebraization is
possible.

Returning again to the past, Goldman found other Lie subalgebras of functions inside the
Poisson Lie algebra of all functions on the symplectic manifold of representations of the group
of the surface into G by considering traces, and provided an explanation using his Lie algebra
of directed curves [38].

These manifolds of representations play a role in 3D topological quantum field theories
via the geometric quantization program [4].

A few years after Bill Goldman’s paper, Vladimir Turaev looked at self intersections of
closed curves on surfaces, one by one, to split the curve into two closed curves at each self
intersection. Forming a skew symmetric formal sum, Turaev defined a coLie algebra structure
E → E⊗E on the vector space E of essential directed curves on the surface up to homotopy [79].
Since the trivial conjugacy class was central for Goldman’s Lie algebra, the bracket of Goldman
passes from V to E. Note this passage from V to E is the precursor of the discussion above
about modding out by small loops when there are multiple outputs (section 1.5).

We then have on E a Lie bracket (Goldman) E⊗E [,]→ E and a Lie cobracket (Turaev) E ∆→
E ⊗E. Turaev showed the five-term drinfeld compatibility condition ∆[a, b] = [∆a, b]′+ [a,∆b]′

where each [, ]′, with two terms, denotes the action of the Lie algebra E on its own tensor square
E ⊗ E [79]. Our generalization is sections 3.3 to 3.8 together with the new involutive property
from [9, 13].

Question 2. What is the deeper meaning or significance of this Lie bialgebra on the vector space
E of essential directed closed curves up to free homotopy?

One can see the cobracket appearing in a formal expansion by Sasha Polyakov of a Wilson
loop path integral calculation [62]. Turaev himself said he spent ten years thinking about quan-
tizing this Lie bialgebra (which he did using knots [79]) and trying to understand its quantum
meaning.

Turaev also asked a provocative question which led to the joint work of the author and
Moira Chas “String Topology” [11]. Namely it is obvious the cobracket of an embedded simple
closed curve is zero and Turaev asked the beautiful question whether or not this property char-
acterizes embedded simple closed curves among conjugacy classes which are not powers of other
conjugacy classes [79].

2.2. Chas’ conjectures on embedded conjugacy classes and the group theory equiv-
alent of the Poincaré conjecture. An algebraic characterization of simple conjugacy classes
on 2D surfaces might be important for the topological study of 3D manifolds. There is a group
theoretic statement (Jaco and Stallings [44, 66]) which is equivalent to the 3D Poincaré conjec-
ture:

“Every surjection πg → Fg × Fg contains in its kernel a nontrivial embedded conjugacy
class.”
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Here πg is the fundamental group of the compact surface of genus g, Fg is the free group
on g generators and embedded means represented by an embedded closed curve.

In the late ’90’s, motivated by this statement from the ’60’s, Moira Chas and the author
tried to answer Turaev’s question relating the kernel of the cobracket and embedded conjugacy
classes. Trying to prove the affirmative answer led to the study of paths or 1-chains in the space
of all closed curves on the surface. This attempt failed, but at some moment, it became clear
that Goldman’s bracket and Turaev’s cobracket for 2D surfaces actually existed at a geometric

level in the vector spaces of chains S∗ of closed curves on any manifold Md, S∗ ⊗ S∗
[,]→ S∗ and

S∗
∆→ S∗⊗S∗ where the degree of each operation is 2− d. Note that the degree is zero precisely

for surfaces. We have indicated the full generalization above and in more detail below. See Part
III.

At the same time it was clear that the basic idea, to study mapping spaces of lower
dimensional manifolds into M by intersecting chains in M induced by evaluation at points and
then forming connected sums gave a rich supply of additional operations. We chose the name
“string topology” for the idea of intersection followed by regluing in the study of the algebraic
topology of this entire package of mapping spaces {intervals or circles →M}, {surfaces →M},
etc. See e.g., [24, 71].

We describe in more detail this “string topology package” for closed curves in general
manifolds in Part III. Now we report on the current status of Turaev’s motivating question
about embedded conjugacy classes of closed curves on surfaces.

Chas gave a combinatorial presentation of the Lie bialgebra on surfaces which could be
programmed for computation and when a search was performed, examples of nonembedded and
nonpower conjugacy classes in the kernel of ∆ were found ([9]).This answered Turaev’s original
question about the kernel of the cobracket in the negative. Chas then reformulated a new
conjecture about characterizing simple classes algebraically in terms of the bracket instead of
the cobracket.

Conjecture 1. (Chas) A conjugacy class α which is not a power is simple iff any one of the
following holds:

(1) [αn, αm] = 0 for all n,m
(2) [αn, αm] = 0 for some n 6= m and nm 6= 0

See [9] for the case n = 1,m = −1 and [14] for n = 2,m = 3.

Recently the second criterion was proven for n = 2,m = 3 by Chas and Krongold [14]
so the first characterization is also established. They also suggest that a replacement for Tu-
raev’s condition cobracket(x) = 0, namely cobracket(x2) = 0, may be sufficient to characterize
embedded conjugacy classes.

Now we have Perelman’s Ricci flow completion of Hamilton’s program verifying Thurston’s
geometrization picture of 3D manifolds. Since Thurston’s picture includes the Poincaré conjec-
ture, we know that the group theoretic statement of Jaco and Stallings about embedded con-
jugacy classes is actually true! Thus the above-mentioned Chas-Turaev characterizations and
conditions are relevant in a new way: one wants to find a purely group theory and/or topolog-
ical proof of a known statement about groups which is now proved using hard PDE and hard
geometry.
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2.3. Algebra perspective on string topology. This definition of the string bracket [11] was
so direct we thought it must be already known in some form. One idea possibly lay in algebra.
Hochschild, in the ’40’s , following the idea of Eilenberg and Maclane (’40’s) that groups Γ had
homology or cohomology with coefficients in any Γ-module, showed that associative algebras A
had homology or cohomology with coefficients in any A-bimodule [41].

These were defined as for groups using free resolutions and Hochschild gave specific reso-
lutions yielding the now so-called Hochschild complexes. During the ’80’s it was learned [45, 36]
that taking the algebra to be the cochains C∗ on a simply connected space X and the bimodule
to be the chains C∗, the Hochschild cochains gave a model for the chains on the free loop space
of X.

In the ’80’s Connes introduced the fruitful cyclic subcomplex of this particular Hochschild
complex with its extra cyclic symmetry and defined the cyclic cohomology of an associative
algebra [26, 53]. He further related this cyclic symmetry to spaces with S1 action.

This cyclic structure in the Hochschild complex of C∗(X) fit with the S1 action on the
free loop space so the cyclic cohomology of C∗(X) became the equivariant homology of the free
loop space of X [45], again in the simply connected case.

This is only half of the relevant Hochschild story. The rest occurs in the Hochschild
complex for the other obvious bimodule (the predual) studied by Gerstenhaber in the ’60’s.

In a celebrated paper [34] Gerstenhaber, motivated by a major theory at the time, the
Kodaira-Spencer theory of deformations of complex structures, tried for a purely algebraic for-
mulation. Gerstenhaber studied formal deformations of the multiplication in an associative
algebra, bearing in mind the complex structure resides in the algebra structure of the sheaf of
holomorphic functions. He made use of the Hochschild complex of an algebra A with coefficients
in the bimodule A itself. Gerstenhaber defined a ∗-operation in the Hochschild cochain complex
(A;A) which was non associative but whose commutator gave a differential Lie algebra structure
on this Hochschild complex.

Nowadays one says this Gerstenhaber differential Lie algebra controls the deformation
theory of A and one says the Kodaira-Spencer differential Lie algebra of (∗, 0) polyvector fields
with coefficients in the (0, ∗) forms controls the deformation theory of the complex structure. The
obstruction in each theory to extending a linear deformation α (here dα = 0 and α is taken mod
boundaries) to a second order deformation is [α, α] mod boundaries. If this first obstruction
vanishes [α, α] = dβ, the next obstruction to a third order deformation is [α, β] (which is a
cycle in characteristic 6= 3 by the jacobi identity) mod boundaries, etc. These have the same
universal form in any deformation theory controlled by a differential Lie algebra. Gerstenhaber
also showed the Hochschild complex (A;A) had a rich supply of other operations: an associative
product, brace operations extending ∗ and so on.

This entire Gerstenhaber discussion can be applied to the cochains C∗(X) on a space. I
don’t know a topological interpretation of all this Gerstenhaber structure except when the space
is a manifold, where it is part of the string topology of the free loop space of the manifold.

This happens because of Poincaré duality at the level of chains and cochains: in the case
of a manifold X the two bimodules over the cochain algebra, chains and cochains,
are equivalent. Equivalent means their resolutions are chain homotopy equivalent as chain
complexes of bimodules over the algebra of cochains. This concept and fact for manifolds ap-
peared in the CUNY thesis of Thomas Tradler [76] which began the algebraic interpretation of
string topology. Also there is an appropriate formulation for manifolds with boundary.
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Thus, at least for a manifold M , the entire package of Gerstenhaber operations in his defor-
mation theory may be translated fromHochschild(C∗(X);C∗(X)) toHochschild(C∗(X);C∗(X)).
The latter maps into the chains on the free loop space where the corresponding operations can be
defined geometrically by the constructions of string topology. In the simply connected case the
map is a quasi-isomorphism and we have an algebraic interpretation of at least a part of string
topology in terms of the two Hochschild complexes Hochschild(A;A) and Hochschild(A;Adual)
and the duality equivalence between them A v Adual as A-bimodules in the homotopy category
of A-bimodules. Such an algebra with this equivalence may be called a homotopy Frobenius
algebra.

Let us go back a bit before going on because we skipped a step in the story. The Lie
bracket of Gerstenhaber in the above discussion is really defined on the Hochschild cohomology
which models the ordinary homology H∗ of the free loop space and so defines a Lie bracket there
which turns out to have degree −d + 1. The generalized string bracket above generalizing the
Lie bracket on surfaces begun by Wolpert and Goldman and generalized in [11] is defined on the
equivariant homology HS1

∗ of the free loop space and has degree −d+ 2.

There is, as mentioned above, a map of degree +1, HS1

∗
M−→ H∗ which is part of the long

exact sequence

. . . M // Hi+2
E // HS1

i+2

∩c // HS1

i

M // Hi+1
E // . . .

relating ordinary homology and equivariant homology of any space with a circle action. The
map M is a map of graded Lie algebras, providing a connection of the geometrically defined
string bracket with the Gersenhaber bracket from algebra.

This is a complicated path. It turns out there is a more direct route to the string bracket
generalizing Goldman’s bracket in surfaces. We can translate Gerstenhaber’s associative product
on Hochschild(A;A) into a geometric product on the ordinary chains of the free loop space –
simply intersect an ã−family of marked strings with a b̃−family of marked strings at the marked
points to obtain a locus c̃ of dimension c = a + b − d. Along c̃ compose the loops to construct
an “associative” product on the chains of the free loop space of any manifold. This product
•, which we call the loop product (the Chas-Sullivan product in the literature), can be used to
reinterpret the geometric definition of the string bracket using the chain maps for E and M of
the exact sequence relating ordinary and equivariant homology (above).

string bracket(a, b) = E ◦ loop product(Ma,Mb).

Thus begins a sequel to Gerstenhaber’s algebraic deformation theory when the associative algebra
satisfies some kind of Poincaré duality like the homotopy Frobenius property above. This occurs
because the rich deformation story on one Hochschild complex (Gerstenhaber) can be combined
using the equivalence of bimodules A v Adual, with the similarly interesting cyclic story (Connes)
on the other Hochschild complex.

The first combined algebraic structure that emerges is a Batalin Vilkovisky algebra struc-
ture (•,∆) on the ordinary homology of the free loop space [11] or its model the Hochschild
cohomology of cochains C∗ with coefficients in C∗ or C∗. Here • is the loop product and ∆ is
the generator of the circle action which satisfies ∆ ◦∆ = 0 and is related to the product • by
{a, b} which satisfies jacobi and is a derivation in each variable where {, } is defined by

−{a, b} = (∆a) • b± a • (∆b)−∆(a • b).
In other words, the odd Poisson algebra (•, {, }) (also called a Gerstenhaber algebra) that Ger-
stenhaber discovered on the Hochschild cohomology (A;A) for an associative algebra, in the
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presence of Poincaré duality or appropriate homotopy Frobenius, is actually derived from a BV
algebra (•,∆). This algebraic statement trying to explain the geometric version of BV in string
topology [11] appeared first to my knowledge in the CUNY thesis of Tradler [76].

Stronger versions, improvements and variants have appeared in several other works:
Merkulov [59], R. Kaufmann [46], Tradler [77], Tradler-Zeinalian [78].

Currently, there are several works in progress using ribbon graphs to explore the full
implications of variants of homotopy Frobenius properties of associative algebras and their gen-
eralizations to linear categories, A∞ algebras and linear A∞ categories. Kevin Costello [28]
and Maxim Kontsevich [51] in parallel work (suggested by earlier work of Kontsevich [52]) have
pursued the idea that the celebrated topological string theories

(1) A−model defined by J−holomorphic curves (Gromov-Witten)
(2) B−model defined by generalized Kodaira-Spencer deformations of Calabi-Yau manifolds

are conjecturally just this full algebraic exploration of the appropriate homotopy Frobenius
property applied to appropriate linear (A∞) categories

(1) for the A−model, the Fukaya A∞ category of transversal Lagrangian submanifolds with
morphisms given by the Floer complexes of J−holomorphic curves

(2) for the B−model, the A∞ category of coherent sheaves on a Calabi-Yau manifold where
the morphisms are the complexes for defining Ext(, ).

In the examples A−model and B−model it is important that the cyclic Hochschild com-
plex here has finite type and satisfies Poincaré duality in its own right which does not occur for
string topology because the free loop space is infinite dimensional.

Véronique Godin [37] and Ralph Kaufmann [47, 48] and Mike Hopkins with Jacob Lurie
[42] are developing this ribbon graph picture of what can be called the “BΓ part” of string
topology from either the original string topology perspective or this homotopy Frobenius algebra
perspective.

By the “BΓ part” of string topology we mean the part of the structure described below
associated to the cells in the interior of the moduli space of Riemann surfaces together with
those on the boundary associated to gluing Riemann surfaces.

By Γ we mean the mapping class group and one knows (in several different statements)
that the open part of moduli space is homologically equivalent to the classifying space BΓ of Γ.

As we mentioned above, there is more to discuss about the BΓ part of string topology. The
issue is whether or not the rest of the boundary of the open moduli space beyond composition
can be “zipped up” or compactified.

In compactified string topology [12] the boundary is zipped up by combinatorially finding
and then filling in loops that are small in the manifold.

2.4. Homotopy theory or algebraic topology perspective on string topology. Umkehr
map of string topology The operations in string topology use a wrong way or umkehr map
associated to the left arrow in the diagram
(input boundary,M) (surface,M)

I
oo

O
// (output boundary,M)

Here (X,M) is the space of all maps of X into M . This “umkehr map” is defined after
applying a linearizing functor, say F , to the diagram and then doing a version of intersection
product to get the umkehr map
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F (input boundary,M) umkehr // F (surface,M).

For example, taking the surface to be a pair of pants with marked input boundary (2
in, 1 out) and F to be the chains on the loop space, leads to the loop product. If F is the
subcomplex of equivariant chains inside all the chains, one gets the string bracket. Here umkehr
is geometrically intersecting with the diagonal or, as we mentioned above and described in more
detail in sections 1.3 and 3.1 to 3.8, pulling back a Poincaré dual cocycle to the diagonal, e.g.,
a Thom class representative for the (neighborhood of the diagonal, boundary).

One could also take F to be representatives of bordism instead of chains. The most general
object to use instead of the chains is the spectrum of any cohomology theory h∗ for which the
normal bundle of the diagonal M →M ×M is orientable.

Cohen and Jones [21] have devised such a stable homotopy formulation of some of the op-
erations in the BΓ part of string topology corresponding to string diagrams. Recently, Véronique
Godin has developed a spectrum formulation of the “BΓ part” of string topology [37] (see pre-
vious section for a definition of “BΓ part”). Jacob Lurie and Mike Hopkins have a categorical
understanding of a general form of these constructions and a potential framework for the A
and B models mentioned in the previous section [42]. I suppose their framework will eventually
include the compactified form of string topology discussed here.

These constructions respect the composition part of the boundary of open moduli space.
I don’t know what to expect about their behavior near the rest of the boundary of open moduli
space at infinty, except to say that the Euler class, which is the image of the class of the Poincaré
dual cocycle under the map

hd(neighborhood of diagonal, ∂(neighborhood of diagonal))→ hd(neighborhood of diagonal)

should play a role.

The above remarks concerned stable homotopy theory. Here is a connection to unstable
homotopy theory.

The E2 term of the homology spectral sequence for the natural fibration

based loop space inclusion // free loop space evaluation // manifold

is the tensor product of the homology of the based loop space and the homology of the manifold
(Q coefficients, no twisting). The first factor is a graded cocommutative Hopf algebra and the
second is a graded commutative Frobenius algebra.

The tensor product E2 term is therefore both an algebra and a coalgebra. It is not clear
how to express an intelligent compatibility between these two structures.

Now the differentials of the spectral sequence respect the coalgebra structure (true for all
spaces) and this leads to the coalgebra structure on the limit which agrees with the coalgebra
structure on the free loop space. Before string topology came along one could have asked if
the differential d3 preserves the algebra structure on E2 and then ask if this algebra structure
persists through the spectral sequence to some algebra structure on the homology of the free
loop space.

Actually, the geometric construction of the loop product at the chain level respects the
filtrations defining the spectral sequence. Thus the loop product exists all through the spectral
sequence and the differentials respect both the algebra and the coalgebra structure.
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Cohen, Jones and Yan [22] also noticed and then emphasized this neat fact and used this
property to obtain simple computations of the free loop space homology for familiar spaces.

Recently, Xiaojun Chen, in his Stony Brook thesis, [16] has built a chain model of this
free loop space fibration (Q coefficients) with an explicit differential on the tensor product of the
forms and a completed cobar construction on the dual of forms that is both a derivation and
coderivation for the product and completed coproduct.

An intriguing problem is to formulate the kind of bialgebra this construction instantiates.
Up to now the diagonal coalgebra structure of the free loop space has stood somewhat apart
from the algebraic structures on the free loop space coming from string topology. A special case
of the problem is illustrated by the E2 term above – how should one view the tensor product of
a Frobenius algebra and a Hopf algebra?

Of course the Hopf algebra there is really the universal enveloping algebra of a Lie algebra.
The tensor product of a commutiative algebra with a Lie algebra is a Lie algebra. Also our
commutative algebra has an invariant trace in the closed manifold case. But then what?

Question 3. How much of string topology is a homotopy invariant of the pair (M,∂M)? In
[23] it is shown that the string bracket and the loop product are homotopy invariants of closed
manifolds. Perhaps the entire BΓ part can be constructed from the homotopy theory, using
Hopkins’ and Lurie’s construction [42].

On the other hand we have conjectured that the entire “zipped up” string topology package
is not a homotopy invariant (see Postscript [69] and next section). The motivation for this
conjecture can be obtained from the sequence of statements.

(1) (René Thom ’58) A polyhedron which is locally a Q−homology manifold has Q−Pontrjagin
classes [74]. These classes are not homotopy invariants but in fact parametrize the infi-
nite part of the diffeomorphism types for higher dimensional simply connected manifolds
(’60’s surgery theory).

(2) (Clint McCrory ’70) An oriented pseudomanifold P without boundary for which the
diagonal P → P × P has a dual cocycle supported in a regular neighborhood of the
diagonal (mod its boundary) is a homology manifold [56].

(3) The string topology constructions discussed above precisely use a local near the diagonal
Poincaré dual class to construct the chain level string topology operations and the locality
seems necessary.

2.5. Symplectic topology perspective on string topology. There has been renewed activ-
ity (referred to as symplectic topology) since 1985 and Gromov’s discovery of the control plus
flexibility of J−holomorphic curves (i.e., surfaces mapping into a symplectic manifold provided
with an almost complex structure J). Homological invariants of the moduli spaces of such curves
with specified boundary conditions and lying in fixed relative 2-dimensional homology classes
provide a rich array of invariants. Being homological with Q−coefficients, these invariants re-
main unchanged as the almost complex structure and the symplectic structure are deformed
continuously. Thus they can in this sense be considered to be part of topology (as the physicists
have done for years).

These theories in various forms can be applied to general smooth manifolds M by con-
sidering the cotangent bundles and their tautological exact symplectic structures (ω = dη where
locally η =

∑
i pidqi).

There are at least three forms of symplectic topology that may be used here:
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(1) a Floer type theory that leads to operations in a J−holomorphic disk description of the
ordinary homology of the free loop space of M [83, 84, 64, 3, 19]. This relates to the
nonequivariant loop space (open string topology).

(2) the symplectic field theory (SFT) [31] applied to the cotangent bundle minus the zero
section regarded as the symplecticization of a contact manifold, the unit sphere cotan-
gent bundle. J−holomorphic curves in the symplectization can describe the equivariant
homology of the free loop space. This relates to the equivariant loop space (closed string
topology).

(3) relative symplectic field theory, also related to open string topology.

Yasha Eliashberg has emphasized two interlocking questions:

(1) does the symplectic structure on T ∗M determineM up to diffeomorphism and isDiff(M)
homotopy equivalent to Symplectomorphism(T ∗M)?

(2) can all the known invariants of smooth manifolds: the homotopy type, the characteris-
tic classes, the surgery invariants of higher dimensional manifolds, the Donaldson and
Seiberg-Witten invariants of 4-manifolds, and the quantum invariants of 3-manifolds of
Chern-Simons, Vaughan Jones and Vasiliev, be described in terms of J−holomorphic
curve invariants of the cotangent bundle?

Eliashberg has also perceived a role for string topology in the general theory of J−holomporphic
curve invariants of pairs (symplecticW , systems of Lagrangian submanifolds L1, L2, . . . ). Namely,
conjecturally, the symplectic theory of the cotangent bundle may be described in terms of string
topology and also maybe this constitutes a natural piece of symplectic topology near the Lan-
grangian boundary conditions. This might happen because of Weinstein’s result that the neigh-
borhood of any Lagrangian L in symplectic a symplectic manifold W is symplectomorphic to a
neighborhood of the zero section in the cotangent bundle of L.

Let us examine in somewhat more detail the first point of this speculation and discuss a bit
the program of Janko Latschev and Kai Cieliebak [17]. Starting from the algebraic formulation
of SFT [31] they consider, in the case of the cotangent bundle, a rich algebraic invariant of M .
In fact, there are three levels as follows.

The formulation of SFT [31] uses punctured J−holomorphic curves in the cotangent bun-
dle minus the zero section stretching between periodic orbits of the Reeb flow (e.g., the geodesic
flow) at +∞ or −∞ (which is near the zero section). The genus zero curves with one component
at +∞ (level I) leads to a derivation differential d = d0 + d1 + d2 + . . . on the free graded
commutative algebra on periodic Reeb orbits. Using the filling of the contact manifold by the
unit disk bundle a change of variables can be discovered that reduces the constant term d0 to
zero. Then d1◦d1 = 0 and the linearized homology (the homology of d1 on the indecomposables)
turns out to be the equivariant homology of the free loop space mod constant loops, i.e., the
reduced equivariant homology used in section 2.2.

Analyzing the string cobracket of string topology (see below) leads to a similar structure
– a coLie infinity structure on H̃S1

∗ , the reduced equivariant homology of the free loop space.

The Cieliebak-Latschev program at level I is to construct this type of structure by transver-
sality as in the string topology of [11, 13] (rather than the Poincaré dual cocycle version here)
and show it is isomorphic to the structure coming from the J−holomorphic curves.

They have a similar program for level II using genus zero curves with several punctures
at +∞. Now one can view the SFT formalism as an infinity Lie bialgebra structure (see our
description below of the infinity Lie bialgebra structure arising from string topology). They try
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to construct this structure as in string topology [11, 13] and again show it is isomorphic to the
one coming from level II J−holomorphic curves.

Actually the Lie bialgebra in string topology is involutive at the chain level. One now
understands the infinity version of this genus one relation for a Lie bialgebra requires at least and
perhaps more operations indexed by (k inputs, l outputs, g = genus). Their level III program
uses the higher genus curves as well. See section 1.5 above.

There is also relative symplectic field theory that can be applied to study classical knots
K in 3-space. The conormal of K in the cotangent bundle of 3-space provides the boundary
conditions for the J−holomorphic curves. The level I theory adjusted by the filling given by
the relative cotangent disk bundle yields a differential derivation d = d1 + d2 + . . . on a free
associative algebra generated by the Reeb flow orbits starting and ending on the Lagrangian.
Lenny Ng has a set of papers motivated by the problem of computing the zeroth homology of
this dga. He found a conjectured combinatorial description and showed it gives a powerful knot
invariant [60].

This conjecture is now proved in [30]. It turns out that Ng’s combinatorial descriptions
resonates with the open string topology of the knot [72]– it is related to the coproduct on families
of strings in R3 starting and ending on the knot which are cut by intersecting with the knot. A
Poicaré dual cocycle description of the intersection defining d2 can be chosen to eliminate the
anomaly and this should lead to an A∞ coalgebra structure on the linearlized homology. Again
there are variants of the construction [72].

2.6. Riemannian geometry perspective on string topology. One might imagine making
the string topology constructions using the heat flow. Each heat operator e∆t commutes with
d and is chain homotopic to the identity via

∫ t
0
d∗e∆sds. Also e∆t provides a differential form

Poincaré dual to the diagonal with more and more of its weighted support tending to the diagonal
as t tends to zero. In the probabilistic picture this diffusion operator is related to parallel
translation modified by a curvature term along random paths weighted by the Wiener measure
[87]. One could imagine using these paths to define the string topology operations instead of
the short geodesics. In fact, as t → 0+ the Wiener measure conditioned on paths from x to y
converges to a measure on the shortest geodesics from x to y [29]. The details of this putative
heat string topology construction are nontrivial but feasible (see [87, 67]).

However, Kevin Costello [27] has a completed diagrammatic calculation using these quan-
tities, harmonic forms and e∆t, involving ribbon graphs. Renormalization issues are addressed
and a rich structure is produced. It reminds one of string topology for small loops with coeffi-
cients in a compact Lie group G – resonating with the original work of Goldman on surfaces.

3. Part III. The diffusion intersection and short geodesic construction of string
topology, the main theorem and the first six examples

3.1. Statement of the main theorem of string topology for closed strings and the
motivation for infinity structures. The generalized bracket for two families of closed strings
A and B is very simple to define geometrically – just intersect (transversally) the set of possible
positions on all the curves in the A family with the same in the B family. At each point of this
locus C, compose the A curves and B curves, as based loops, to define the Lie bracket family C
of unbased loops. A picture [13] shows this operation satisfies jacobi and passes to a Lie bracket
on the equivariant homology of the free loop space of Md. The degree of this operation is −d+2
as can be seen from the intersection theory used above. If A has dimension a, B has dimension b,
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then C has dimension c = a+ b+2−d. This process is exactly the formula [a, b] = E(Ma•Mb),
mentioned in section 1.1.

One knows in algebraic topology, it is not really optimal to pass to homology in this
kind of situation but one also knows that the alternative is more work. The problem and
the interest is that the above bracket and jacobi identity only pertain“transversally.” In the
Stony Brook thesis of Scott Wilson [88] such partially defined structures with one output were
extended to globally defined structures on functorially associated quasiisomorphic complexes.
The theory of the Appendix provides an adequate theory for multiple outputs. How this partial-
to-global transition should be interpreted can be learned from the intersection product of relative
integral chains in a manifold with boundary. The transversal intersection product is actually
graded commutative and associative. Steenrod operations show it cannot be extended to such
a product on all integral chains. However, the general theory begun by Steenrod says it may be
extended to a commutative and associative product up to infinite homotopy. Furthermore, as
mentioned above, over Q [63, 68] and over F̄p for each prime p [55] this E∞ product structure
up to homotopy determines the entire homotopy type for simply connected spaces. In fact in
each setting (at Q or at p) there is an equivalence of homotopy categories between spaces and
the algebraic models.

One of the main consequences of the general string topology construction described below
provides analogous Lie bracket and Lie cobracket infinity structures for the chains on the free
loop space, namely one has the following theorem.

Theorem 3. On the reduced equivariant chains of the free loop space, LS1

∗ (k) of an oriented
d-manifold (defined below in section 3.3), the “diffuse intersection” string topology construction
produces an “involutive Lie biagebra structure up to homotopy.” The degrees of the bracket and
cobracket operations are 2− d.

What does the theorem mean algebraically? We will explain the quotation marks in
remark 2 below. There are two parts to the theorem:

Part I For each (k, l, g) associated to the top or fundamental chain of the combinatorial moduli
space there is a well defined graded symmetric chain operation of degree
(3 − d)(2g − 2 + k + l) − 1: φg : LS1

∗ (k)′ → LS1

∗ (l)′, k > 0, l > 0, g ≥ 0. Add a formal
variable t in order to sum these operations obtaining: ϕ(k, l) =

∑∞
g=0 t

2g−2φg. For
d = 4, 5, 6, . . . all but finitely many of the operations φg(k, l) are zero in the fixed degree
because their degrees go to −∞. So form

∑
tk+lϕ(k, l) = ϑ. The theorem says that

these operations are defined and satisfy the master equation:

∂ϑ+ ϑ ∗ ϑ = 0

where ∂ϑ = the commmutator of ϑ with the boundary operator and ϑ ∗ ϑ is the sum
over all possible compositions.

Part II Structures like those described in Part I can be transported between different chain com-
plexes via chain mappings inducing isomorphisms on homology (see Appendix). With Q
coefficients the homology with zero differential is such a complex. Thus from the ϑ in Part
I on C∗ there is implied a collection {ϑH(g, k, l)} acting between (HS1

)⊗k → (HS1
)⊗l.

Adding the formal variable t and summing as before ϑH =
∑
k,l t

k+l
∑
g≥0 ϕg(k, l)

to get one operation ϑH on Λ(HS1

∗ t), the free graded commutative algebra on HS1

∗ the
reduced equivariant homology of the free loop space of Md with t then adjoined. The
above equation at the chain level ∂ϑ+ ϑ ∗ ϑ = 0 becomes the equation ϑH ∗ ϑH = 0 at
the homology level in Λ(HS1

∗ t).
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If we give t the weight d− 3 then ϑ and ϑH each has degree −1.

Remark 2. The algebraic structure indicated by the master equation of Part I is not a complete
resolution of the involutive Lie bialgebra structure, thus the quotation marks in the theorem.
It is however an infinity algebraic structure in the sense of the Appendix – namely an infinity
version of its own homotopy type. This homotopy type could be named quantum Lie bialgebra.
The situation is analogous to work of Kevin Costello [28] where the diagrams constructed give
a version of a resolution of the cyclic A∞ structure and Costello dubs the structure a quantum
A∞ structure.

Remark 3. For dimension d = 2, the reduced equivariant homology of the free loop space
for higher genus is concentrated in degree zero (Q coefficients) and is just the space E of the
introduction. The operations φ(k, l, g) have degree (3− d)(2g − 2 + k + l)− 1, which is nonzero
unless g = 0 and k + l = 3. This leaves only the bracket and cobracket of Goldman and Turaev
for d = 2 if the surface is not the 2-sphere or the torus.

For dimension d = 3 the degree of every operation is −1. For closed hyperbolic manifolds
the homology is concentrated in degree zero (Q coeffiecients) so all operations φH of the minimal
model are zero. In the CUNY thesis of Hossein Abbaspour a converse is proven expressed in
terms of the loop product on the ordinary homology of the free loop space. Namely, if a closed
3-dimensional manifold is not hyperbolic, some string topology (loop products beyond classical
intersection products) is nontrivial. See the precise statement [1] where double covers must be
used for certain “small Seifert fibered spaces.”

3.2. Sketch of the basic diffuse intersection and geodesic path construction of string
topology. Start with a pair consisting of a family of oriented closed one-manifolds in M with
k labelled components and a combinatorial description (via a combinatorial harmonic function,
see [13, 8] and figure 1) of a combinatorial surface of genus g with k labeled input ∂ components
and l labeled output components. One imagines trying to push the input circles through the
surface. As critical levels are passed the circles are cut and reconnected precisely at the critical
points. This happens a finite number of times until the output boundary is achieved. Between
critical levels one imagines only moving slightly, if at all. The diagrammatic picture of the
surface changes when two critical levels come together and unite into one critical level.

For the generic picture of the surface each critical level has one Morse quadratic-type
critical point which is neither a minimum nor a maximum. In this case there are (2g− 2 + k+ l)
critical levels since each one adds −1 to the Euler characteristic of what came before. The critical
level and what came just before and just after is specified by two parameters: where the two
points of the ascending manifold attach. See figure 4.

before

after

Figure 4. Just before and just after a critical level in the surface

In the generic case there are (2g−2 +k+ l)−1 heights of cylinders between critical levels
which we sometimes refer to as the spacing between levels. All in all there are
2(2g−2+k+l)+(2g−2+k+l)−1 parameters to describe the typical picture, so combinatorially



22 DENNIS SULLIVAN

a top cell or stratum is of dimension 3|χ|−1 where χ is the Euler characteristic of the punctured
surface.

These cells or strata fit together to form a compact pseudomanifold with corners of that
dimension. The boundary is created by imposing certain inequalities that the combinatorial
metric length of any essential combinatorial circuit is ≥ ε > 0. Boundary is also created by
spacing equal to one because spacing is restricted to the interval [0, 1].

When surfaces 1 and surface 2 are glued output to input to obtain surface 3 note that
χ3 = χ1 +χ2 but the dimensions of the moduli spaces of these satisfy d1 + d2 + 1 = d3. It turns
out that the product of the 1 and 2 moduli spaces is embedded in the boundary of the 3 moduli
space by gluing. This is also clear because, as mentioned above, the cylinders created by gluing
have length 1 by definition.

The string topology construction will construct, on some open subset of the initial family
of input boundary mapping into M , a mapping of the combinatorial surface into M with the
given input boundary values. This is done step by step, over each level. If inductively (over r,
say) we have mapped the surface up to just below the critical level on some open set Ur, we map
the two attaching points of the next critical level into M ×M .

abstract surface M

before

after

Figure 5. Near a critical level in the surface and in the manifold

We pull back a small neighborhood of the diagonal in M ×M to define Ur+1 inside Ur.
On Ur+1 the two points will be close in M . We can draw a short geodesic between these points
and map the short critical trajectory onto this geodesic. The level after the critical level and
just before the next critical level is projected in the surface to the level just below the critical
arc plus the critical arc. Putting this together gives the map into M of the surface up to just
before the next critical level. See figure 5.

This describes the basic geometric construction for interiors of strata corresponding to the
combinatorial harmonic function picture being Morse with distinct critical levels. We postpone
for the moment how this process defines a chain operation and first discuss what happens as
critical levels merge or separate. The general picture of one critical level is combinatorially
equivalent to the string diagrams or generalized chord diagrams introduced in [13] and defined
above in section 1.3. The relationship of stacks of these to Riemann surfaces with a harmonic
function goes back to Poincaré and Hilbert. (See [8] for more details.)
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If two levels come together in a generic way there are distinct Morse critical points at the
same level. There is an associated evaluation map to four copies of M and we can pull back the
intersection of two neighborhoods of the diagonals, say 12 and 34 in (1, 2, 3, 4). This intersection
is the Cartesian product of the neighborhood of the diagonal 12 in (1, 2) and the diagonal 34 in
(3, 4). For the geometric construction we form two short geodesics and get the picture in figure
6.

abstract surface M

before

after

Figure 6. Critical levels come together, in the surface and in the manifold

Note this picture is not identical to one of the other pictures obtained by doing first one
operation and then the other. However these two only differ on small convex neighborhoods in
M of the points in question. So it is possible to construct a canonical homotopy between the
two maps of the surface into M . We associate the parameter of this homotopy to the parameter
corresponding to the height of the cylinders between critical levels.

The above geometric construction defines operations on families of input circles mapping
into M – where the family is cut down to the open set where the appropriate equations ap-
proximately hold allowing us to position the surface in M . To get chain operations we do the
following. 1) Consider only initial bases of families which are oriented open sets in Euclidean
balls. 2) We choose a cocycle Poicaré dual to the diagonal in M ×M supported in a small
neighborhood of the diagonal. 3) We pull back this dual cocycle to the Euclidean balls by the
evaluation maps just discussed. 4) When critical levels coalesce we form the Cartesian or tensor
product of the dual cocycles and pull them back to the base of the input boundary family. 5)
The pair consisting of the original base family and the pull back cocycle is the output chain.
More formally the output chain is the the cap product of the input chain with the pulled back
dual cocycle, σ ∩ U where U is the pulled back cocycle. 6) If the input chain σ is already a cap
product pair (σ′, U ′) ∼ (σ′∩U ′) then (σ′, U ′, U) will correspond to (σ′∩U ′)∩U = σ′∩ (U ∩U ′).

With this formulation using the Poicaré dual cocycle, we can enter the forbidden region
beyond the open moduli space cut off by all essential circuits ≥ ε. One merely pulls back the
products of dual cocycles via the specializing evaluation mappings. We have seen above in section
1.4 how single loop degenerations are dealt with and filled in. Multiple loop degenerations work
very well because there are more equations than unknowns and the corresponding dual cocycle
product has too large a dimension and becomes identically zero under restriction and pull back
(see section 1.4).
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There is a contractibility property of dual cocycles to any diagonal. Any two differ by a
coboundary in the pair (neighborhood, ∂neighborhood). Any two such coboundaries differ by a
coboundary, etc. In the construction above these coboundaries are added in to the geometric
homotopies to create chain homotopies between slightly different geodesic arc constructions. We
do illustrative examples in the sections 3.3 to 3.8.

These are the elements of the proof of the main workhorse theorem. Let (X,M)∗ denote
the singular chains in the equivariant mapping space (X,M). See section 3.3 and 3.4 for the
definition of (X,M)∗.

input

input

output

output

collapse this

region in the moduli

space boundary

χ(Γ) < 0

fill in a 2-disk

bundle along

this boundary

χ(Γ) = 0

compose at

this part of

the boundary

input

input

input

input

output

output

output

output

Figure 7. Type A filling in plus composition boundary

Theorem 4 (Workhorse theorem). For each (k, l, g) there is a chain mapping of the equivariant
chains on the compactified moduli space M̂ (g, k, l) into the chain complex Hom((I,M)∗, (Σ,M)∗).
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Here M̂ (g, k, l) is the moduli space with part of its boundary, excluding the composition bound-
ary, filled in or zipped up by coning off certain factors in fibered product decompositions of the
non composition boundary. In more detail (see figure 7),

a) single circles that do not separate part of input from output or visa versa correspond to
S1 fibrations on the boundary. These are filled in with disk bundles.

b) collections of mutually nonhomotopic circles that do not separate correspond to torus
bundles and get filled in by the intersection of cases of type a). See figure 8

c) if a collection of mutually nonhomotopic circles separates off a component that has no
input or output boundary, this region is coned off and the string topology construction is set equal
to zero because of the negative Euler characteristic argument in section 1.4.

d) if a collection of circles separates off a component with a non-empty but balanced weight
distribution they are treated as in a) or b) and filled in as circle bundles.

e) if a collection of circles separates off a component with an unbalanced set of weights, a
composition is formed with the heavier part being the input or output of the composition depending
on sign (see examples in section 3.7).

f) there is one more piece of noncomposition boundary – the“outgoing lengths simplex
boundary” which is filled in in the closed string or equivariant case algebraically by working in
the quotient by small loops in M .

2-disk bundle2-disk bundle

2-torus

bundle

Figure 8.

Remark 4. It seems likely the homology of these spaces M̂ (g, k, l) can be known with present
technology – perhaps more easily than the open M (g, k, l). See the CUNY thesis of Fereydoun
Nouri [61].

3.3. The string bracket and jacobi relation at the chain level. The Goldman bracket for
curves up to homotopy on a surface generalizes to the string bracket operation on the equivariant

chains LS1

∗ (2)
[,]→ LS1

∗ (1) of the free k-loop space k = 1, 2, 3, . . . of an oriented d-manifold Md.
See definition 1 iii) for the definition of LS1

∗ (k).
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More exactly, there are chain mappings LS1

∗ (2) I← P (2, 1)G∗
0→ LS1

∗ (1) where P (2, 1)G∗ are
the equivariant chains on the space of maps of a pair of pants P (2, 1) = {S2 − 3 disks} into
Md, I and O are restriction mappings to the input boundary (two components of the boundary
of P (2, 1)) and the remaining output boundary of P (2, 1). For a pair of pants P (2, 1) with 3
boundary circles, two of which are input and one of which is output, the structure group G is
diffeomorphisms of P (2, 1) which are rotations on each boundary circle. The string topology

construction produces maps LS1

∗ (2) ST→ P (2, 1)G∗ , and then LS1

∗ (2)
[,]→ LS1

∗ (1) is the composition
O ◦ ST . ST was discussed briefly above and will be discussed again momentarily.

Definition 1. (G-equivariant chains on maps of a G-space X into M)

i) First, consider a standard version of the equivariant singular chain complex. Here
a k−simplex is a pair (X-bundle with specified structure group G over the standard
k−simplex, map of the total space into M) up to equivalence, where equivalence is an
X-bundle isomorphism over the simplex satisfying: the obvious diagram of maps com-
mutes.

ii) Second, consider the diffuse equivariant version. Here we replace the standard k-simplex
in i) by a pair (s(Ũ), Ũ) consisting of an open set s(Ũ) in a k + d−simplex and a
singular d-cochain Ũ whose closed support is in s(Ũ). Then the bundle, the map and the
equivalences need only be defined over the open set s(Ũ).

The boundary map for i) is the usual one, and the boundary map for ii) is the direct
analogue of the usual one: the alternating sum of the restrictions of the cocycle to the
k + d− 1−faces plus another term ±(s(Ũ), δŨ).

iii) By LS1

∗ (k) we mean the “diffuse equivariant” chains for the mapping space {k-labeled
circles, M} with the structure group the k-torus acting by rotations on the k-labeled
domain circles.

iv) Later on we add a further equivalence relation allowing non identity diffeomorphisms on
the base of the family.

Consider a bundle whose fiber is two labeled circles, with structure group the 2 torus, over
∆k, the standard k-simplex. Let E(2) ={ordered pairs of points, one in each circle}. Then given
a map of the total space E into M , form the map E(2)→M ×M by evaluating the map of E
into M . Pull back an apriori chosen cocycle U , Poincaré dual to the diagonal and supported on
a small neighborhood of the diagonal, to get a cocycle Ũ on E. For each point in the support of
Ũ the image point in M ×M is near the diagonal by definition. Connect this pair of points in
M by a canonical short path (like the geodesic in some apriori chosen metric). It follows that
for each point p of the support of Ũ we get a map of a graph into M . The graph is made out of
the two circles mapping into M , together with the short path associated to p

The varying graph may be viewed as a varying spine of a varying P (2, 1) over s(Ũ),
the support of Ũ . The pair (s(Ũ), Ũ) may be considered to be the output chain of ST . One
can extend this construction from standard k-chains to diffuse equivariant chains using the cup
product of cochains, namely (s(V ), V ) yields (s(V ∪ Ū), V ∪ Ū) .

The composition O ◦ ST : LS1

∗ (2) → LS1

∗ (1) is the chain level bracket generalizing Gold-
man’s.
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Figure 9. The bracket
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Figure 10. Stratified cutoff moduli space of {S2−4 points}

To discuss the analogue of the jacobi identity we consider P (3, 1), the two-sphere minus
four disks with three labeled boundary components designated as input boundary and the re-
maining one as output. The moduli space of the two-sphere minus four points has three points
at infinity. We will use this moduli space cut off near infinity to build out of 17 pieces a chain ho-
motopy for the analogue of the jacobi relation for the string bracket. Each boundary component
of the moduli space corresponds to a term in the jacobi identity.

a b

c

a

bc

a

b c

Figure 11.
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The moduli space is stratified as indicated in the figure 10. The graphs of figures 11 and
12 determine ribbon graphs which thicken to Riemann surfaces. The input circles have equal
length. Each stratum labeled will correspond to other chain operations LS1

∗ (3) → LS1

∗ (1) built
according to string diagrams via diffusion intersection and short geodesic connections. Thus,
strata 4, 5, 6 correspond to the three diagrams of figure 11 depending on which circle is in the
middle.

Strata 7, 8 correspond to the two diagrams of figure 12 depending on the cyclic order of
the labeled circles.

a b

c

ca

b

Figure 12.

Each of the boundary components being a composition is represented diagrammatically
as in figure 13, depending on labeling, e.g., which new circle enters into the second bracket
operation.

The operations for strata 7 and 8 are defined by evaluating the simplex σ in LS1

∗ (3) at
three varying points, one on each component of the domain set of three circles to get a map
T 3 × σ → M × M × M . We pull back a Poincaré dual cocyle U123 defined near the small
diagonal (x, x, x) to obtain the (base space, cocycle) piece of our equivariant chain in P (3, 1)∗.
Over each point in the support, we construct inside M using short geodesics the (graph-spine)
of the (sphere - four disks) corresponding to the surface labeled by the appropriate point in the
moduli space of figure 10. One way to do this is first take the geodesic convex hull of these
nearby points, second take the barycenter of this convex hull, and third connect this barycenter
to each of the three points by a short geodesic to construct the little corolla or tripod connecting
the three circles. This tripod union of the three circles is the graph spine.

A similar construction is used for the graph spines of figure 11. Now we evaluate the map
at one point on each of the outer circles and at an ordered pair of points on the middle circle.
Label these 1, 2, 3, 4 reading left to right. We obtain a map of T 4 × σ → M4. We form the
Poincaré dual cocycles U12 and U34 near the diagonals of (M ×M)12 and (M ×M)34 and we
pull back U12 ∪ U34 to obtain the diffuse base of our equivariant chain. We construct the graph
spine of figure 11 using short geodesics as before to obtain an equivariant chain in P (3, 1)∗.

Now we come to the assembly step of these different pieces. Notice that as one of the
circular arcs on the middle circle of figure 11 shrinks to a vanishingly small length, that point
on stratum (4, 5 or 6) tends to the stratum (7 or 8) depending on the cyclic order. The two
operations do not quite fit together. However, the geometric discrepancy is carried by the convex
hull of the three nearby points. So it is easy to find a homotopy of geodesics reconciling the
slight difference. There is also a discrepancy between the diffusing classes used. We can argue
abstractly as follows. The difference is carried by the small neighborhood of the diagonal and
the difference is the coboundary of some c there. Note again that the space of Poincaré dual
cocycles is algebraically contractible in the sense that two differ by a coboundary, and two such
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coboundaries differ by a coboundary, etc. We then combine the geometric homotopy with c
to obtain a chain homotopy between the two maps, reconciling the discrepancy. We put these
homotopies over the small interval between the appropriate triple point and hash mark in figure
10.)

second bracket
operation

first bracket
operation

a

b

c

Figure 13. [[a, b], c]

We proceed to the last step. The composition constructions at the boundary of the cutoff
moduli space of {S2 − 4 points} corresponding to the geometric spine of figure 13 also differ
slightly from the constructions of figure 11 and figure 12 (together with the small geometric
homotopy reconciling them). Again the difference is carried by the convex hull of 3 nearby
points in M and can be reconciled by a geometric homotopy. Also again the Poincaré dual
cocycles can be reconciled by a coboundary c. Together, the geometric homotopy and c can be
combined to yield a chain homotopy which we use over regions 1, 2, 3 respectively of figure 10.

Remark 5. i) There are natural cartesian product maps, LS1

∗ (k) ⊗ LS1

∗ (l) → LS1

∗ (k + l),
inducing isomorphisms on homology

ii) Under the permutation of component circles the generalized bracket map
LS1

∗ (2)→ LS1

∗ (1) is skew-symmetric when d is even because the fundamental class of the
T 2 factor is reversed. It is symmetric when d is odd because the Poincaré dual cocycle
to the diagonal in Md ×Md is also reversed under permutation of the factors.

iii) The map in i) is graded symmetric for k = l = 1. So we have proved the

Proposition 1. The induced string bracket maps LS1

∗ (1)⊗LS1

∗ (1)→ LS1

∗ (1), has degree −d+ 2
and is graded skew-symmetric for d even and graded symmetric for d odd.

Remark 6. The common domain for all the pieces of the construction of the jacobi identity
homotopy is LS1

∗ (1)⊗LS1

∗ (1)⊗LS1

∗ (1). Namely, on regions 4, 5, 6, 7, 8 of figure 10 the domain
is LS1

∗ (3). On regions 1, 2, 3 of figure 10 it is LS1

∗ (2) ⊗ LS1

∗ (1) where the second tensor factor
is, in turn, each labeled circle in the input boundary of P (3, 1). Thus the common domain is
LS1

∗ (1)⊗3. With this understanding we have the

Theorem 5. LS1

∗ (1) has the structure of a graded differential Lie algebra of degree −d + 2 in
the sense that the bracket satisfies jacobi up to a contractible set of homotopies.
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Proof. We add to the above discussion proof of the theorem the following remark: the construc-
tion of the jacobi homotopy LS1

∗ (1)⊗3 → P (3, 1)G∗ was carried by small convex sets in Md and by
the contractible sets of Poincaré dual classes to the diagonals. Thus the set of these homotopies
forms a contractible object. �

We will continue to work with these ideas to construct maps LS1

∗ (1)⊗k → P (k, 1)G∗ using
the moduli spaces of the 2-sphere −(k + 1) points in order to construct the hierarchy of higher
homotopies of a infinity Lie structure on LS1

∗ (1) (Q coefficients). Using the homotopy theory of
such structures (see Appendix), one then obtains a infinity Lie structure on HS1

∗ the equivariant
homology of the free loop space of M . Since Lie infinity structures on a complex A can be
reassembled as coderivations of square zero on the free cocommutative coalgebra Λc(A) we will
have shown:

Theorem 6. The chain level string bracket construction, together with the moduli space chain
homotopies, yields a coderivation differential of degree −1, d = d2 + d3 + . . . on the free graded
algebra generated by the equivariant rational homology HS1

∗ of the free loop space of Md, shifted
by −d+ 3. The differential d is well defined up to isomorphism homotopic to the identity. [68]

Question 4. We now know that d2 or, equivalently, the bracket on equivariant homology HS1

∗
is preserved by a homotopy equivalence between closed manifolds [23]. It is conjectured that
the entire package of String Topology up to equivalence is not a homotopy invariant of closed
manifolds [69]. One may already ask whether the structure of the higher terms of the differential
on the above Lie infinity structure (ΛHS1

∗ , d), which are not covered by the current theorems on
homotopy invariance, e.g., [23] constitutes a diffeomorphism invariant that is not a homotopy
invariant.

Possible answer based on [42]. The zipping up procedure for (k, l, g) = (k, 1, 0) is not
required here because the entire boundary is composition boundary. Thus our string topology
construction in this case (which was in fact the part presented homologically in [11]) is perhaps
homotopy equivalent to a construction of Hopkins-Lurie. Their construction is a homotopy
invariant [42].

3.4. The string cobracket at the chain level. Choose a chain in LS1

∗ (1) (Definition 1 iii))
with base B and total space circle bundle E. Over each point of B put the configuration
space E(2) of ordered pairs of unequal points on the circle as a new fiber over this point of B.
Compactify this fiber by blowing up the diagonal in the ordered pairs on the circle. Map this
new total space into M ×M by evaluating the given map of E into M at the various point
pairs. We pull back the Poincaré dual cocycle defined in a small neighborhood of the diagonal.
Over each point of the support of this pull back we have an ordered pair of nearby points in M.
Connect these by a short geodesic and define a map of the spine shown in figure 14 into M.

This defines an equivariant chain T of maps of P (1, 2) into M . By restricting to the
outer boundary of P (1, 2) we obtain two output circles. We order (and orient) the two output
circles using the ordering of the point pair combined with the orientation of the input circle. For
example, one way to order the circles is to say the first ouput circle is the one first traversed
starting from the first point of the point pair and going in the direction of the orientation of the
input circle. Note that blowing up the diagonal of the torus was necessary so that this ordering
construction extends continuously to the compactification.

We assume by averaging the Poincaré dual cocycle is symmetric (up to sign, if d is odd)
under the flip of factors in M ×M .
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Figure 14. The cobracket

There is the involution of our chain corresponding to interchanging the order of the two
points on the input circle. To understand this symmetry first assume the dimension, d, of M is
odd. Under the flip of factors in Md ×Md the Poincaré dual cocyle is by assumption converted
to minus itself. Also the orientation of the base of our chain is reversed. Thus for the diffuse
chain pair (s(Ũ), Ũ) the flip of factors induces an orientation preserving symmetry of our chain.

Now we introduce a further equivalence relation on chains (foreshadowed in Definition
1 iv) and which we call attention to by using a prime superscript) that identifies two chains
that are related by an orientation preserving diffeomorphism of the base of the chain. Thus
our chain becomes two copies of the same reduced chain by choosing a fundamental domain
of the involution. Moreover, this reduced chain is symmetric under the involution of LS1

∗ (2)′

interchanging the components for d odd.

For d even the reduced chain is reversed under the flip of components in LS1

∗ (2)′. There
is a subtle sign issue to choose one representative of the reduced chain in the even case. Let us
then study the boundary of this cobracket construction defined by the reduced chain. There are
three possible contributions to the boundary coming from

a) the boundary of the two-point configuration space of the input circle.
b) the boundary of a fundamental domain for the involution exchanging the order of the

points in the two-point configuration. This fundamental domain is chosen to form rep-
resentations of the reduced chain above.

c) the usual boundary of the input chain for the cobracket construction.

We will kill a) by working modulo small loops (see below). We have in effect killed b) by
identifying to zero any chain which admits an orientation-reversing automorphism. This is the
case for the new boundary of the fundamental domain of the involution, the base of the reduced
chain. For c) we naturally do nothing.

Now we return to a). We work on the quotient of the equivariant chain complex by the
“ε-small loops.” Here ε-small is defined by any number ε > 0 so that for any two points of
distance ≤ ε in the apriori chosen metric there is a unique geodesic between them.
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Definition 2. A chain in LS1

∗ (k)′ belongs to (ε-small loop)∗ if there is a covering of the base of
the chain so that in each open set of the covering there is an index i so that the ith component
circle has length < ε in the target.

Remark 7. We will see below the bracket is still well defined on this quotient by (ε−small loops)∗.

3.5. Cojacobi chain homotopy at the chain level. Now we discuss the analogous cojacobi
chain homotopy for the cobracket. We use the moduli space for (S2−4 points) again as a key
cartesian factor for the combinatorial moduli space of P (1, 3), the combinatorial surface with
one input circle and three output circles. In addition to the moduli space of figure 10 we have
a circle factor for the marking on the input circle and the 2-simplex of parameters describing
the distribution of combinatorial length on the three output circles. Thus ignoring the circle,
our moduli space pseudomanifold with boundary pair is essentially the double suspension of the
2-disk minus two smaller disks. We see a 4-dimensional chain with three cycles on the boundary
of dimension 3. The pieces organizing the cojacobi homotopy correspond to the eight string
diagrams in figure 15. The same type of argument detailed above for jacobi will produce a
chain mapping LS1

∗ (1)′′ → P (1, 3)G′′∗ so that the restrictions to the three cycles correspond to
the three composition terms appearing in cojacobi. The double prime refers to modding out
by small output loops and degenerate chains (see next section) as well as by the equivalence
relation involving diffeomorphisms of the bases of chains of maps, which assures us that near
the boundary of the 2-simplex of output length distribution we have the zero mapping. The
extension to the interior provides the chain homotopy of the cojacobi expression to zero.

a) b) c)

× 3 × 3 × 2

1

2

3

4

1

2

3 1 2

3

Figure 15. 8 string diagrams for the cojacobi chain homotopy

3.6. Extending the bracket to the quotient by small strings. The idea is that we could
have worked from the beginning with LS1

∗ (k)′ modulo geometrically degenerate chains – those
which, as maps into some space, have a lower dimensional image than their domain dimension.

A chain obtained by bracketing with a family of constant closed strings has this property
from the definition. This is because we bracket with every point of the circle mapping to the
constant string. Now the subcomplex of small strings is chain equivalent to the subcomplex of
constant strings. Combining these two facts gives the desired extension.

3.7. The chain homotopy for drinfeld compatibility of the bracket and cobracket.
This homotopy arises from the moduli space of 2 inputs and 2 outputs for (S2− 4 points). Now
besides the 2 dimensions of the (S2 − 3 disks) of figure 10, we have the torus of marks on the
input boundary and the interval of length distributions on the output boundary. As usual we
ignore the 2-torus factor and concentrate on the rest, which is (S2− 3 disks) in effect suspended
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once by crossing with the interval and working mod the endpoints of the interval (corresponding
to working in the quotient by small loops).

1 2

3 4

input

output

input

output

1 2

3 4

input

output

1 2

4 3

input

output

1 2

4 3

input

output

1 2

4 3

input

output

1 2

3 4

output

input

1 2

3 4

Figure 16. Drinfeld compatibility five term relation (circled)

In the figure 16 the outer boundary component corresponds to the composition: do the
bracket then the cobracket. Each inner component corresponds to two terms in the composition
boundary. The upper piece on the right side of the figure is the composition: cobracket of the
input 2 followed by bracketing in the input 1 on the right factor. This occurs on the part of the
interval where the length of the output 3 is greater than the length of the output 4. The lower
piece on the right hand side corresponds to the composition: cobracket of the input 1 followed
by the bracket of the input 2 on the left. Here output length 4 is greater than output length 3.

When the outputs’ lengths are approximately equal the string topology construction yields
a small image for the separating circle. This can be filled in by the discussion of section 1.4,
χ(Γ) = 0, case. This filling in is indicated by the 2-handle in the figure.

The other inner boundary is treated similarly. In conclusion the construction extends over
the moduli space with these two 2-handles added. Now the boundary has five components and
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each corresponds to a composition. This is the five-term relation of drinfeld compatibility.

∆[x, y] = [∆x, y]± [x,∆y]

where each term on the right is two terms, the two terms in the definition of the action of a Lie
algebra on its tensor square.

3.8. The chain homotopy for the involutive identity. Now we use our first higher genus
moduli space, the space of all {torus – 2 points }. The moduli space of the torus with one tangent
marked point is the complement of the trefoil knot in S3 – by an argument usually attributed
to Quillen. Adding in another puncture without a mark for the output is the 5-dimensional
universal fibration with fiber (T 2−point) over the complement of the trefoil.

The composition boundary of this moduli space corresponds to two disjoint embedded
curves which separate input from output. See figure 17 a).

input

output

a) b) c)

Figure 17. Involutive relation - boundary terms

We will fill in the rest of the boundary. If only one curve is collapsing, there are two cases.

i) The curve is essential in the torus and we fill in by the χ(Γ) = 0 argument above. See
figure 17 b).

ii) The curve separates the input and output from the rest of the surface and we fill in by
the χ(Γ) < 0 which implies the locus of the string topology construction is vacuous near
this part of the boundary of moduli space. See figure 17 c).

If an additional curve is collapsing and we are not in the composition boundary we are
contained in ii).

Thus after filling in we get a chain operation whose boundary is the composition of co-
bracket followed by bracket. This has been dubbed the involutive relation [13].

Appendix: Homotopy theory of the master equation

For simplicity, we restrict to linear and quadratic terms but there is no obstruction to
treating the general case.

Definition 3 (The master equation). Symbolically dX +X ∗X + LX = 0 where X = {Xα} is
a linear basis indexed by some indexing set {α}, X ∗ X is a sum over a collection ∗ of binary
operations combining the various basis elements Xα, and LX is a sum over a collection of linear
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operations L on the span of {Xα}. This may be formalized one way in the language of universal
algebras [7, 25].

Actually, we think of such a master equation as a presentation of a free differential algebra
generated by the Xα with the differential on the generators defined by the master equation. The
condition d ◦ d = 0 should be a formal identity in the free algebra generated by the {Xα}. The
algebra is meant to be free as an algebra over an operad O generated by the binary operations
in ∗ and the unary operations of L. These operations may satisfy relations like jacobi so that
O itself need not be free. We further assume for what follows that there is a partial ordering of
the indexing set, with all descending chains finite, so that the right hand side of the equation
for dXα only contains variables of strictly lower index. This property of a free dga is called the
triangular property.

Here are some interesting examples of non free differential graded algebras over relevant
gluing or composition O’s. Let C denote a chain complex.

(1) Hom′(C) = ⊕k>0Hom(C⊗k, C) where binary ∗ operations are obtained by substituting
the output for some k into one of the inputs for some j. There are j such binary
operations given k and j. Note the Leibniz rule holds for the binary operations relative
to the natural differentials on the hom spaces.

(2) Hom′′(C) = ⊕k>0,j>0Hom(C⊗k, C⊗j) where binary ∗ operations are substituting an
output for some k, j into one of the inputs for some k′, j′ . There are in this case jk′

binary operations. Again Leibniz holds.
(3) Hom′′′(C) = ⊕k>0,j>0Hom(C⊗k, C⊗j) where binary ∗ operations are substituting one

or more outputs for some k, j into a set of inputs for some k′, j′ . Leibniz holds here as
well.

(4) Hom(IV ) = same spaces and operations as 3) with tensor products thrown in. Leibniz
holds here.

These examples, while not free, admit maps from free triangular dgas (in each context,
i.e., for each dga over an operad O) inducing isomorphisms on homology. This is true for
arbitrary dgOas i.e., differential graded algebras over the operad O. Such dgOa maps are called
resolutions. There is a notion of homotopy for maps from free triangular dgOas into arbitrary
dgOas allowing the definition of homotopy equivalence of free triangular dgOas. Resolutions are
well defined up to homotopy equivalence and the homotopy equivalence is well defined up to
homotopy. The latter uses a lifting proposition that says maps from free triangular dgOas into
arbitrary dgOas can be lifted through dgOa homology isomorphisms.

R

'H

��
F

S //

??~
~

~
~

A

If C and D are chain equivalent chain complexes one can also show, for each of the cases
1), 2), 3) the respective resolutions of Hom(C) and Hom(D) are homotopy equivalent.

Definition 4. A “master equation package” is a triple (F, S,A) where F and A are dgOa algebras
with F free and triangular and S : F → A a dgOa map. Two master equation packages (F, S,A)
and (F ′, S′, A′) are homotopy equivalent if there are homotopy equivalences f and r between F
and F ′ and R and R′ respectively so that the obvious diagram, below, using liftings is homotopy
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commutative. Here R and R′ denote triangular free resolutions of A and A′ respectively.

F
S //

f

��

A R
'Hoo

r

��
F ′

S′
// A′ R′

'Hoo

(a) If A is one of the examples 1), 2), 3), 4) we say the master equation package defines an
infinity algebraic structure on A of the form given by the homotopy type of F .

(b) If S is a homology isomorphism then we have called the master equation package a
resolution. In this case the dgOa is A itself.

(c) If F is derived from looking at a system of moduli spaces and their codimension one
frontiers, A is a chain complex of geometric objects where the moduli spaces live, A
is provided with operations needed to describe the codimension one frontiers , and S
is defined using the moduli spaces we say the master equation package arises from the
compactness and gluing theory of a system of moduli spaces.

In the text, the string topology for closed strings is a package of type (a) (3) where C is
the homology of equivariant chains on the loop space of a manifold modulo constant loops. We
have called the algebraic structure arising there a quantum lie bialgebra which incorporates the
involutive identity up to a first homotopy at least, (section 3.6) and the rest of the the three
lie bialgebra identities up to infinite homotopy. The open string topology was presented as an
example of type (c) where A had the form of a hom of chains on maps of strings into M into
equivariant chains of maps of surfaces into M.

For applications to symplectic topology, F will be the recipe arising in the compactness
and gluing pictures, S will be defined by the moduli spaces to first approximation and A will
be defined by thinking of families of solutions to the elliptic equations as chains in algebraic
topology and providing A with operations for the gluing.

If some of these operations involve transversality in the first approximation, i.e., they are
like string topology operations, then higher order approximations to success will involve using
the device of type (a) packages to really define the operations on A completely.

For example, if a string bracket is needed for a term in the frontier of the moduli space
one builds a lie infinity structure as in string topology using the top cells of a genus zero moduli
space construction. Then one, to a higher order approximation, defines S using this lie infinity
structure instead of just the transversally defined string bracket. There are complicated details
here but I suppose this perspective may also help out with internal transversality issues in the
elliptic equations themselves. For example there is a nice language of Kuranishi and emphasized
by Fukaya, Oh, Ohta and Ono for describing a locally finite infinite system of finite dimensional
problems [32] to which the infinite dimensional elliptic problem reduces. One can imagine ap-
plying the Poincaré dual cocycle approach to this infinite system of finite dimensional problems,
and then building in the homotopies to heal discrepancies as was done above for string topology.
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[3] Abbondandolo, A. and Schwarz, M., On the Floer homology of cotangent bundles, Comm. Pure Appl. Math.

59 (2006), no. 2, 254-316.

[4] Andersen J. E. and K. Ueno, K., Geometric construction of modular functors from conformal field theory,
Journal of Knot theory and its Ramifications 16 (2007), no. 2, 127 202.

http://arXiv.org/abs/math/0511181


STRING TOPOLOGY BACKGROUND AND PRESENT STATE 37

[5] Batalin, I., Vilkovisky, G., Gauge algebra and quantization, Phys. Lett. 102B, 27 (1981).

[6] Batalin, I., Vilkovisky, G. Quantization of gauge theories with linearly dependent generators, Phys. Rev. D29,

2567 (1983).
[7] Bergman, G., An Invitation to General Algebra and Universal Constructions, Henry Helson, Berkeley, 1998.
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