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OPEN AND CLOSED STRING FIELD THEORY

INTERPRETED IN CLASSICAL ALGEBRAIC

TOPOLOGY

DENNIS SULLIVAN

Dedicated to Graeme Segal on his 60th birthday

Abstract : There is an interpretation of open string field theory in al-

gebraic topology. An interpretation of closed string field theory can be

deduced from this open string theory to obtain as well the interpretation

of open and closed string field theory combined. The algebraic structures

derived from the first string interactions are related to algebraic models

discussed in work of (Atiyah-Segal), (Moore-Segal) and (Getzler and Se-

gal). For example the Corollary 1 of §1 says that the homology of the space

of paths in any manifold beginning and ending on any submanifold has the

structure of an associative dialgebra satisfying the module or Frobenius

compatibility (see appendix). Corollary 2 gives another structure.

§1Open string states in M : The open string theory interpretation in

topology includes a collection of linear categories ϑM one for each am-

bient space M . The objects of ϑM are smooth oriented submanifolds

La, Lb, Lc, ... of M . The set of morphisms ϑab between two objects La

and Lb are graded chain complexes, linearly generated by smooth oriented

families of paths from La to Lb. An element in ϑab is called an open string

state. A path is a piecewise smooth map [0,1]→ M .
1
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The first open string interactions are

i)two endpoint restrictions: ϑab
r
→ ϑa′b and ϑab

r
→ ϑab′ where La′ is a

submanifold of La and Lb′ is a submanifold of Lb. Degree r = −cod of

submanifold.

ii)joining or composition ϑab ⊗ ϑbc
∧
→ ϑac, degree ∧ = −dim Lb

iii) cutting or cocomposition ϑac
∨
→ ϑab ⊗ ϑbc, degree ∨ = −cod Lb +1

Namely,

i)(restriction) for an open string state in ϑab(ie. a chain in ϑab) one can

intersect transversally in La the chain of beginning points in La with La′

to obtain a chain in ϑa′b. The same idea works in Lb for the endpoints of

paths to construct ϑab
r
→ ϑab′ .

ii)(joining) the transversal intersection in Lb of the chain of endpoints

for an open string state in ϑab with the chain of beginning points for

an open string state in ϑbcis a chain labelling composible paths which

after composing defines an open string state in ϑac, and the composition

ϑab ⊗ ϑbc
∧
→ ϑac.

iii)(cutting) Now it is required that La, Lb, Lc, ... have oriented normal

bundles. For example, this is true if the ambient space M is a smooth

manifold. Then given an Lb and any open string state in ϑac we may

transversally intersect in M the paths with Lb. The intersection chain

labels cuttings of the path at Lb defining ϑac
∨
→ ϑab ⊗ ϑbc. (We use

Eilenberg-Zilber.)

The operation ∨ refers to cutting at any time along the path whenever it

crosses Lb. We can also consider the operation ∨t of cutting at a specific
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time tǫ[0, 1]. All these ∨t are chain homotopic. In fact ∨ is the chain

homotopy between ∨0 cutting at time zero and ∨1 cutting at time one.

Remark : Actually the above operations are directly defined by the above

descriptions only for states satisfying transversality conditions. To go

from such a typical definition to a complete definition perturbations of the

identity creating transversality must be introduced. The combinatorics of

these perturbations fits neatly into Stasheff’s strong homotopy formalism

[S]. An elegant treatment can be read in Fukaya et al [1], for the classical

case of intersecting chains in a manifold.

Theorem: For each ambient oriented smooth manifold M there is an

open string category whose objects are smooth submanifolds La, Lb, Lc, ..

and whose morphisms are chains ϑαβ on paths between objects Lα and

Lβ. Only the objects La which are compact (without boundary) have iden-

tity maps (which commute with the boundary operator). For transversal

open string states in ϑαβ ,... composition ∧ is associative, cocomposition

∨ is coassociative, and the derivation compatibility holds between ∨ and

∧(x, y) = x ·y, ∨(x ·y) = x ·∨y + ∨x ·y(see appendix). ∧ and ∨t commute

with ∂ but [∨, ∂] = ∨1 −∨0.

On the full space of open string states, associativity for ∧ and coasso-

ciativity for ∨t hold up to strong homotopy in the sense of Stasheff. There

are conjecturally similar strong homotopy statements for coassociativity

of ∨ and the derivation or infinitesimal bialgebra compatibility between ∧

and ∨.(see appendix).
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Corollary 1 : For each object La the homology of ϑaa is an associative

algebra via the composition operation ∧ (with identity if La is compact

without boundary). The operation ∨t is a coassociative coalgebra (which if

non zero implies La cannot be deformed off of itself). The ∧, ∨t dialgebra

satisfies the module or Frobenius compatibility (see appendix).

Proof of corollary : i) The algebra statement follows from a) ∧ com-

mutes with ∂ operator on open string states and so passes to homology

b)homotopy associativity at the chain level implies associativity at the

homology level.

ii) a)The fixed time cutting operation ∨t also commutes with the ∂ opera-

tor and passes to homology. b) because different times are chain homotopic

we can choose them conveniently to prove the module or Frobenius com-

patibility. To calculate ∨t(x · y) we can choose t in x’s time to see that we

get ∨t(x) · y or in y’s time to see that we get x · ∨t(y). See the remark 2)

for the rest.

Sketch proof of theorem: 1) One sees the indicated identities hold for

transversal chains by looking at the picture. For example, when cutting a

joining of paths, the cut can happen in the first part or the second part.

This yields the derivation compatibility.

2) The strong homotopy properties follow using i) manifolds are locally

contractible

ii) transversality can be created in manifolds by arbitrarily small pertu-

bations.



OPEN AND CLOSED STRING FIELD THEORY INTERPRETED IN CLASSICAL ALGEBRAIC TOPOLOGY5

Remarks : 1) The coalgebra ∨t is chain homotopic to ∨0 which may be

written as a composition involving the restriction and the diagonal map-

ping. Let La′ be the transversal intersection of La with itself. Then ∨0

is the composition of, first the restriction of the beginning point to La′ ,

next the inclusion of ϑa′a into ϑaa, next the diagonal map on generat-

ing chains of ϑaa, next the cartesian product on chains of the beginning

point operator(thought of as a constant path) with the identity and finally

Eilenberg-Zilber. A similar composition and statement hold for ∨1.

2) We can use remark 1) to define a new coalgebra structure on homology

when La is deformable off itself, say to Lb. Then define ∨ : ϑaa → ϑab⊗ϑba

cutting at variable time and note that ∨0 and ∨1 are zero on the chain

level. Thus ∨ commutes with ∂ and passes to homology. We use the

obvious equivalences ϑaa ∼ ϑba ∼ ϑab to obtain:

Corollary 2 : If La is deformable off of itself, the homology of open string

states on La has the structure of an associative dialgebra satisfying the

derivation or infinitesimal bialgebra compatibility (see appendix).

Examples : i)(manifolds) La = M the ambient space. Then ϑaa is equiv-

alent to the ordinary chains on M since paths in M is homotopy equivalent

to M . Then the strong homotopy associativity algebra structure on ϑaa

is equivalent to the intersection algebra of chains on M . The operation

∨◦ ∼ ∨t ∼ ∨1 is chain equivalent to the diagonal mapping on chains. One

recovers the known fact that on passing to homology one obtains a graded

commutative algebra structure C ⊗ C
∧
→ C and a graded cocommuta-

tive coalgebra structure C
∨
→ C ⊗ C satisfying the module or Frobenius
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compatibility ∨(x·y) = x·(∨y) = (∨x)·y where the notation refers to mul-

tiplication on the left and right factors of the tensor product respectively

(see appendix).

Note when M is a closed oriented manifold ∧ and ∨ are related by the

non degenerate intersection pairing, Poincare duality.

ii)(based loop space)M is any space and La is a point in M . Then ϑaa is

the chains on the based loop space of M and the algebra structure on ϑaa

is the Pontryagin algebra of chains on the based loop space (the original

setting of Stasheff’s work). No transversality is needed here because all

paths are composible. Here one has Hopf’s celebrated compatibility with

the diagonal map ∨′ on chains that ∨′ is a map of algebras. The connection

of the latter with the open string theory here is a mystery (but compare

[2] and remark 1) above).

If M is a manifold of dim M near La and La is a point, the cocomposition

∨t is defined but is zero in homology. The operation ∨ can then be refined

to a chain mapping and passes to homology (remark 2)). ϑaa obtains

a coassociative coalgebra structure on homology of degree (-dim M) +1

satisfying the derivation or infinitesimal bialgebra compatibility (of the

theorem) with the Pontryagin product. Here one is splitting a based loop

where it passes again through a (nearby) base point.

iii) (free loop space) Let M = L x L and La ⊂ M be the diagonal.

Then paths in M beginning and ending on La is homeomorphic to the

free loop space of L= Maps (circle, L). Then the algebra structure on ϑaa

is chain homotopic to the loop product of ”String Topology”[2]. This is
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a graded commutative algebra structure on the homology of the free loop

space of the manifold L. The degree is zero if we grade by the negative

codimension (k−dimM).

The product interacts with the circle action differential △ of degree

+1. The deviation of △ from being a derivation of the loop product

△(x · y)− (△x) · y − x · (△y) is a Lie bracket of degree +1 which is com-

patible via the Leibniz identity with the loop product (all on homology).

This Lie bracket is a geometric version [2] of Gerstenhaber’s bracket in

the (Hochshild) deformation complex of an associative algebra. For sim-

ply connected closed manifolds L the Hochshild complex ⊕k Hom (A⊗k, A)

applied to the intersection algebra A of chains on L is a model of the free

loop space of L (Cohen-Jones, Tradler) which realizes the above compar-

ison (Tradler).

The Lie product on the free loop space of degree +1 is compatible via

the connecting morphism M between equivariant homology and ordinary

homology with a Lie bracket on the equivariant free loop space homol-

ogy [2]. The latter Lie bracket generalizes to all manifolds the Goldman

bracket (related to the Poisson structure on flat bundles over a surface) on

the vector space generated by conjugacy classes in the fundamental group

of a surface [Goldman] (see closed strings §2 below).

If the coalgebra part ∨t of the Frobenius dialgebra on homology of the

free loop space of L is non zero, then L is a closed manifold with non-zero

Euler characteristic. Otherwise a homotopy class of non-zero vector fields

on L allows a refining of the operation ∨ cutting at variable time to an
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operation commuting with ∂ and we obtain in this case an infinitesimal

bialgebra structure (appendix) on the homology of the free loop space.

§2Closed string states in M (now called L): For closed string states in

L we take the chains for the equivariant free loop space of L relative to

the circle action rotating the domain. There are maps

...
C
→ closed string states in L

M
→ open string states on the diagonal in LxL

E
→ closed string states in L

C
→...

leading to the long exact sequence relating ordinary homology and equi-

variant circle homology. Here we are thinking of the free loop space of L

as paths in L x L beginning and ending on the diagonal.

The connecting chain map C has degree -2 and intersects with a rep-

resentative of the 1st chern class of the line bundle associated to the S1

action made free by crossing with a contractible space on which S1 acts

freely. The chain map M has degree +1 and is associated to adding a

mark to a closed string in all ways to get a circle of free loops. The chain

map E has degree zero and is associated to forgetting the mark on a loop

to get a closed string. The composition EM = 0 and the composition

ME is △ the differential associated to the circle action.

The string product on closed string states satisfying Jacobi (at the

transversal chain level) may be defined by the formula [α, β] = E(Mα ∧

Mβ) where ∧ is the open string product (the procedure in example 3 above

only satisfies Jacobi up to a non trivial chain homotopy). Other indepen-

dent closed string operations cn can be defined by cn(α1, α2, ..., αn)=E(Mα1∧
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Mα2 ∧ ...∧Mαn)(cf. [2] and [G]). These all commute with the ∂ operator

and satisfy other identities transversally [2].

The collision operators cn pass to the reduced equivariant complex or

reduced closed string states which is defined to be the equivariant chain

complex for the S1 pair, (free loop space, constant loops).

We can define a closed string cobracket s2 by the formula s2(α) =

(E⊗E)(∨(Mα)). In the reduced complex s2 commutes with ∂ and passes

to homology (but not so in the unreduced complex).

Theorem: The closed string bracket c2(α, β) = E(Mα∧Mβ) where x∧

y = ∧(x⊗y) and the closed string cobracket s2(α) = (E⊗E)(∨Mα) satisfy

respectively jacobi, cojacobi, and Drinfeld compatibility (appendix). The

term satisy means either on the level of integral homology, for transversal

chains on the chain level, or conjecturally at the Stasheff level of strong

homotopy.

Proof : These formulae in terms of open strings are reinterpretations as

in [2] of the definitions given in ”Closed string operators in topology lead-

ing to Lie bialgebras and higher string algebra” [3]. There the identities

at the transversal chain level were considered.

Corollary : Homology of reduced closed string states forms a Lie bialge-

bra, [3].

Remark : Independent splitting operations s3, s4, ... can be defined sim-

ilarly by iterations of ∨, sn(α) = E ⊗ ...⊗E(...∨⊗1 · ∨(Mα)). These also

commute with ∂ and pass to homology in the reduced equivariant theory.

A conjecture about c2, c3, ... s2, s3, ... generating genus zero closed string
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operators and the algebraic form of this structure was proposed in [3] and

is mentioned below in the summary. Also, compare [Chas] for the original

questions motivating this work.

Interplay between open and closed string states: Let C denote the closed

string states in M , a manifold of dimension d, and let ϑ denote any of the

complexes of open string states. Transversality yields an action of closed

strings on open strings,

C ⊗ ϑ → ϑ degree=(−d + 2)

and a coaction of closed strings on open strings

ϑ → C ⊗ ϑ degree=(−d + 2)

In the coaction we let the open string hit itself at any two times and

split the event into a closed string and an open string. In the action we

let a closed string combine with an open string to yield an open string.

The action is a Lie action of the Lie algebra of closed strings by deriva-

tions at the transversal chain level. Both the action and the coaction have

a non trivial commutator with the boundary operator on chains.

§3Connection to work of (Atiyah-Segal),(Moore-Segal) and (Getzler and

Segal): Dialgebras satisfying the module or Frobenius compatibility give

examples of 1+1 TQFT’s in the positive boundary sense. In the commu-

tative case we associate the underlying vector space to a directed circle, its

tensor products to a disjoint union of directed circles and to a connected

2D oriented bordism between two non empty collections the morphism ob-

tained by decomposing the bordism into pants and composing accordingly

the algebra or coalgebra map. The module or Frobenius compatibility is



OPEN AND CLOSED STRING FIELD THEORY INTERPRETED IN CLASSICAL ALGEBRAIC TOPOLOGY11

just what is required for the result to be independent of the choice of pants

decomposition.

N.B. this description differs from the usual one because we don’t have

disks to close up either end of the bordism. One knows these discs at both

ends would force the algebra to be finite dimensional and the algebra and

coalgebra to be related by a non degenerate inner product. We refer to

these generalizations of the Atiyah-Segal concepts as the positive boundary

version of TQFT (a name due to Ralph Cohen).

An exactly similar discussion with associative dialgebras satisfying the

module or Frobenius compatibility leads to a positive boundary version

of a relative TQFT using open intervals. Now the algebra and coalgebra

are associated to 1/2 pants (a disc with ∂ divided into six intervals-three

(1/2 seams) alternating with two (1/2 cuffs) and one (1/2 waist)). Any

planar connected bordism between two nonempty collections of intervals

determines a mapping between inputs and outputs.

The structures we have found (including ∂ labels La, Lb, ...) for open

strings using the composition ∧ and fixed time cutting ∨t satisfies this

Frobenius compatibility up to chain homotopy and we can apply it at the

homology level in the relative TQFT scheme just mentioned. This fits

with the work of Moore-Segal [M].

As we begin to look at the chain homotopy coproduct ∨ the derivation

or infinitesimal bialgebra compatibility appears. According to [Gan] the

derivation or infinitesimal bialgebra compatibility is related to the notion

of module or Frobenius compatibility via Koszul duality (see appendix).
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Now we are entering into a third stage-the proposal of Segal (and in-

dependently Getzler) enriching the earlier notion of TQFT by chain com-

plexes and chain homotopies.

Recall the free loop space above gives on the ordinary (chain) homology

level a (strong homotopy) commutative associative product and a cocom-

mutative coassociative coproduct (cutting at a fixed time) satisfying the

module or Frobenius compatibility. This together with the associative

Frobenius category above for open strings fits with the model [M]. In that

model ordinary and equivariant levels are not distinguished.

We saw that passing to the equivariant setting the product and the

cutting at variable time gave a Lie bialgebra in the reduced theory. Ac-

cording to [Gan] Lie dialgebras with Drinfeld compatibility are related to

commutative dialgebras with Frobenius compatibility by Koszul duality

(see appendix).

§4 Summary : We have described the part of the interpretation of open

and closed string field theory in topology associated to the basic product

and coproduct (and in the equivariant setting certain implied n-variable

splitting and collision operators as in [3]). The coproduct discussion has

two levels involving a coproduct ∨t and an associated chain homotopy

coproduct ∨.

We found the open string product and the coproduct ∨t satisfied the

module or Frobenius compatibility on the level of homology. In a setting

where ∨0 and ∨1 were zero or even deformable to zero, ∨ emerges as or

can be deformed to a coproduct commuting with ∂ and thus a coproduct
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∨ on homology of one higher degree. Then a new compatibility with the

product is observed- the derivation or infinitesimal bialgebra compatibility

(true transversally).

Similarly for the closed string one has to consider the free loop space in

both the ordinary and equivariant versions. For the open string with diag-

onal boundary conditions the relevant ordinary (chains) homology of the

free loop space becomes a (strong homotopy) commutative dialgebra with

the module or Frobenius compatibility. Passing to the equivariant theory

required for the closed string interpretation and reducing to kill ∨0 and

∨1 which makes ∨ commute with ∂, the product coproduct pair becomes

a Lie dialgebra with the derivation or Drinfeld compatibility (equals Lie

bialgebra). According to [Gan] the associative and commutative dialge-

bras with the module or Frobenius compatibility are respectively Koszul

dual to the associative and Lie dialgebras with the derivation or Drinfeld

compatibility. This suggests that one of the structures will intervene in

descriptions of strong homotopy versions (in the sense of Stasheff) of the

dual structure (see appendix).

One can go further as discussed in [3] and visualize conjecturally all

the above collision and splitting operations of the closed string theory

c2, c3, ..., s2, s3, ... defining on homology a structure Koszul dual to the

positive boundary version of the Frobenius manifold structure described

in [Manin].
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The above is only a partial interpretation. The full interpretation of

open closed string field theory in topology involves full families of arbi-

trary cutting and reconnecting operations of a string in an ambient space

M . For closed curves some full families of these operators were labelled

combinatorially by decorated even valence ribbon graphs obtained by col-

lapsing chords in [3]. There is a serious compactness issue for the full

families discussed there for realizing these in algebraic topology. The is-

sue is a correct computation of the boundary. The problem has a parallel

with renormalization in Feynman graphs. For the compactness algebraic

topology issue one needs to associate operators to families of geometric

graphs where various subgraphs are collapsing. When all the components

of the collapsing subgraphs are trees there is no real problem as discussed

in [3]. Similarly for Feynman graphs it is my understanding that if there

were only tree collapses there is no problem of renormalization.

In both cases algebraic topology transversality normal bundle and Feyn-

man graphs the loops in collapsing subgraphs cause the problems.

In [3] we had to deal with some simple cases of one loop subgraph col-

lapses to treat the identities defining the Lie bialgebra (in particular Drin-

feld compatibility). This lead to the idea of using the Fulton MacPherson

compactification of configuration spaces to complete the discussion. There

is a normal bundle issue related to transversality which requires more anal-

ysis to treat the general FM stratum. However for disjoint union of graphs

with at most one loop per component this normal bundle for transversality

can be easily described as in [3].
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Now we expect a Riemann surface discussion to be sufficient to com-

plete the string field theory transversality construction. This will complete

the definition of the operations for this topological interpretation of open

closed string field theory. The idea is that 1) general cutting and re-

connecting operation on strings is isomorphic to the change in level that

occurs when passing through a critical level of a harmonic function on a

Riemann surface and 2) geometrical ideas due to Thurston and then Pen-

ner [P] allow an analysis of the combinatorial compactifications of spaces

of Riemann surfaces in terms of ribbon graphs.

Thus if the transversality cutting and reconnecting operations of the

string field theory interpretations are organized by ribbon graphs, then

the compactness and transversality normal bundle issues discussed in [3]

can be treated for open and closed strings. This is work in progress.

Appendix : (dialgebras and compatibilities) Let us call a linear space V

with two maps V ⊗V
∧
→ V and V

∨
→ V ⊗V a dialgebra. Associative dialge-

bra means ∧ is associative and ∨ is coassociative. Commutative dialgebra

means besides being associative ∧ and ∨ are symmetric. Lie dialgebra

means both maps are skew symmetric and that jacobi and cojacobi hold.

In all these cases V and V ⊗V have module structures over V and there

are two kinds of compatibilities between ∧ and ∨ relative to these. We get

six kinds of structures (five appear in this paper, see table below) which

are examples of definitions of algebras over dioperads [Gan]. These are

structures whose generators and relations are described diagrammatically

by trees.
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The familiar example of a compatibility studied by Hopf that ∨ is a

map of algebras (associative or commutative case but not Lie) can only

be described by a non tree diagram.

The compatibilities we consider here are

derivation compatibility ∨(a · b) = (∨a) · b + a · ∨(b) and

module compatibility ∨(a · b) = ∨(a) · b = a · ∨(b)

Table with names of compatibility and/or structure and/or examples.

Module
compatibility

Derivation
compatibility

Associative
dialgebra

Frobenius compatibility
⇐ Frobenius algebra=
associative algebra with
non degenerate invariant
inner product

infinitesimal bialgebra
compatibility=
infinitesimal bialgebra
(see Aguilar)

Commutative
dialgebra

Frobenius compatibility
⇐commutative Frobenius
algebra

commutative cocommutative
infinitesimal bialgebra

Lie
dialgebra

Frobenius compatibility
⇐Lie algebra with
non degenerate invariant
inner product

Drinfeld compatibility
=Lie bialgebra

Where the · refers to the algebra structure or the module structure

(which means in the associative case a·(b⊗c) = (a·b)⊗c, (a⊗b)·c = a⊗(b·c)

and in the Lie case a · (b ⊗ c) = −(b ⊗ c) · a = [a, b] ⊗ c + b ⊗ [a, c] where

[x, y] = ∧(x ⊗ y).)

In [Gan] Koszul dual pairs are defined and there it is proved that upper

left and upper right are Koszul dual pairs and that middle left and lower
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right are Koszul dual pairs. We suppose that the lower left and middle

right are also Koszul dual pairs.

We note in passing a remark about derivation or Drinfeld compatibility

and algebra or Hopf compatibility. A category of ”power series” Hopf

algebras U was shown to be equivalent to the category of Lie bialgebras D

where D → U was a formal quantization and U → D was a semi classical

limit (Etingof-Kahzdan).

We emphasize these Koszul relations because in several important situ-

ations a strong homotopy algebraic structure of one kind is very naturally

expressed by freely generated diagrams decorated with tensors labeled by

the Koszul dual structure. In the above discussion all the structures that

are true transversally will almost certainly lead to strong homotopy ver-

sions on the entire space of states. So these might be expressed in this

graphical Koszul dual way.
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