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Abstract

A metric gauge on a set is a maximal collection of metrics on the set such that the
identity map between any two metrics from the collection is locally bi-Lipschitz. We
characterize metric gauges that are locally branched Euclidean and discuss an ob-
struction to removing the branching. Our characterization is a mixture of analysis,
geometry, and topology with an argument of Yu. Resheinyak to produce the branched
coeordinates for the gauge. ‘

1. Introduction

A metric gauge on a set is a maximal collection of metrics on the set such that the
identity map between any two metrics from the collection is Iocally bi-Lipschitz; that
is, locally the ratio d(x, ¥)/d’(x, y) of two metrics is bounded from above and below
by positive constants independent of the points x and y. In this paper, we present a
characterization for metric gauges that are locally “branched Euclidean” and discuss
an obstruction to removing the branching. We consider n-dimensional ganges that
are embeddable in a finite-dimensional Euclidean space and whose local cohomology
groups in dimensions (z — 1) and higher are similar to those of an sn-manifold. Qur
approach is to stipulate enough structure so that one can consider differential Whitney
1-forms on the gauge together with an orientation on the measurable cotangent bundle
that is compatible with a chosen local topological orientation. We call an r-tuple
o = (p1,...,py) of locally defined 1-forms on an n-dimensional gauge a (local)
Cartan-Whitney presentation of the gauge if

essinf % (o A -+ A py) > 0. (1.1)

We prove that if, the gauge supports, in addition, a Poincaré inequality, then each
(local) Cartan-Whitney presentation p determines a positive integer-valued func-
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16 HEINONEN and SULLIVAN

“tion Res(p, -), the residue of the presentation such that the metric gauge is locally
Euclidean at a point p if and Only if the residue (of some presentation) satisfies
Res(p, p) = L. Moreover, for each presentation o, the residue function Res(g, -)
assumes the value 1 on a dense open set of full measure with complement at most
(n — 2)-dimensional. In particular, the existence of Jocal Cartan-Whitney presenta-
tions implies that the gauge is locally Euclidean almost everywhere.

The main ingredient of the proof is a general form of a theorem of Reshetmyak
[Rel]. We show that the map

x> f(x)=f (o1, .--5 Pn)s (1.2)

[p.x]

defined through integration of the 1-forms g1, - .., pp as in (1.1), defines a Lipschitz

branched cover into R”, with the property that
Jim inf |fx) = FOI

y—ox, yEX d(x, y)
for all x and for some ¢ > 0 independent of x. The residue Res(p, p) is the local index
of the map (1.2) at p. All this is made more precise in our main theorem, Theorém
_ 4.2.To prove the theorem, we make use of the recent advances in differential analysis

and nonlinear potential theory on metric measure spaces with Poincaré inequality.
The metric gauges that admit local Cartan-Whitney presentations need not be
manifolds ini general, and even if they are manifolds they need not be locally Eu-
clidean (sce Examples 2.4). But they are always branched Euclidean. Indeed, our

study leads to a characterization of a locally branched Euclidean metric gauge.

>c >0 (13)

Definition 1.4
A metric gauge is said to be locally branched Euclidean if it is n- -dimensional, satisfies
the local cohomology condition as in Axiom I, and admits local BLD-maps into R".

To describe the terminology in Deﬁnition 1.4, let (X, d) be a locally compact, n-
dimensional metiic space, r > 2, with integral cohomology groups in degrees (n — 1)
and higher locally equivalent to those of an n-manifold (as in Axiom I). We call X

locally BLD-Euclidean if every pointin X has an open neighborhood U and a finite-
to-one, open and sense—preser\}ing Lipschitz map f : U — R" such that

1
7 lengthe <lengthf oo < L lengthe (1.5)

for each path & in U, where the constant L > 1 is independent of ¢¢. Such maps are
called maps of bounded length distortion or BLD-maps. Note that the local coho-
mology condition allows us to speak about sense- -preserving maps. Finally, the BLD-
condition is bi-Lipschitz invariant, and so it makes sense to speak about (local) BLD-
maps of a metric gauge into R".




S Sl

ON THE LOCALLY BRANCHED EUCLIDEAN METRIC GAUGE 17

In Euclidean spaces, BLD-maps form a subclass of more general guasi-regular
mappings or mappings of bounded distortion, introduced by Reshetnyak in the 1960s
(see [Rel], [Re2], [Ri], [MV], [Sul}. In general spaces, BLD-maps are examples of
regular maps i the terminology of [DS] (see [ITR2, Theorem 4.5]). The local degree
function for the map in (1.2) was studied in [Su] in the context of Lipschitz manifolds;
in particular, condition (1.3) was proved in [Su] in this case. Note that condition (1.3)
easily follows from the BLD-condition by the path-lifting property for discrete and
open maps (see [HR2, Secticn 3.3]).

‘We show that a locally branched Euclidean metric gauge is characterized by four
axtoms, Axioms I-IV presented in Section 2, provided that we also make the a priori
assumption that the gauge is locally embeddable in a finite-dimensional Euclidean
space with a metric orientation on its measurable tangent bundle (see Section 3.4
for the terminology). The axioms are a mixture of analysis, geometry, and topology.
They stipulate local cohomelogical and measure-theoretic properties of the gauge, the

- existence of a Poincaré inequality, and the existence of local Cartan-Whitney presen-

tations.

It remains an interesting open problem to find an additional axiom that would
remove the branching in the gange. In our approach this amounts to an analytic char-
acterization of local Cartan-Whitney presentations whose residue is everywhere 1 (see
Remark 2.5 for a conjecture). Only a few nontrivial sufficient conditions for a locally
Euclidean metric gauge are known: L. Siebenmann and D. Sullivan [SS] characterized
the polyhedra in high dimensions that are Lipschitz manifolds, and 'T. Toro [T1], [T2]
found positive answers in two other special cases. For related studies and examples,

see [HR1], [HR2], {L]. {S¢2], and [Se3].

2. The axioms )

Let .# be a metric gange on a set X, and let » > 2 be an integer. We describe
four axioms that are shown to be necessary and sufficient for X = (X, .#) to be
Iocally branched Euclidean. The axioms are explained and analyzed more carefully
in Section 3.

Axiom 1. X islocally compact and has integral cohomology modules in degrees (2 —
1) and higher locally equivalent to those of an »-manifold.

Axiom II. X is metrically n-dimensional, locally bi-Lipschitz embeddable in some
Euclidean space, and locally metrically orientable.

Axiom HI. X supports a Poincaré inequality.
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.As is explained in Sections 3.21 and 3.23, Axioms I and 1 allow us to define gauge
Whitney 1-forms on X. These are bounded measurable 1-forms on X with bounded
exterior derivatives.

A locally defined n-uple p = (P15 --+» pr) of gauge Whitney 1-forms on X is
called a (local) Cartan-Whitney presentation of the gauge if the associated volume
form has constant sign and is uniformly bounded away from zero (in the almost ev-
erywhere sense).

Axiom IV, Cartan-Whitney presentations exist locally on X.

It is implicitly assumed that cach of the above axioms includes the preceding ones to
the extent its definition so Tequires.
We have the following theorem.

THEOREM 2.1
Let X be a metric gauge that satisfies Axioms 1 and II. Then X is locally branched
Euclidean if and only if it satisfies Axioms Il and IV,

The sufficiency part in Theorem. 2.1 follows from our main theorem, Theorem 4.2,
which is formulated in Section 4. For a further discussion of the axioms and fora
proof of the necessity part in Theorem 2.1, see Section 5.

The following theorem sums up SOme of the consequences of Theorem 4.2,

THEOREM 2.2
If a metric gauge satisfies Axioms I—1I1, then each (local) Cartan-Whitney presen-
tation p of the gauge determines (locally) a positive upper semticontinuous integer
valued function, p Res(p, p), called the residue of the presentation, which for
‘a fixed p is continuous in p in the L*-topology, with the property that the gauge is
locally Euclidean at a pointp € X if and only if @ Cartan-Whimey presentation p
can be found near p such that the residue satisfies Res(p, p) = 1.

Moreover, for each ( local) Cartan-Whitney presentation p, there is a closed set of
zero measure and of topological dimension at most (n — 2) such that Res(p,py =1
for each p outside the closed set. ‘

COROLLARY 2.3
If a metric gauge satisfies Axioms [-1V, then it is locally Euclidean outside a closed
set of Zero medsure and of topological dimension ai most (n — 2).
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Examples 2.4

If X is a compact polyhedron in some Euclidean space such that every point in X has
a cone neighborhood with a link that is a homology (n — 1)-sphere, then X satisfies
Axioms I-IV. The first two axioms are straightforward to verify, and the Poincaré
mequatity fellows, for example, from [HeKo2, Section 6]. To establish Axiom IV, we
observe that the method of J. Alexander [Al] (see also [BEI) can be used to map X
locally to the standard (polyhedral) n-sphere by a sense-preserving piccewise linear
branched cover. The pullback of the standard coframe on the sphere provides gauge
Whitney 1-forms with property (1.1).

1t is known that the #-sphere 8" has polyhedral metrics as above that are not locally
Euclidean if n > 5 (see [Ca2], [Call, [E], [S5]). Also, on the lower-dimeénsional
spheres 8 and 8, there are metric gauges that are not locally Euclidean even though
they satisfy Axioms I-1IV (see [Se2], [Se3], (HR1], [HR2]). It is not known whether
a 2-dimensional gauge is locally Euclidean if it satisfies Axioms I-III. Recently,
T. Laakso [L] proved that a 2-dimensional gange need not be locally Euclidean if it
satisfies Axioms I and II1, and is metrically 2-dimensional.

Remark 2.5
It remains an interesting open problem to find a sharp analytic condition on a Cartan-
Whitmey presentation p that would assure that the residue of the presentation satisfies
Res(p, p) = 1 forall p. We conjeéture that this is the case for each presentation p in
the Sobolev class H -2 (see Section 3.12 for the definition of Sobolev classes). This
condition would be sharp, as shown by the pullback presentation in R? under the map
(r, &) > {r, 26) in polar coordinates. It was proved in [HeKi] that Res(p, ) = 1 for
presentations p € H'2 in R" which are closed (i.e.,dp=20).

One can also ask if the membership of p in the space VMO (or pethaps in BMO
with small norm) leads to the residue value 1. Here VMO and BMO stand for the
spaces of vanishing mean oscillation and bounded mean oscillation, respectively.

3. Description of the axioms
In this section, we describe the content of our axioms more carefully.

3.1. Cohomology manifolds

Axiom I concerns only the local homology of the gauge. The second requirement
means that for each x € X there are arbitrarity small open neighborhoods U of x such
that H*(U) = Z, that HY (U) = 0 for p = n— 1 and for p > n, and that the standard
homomorphism H? (V) — HZP(U) is a surjection if V' C U is an open neighborhood
of x. (Here H? denotes the Alexander-Spanier cohomology with compact supports.)
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_1If X satisfies Axiom I and 15 finite-dimensional, then dim X = n (sece [HW, p. 151)).

3.2 Mem'cally n-dimensional sets

We call a metric space metrically n-dimensional it it can be expressed as a countable
union of Lipschitz images of subsets of R plus a set of Hausdorff n-measure Zero,
and if for each compact set K in the space, there is a constant Cx = 1 such that

Clr" < H#(Bx,7)) = Ckr” (3.3)

for all balls B(x,r) of radius r < C I}l centered at x € K. Here and hereafter, S
denotes the Hausdorff n-measure in a metric space.

Thus, a space is metrically n-dimensional if it is (countably) n-rectifiable in the
sense of geomelyic Measure theory and if it satisfies an appropriate local version of
the condition known as Ahlfors n-regulariry; In particular, a metrically #-dimensional
space has Hausdorff dimension r, and the Hausdorff n-measure is locally finite and
positive. Being metrically #-dimensional is a bi-Lipschitz invariant condition, and it
is now clear what the first requirement in Axiom I means.

The second requirement, that ¥ be locally embeddable in some Euclidean space,
means that every pointin X has a neighborhood that can be bi-Lipschitz embedded in
some RY.

3.4. Metric orientation

A gauge as in Axjom 1 is locally orientable in the sense that every point in it has a
connected neighborhood U with HI(U) = 7. A choice of a generator gu in H}U)
is an orientation of U; it canonically determines ant orientation of each connected
open subset V of U, for the canonical homomorphism H™(V) = H, *(U)isan iso-
morphism. :

Assume now that U is an oriented open subset of Xandthat f : U — E
is a continuous map into an oriented n-dimensional Teal vector space E. Then, for
each open connected set D with compact closure in U and for each component A of
E\ f(3D), the map

il ND:fAND = A
is proper, and the local degree w(A, D, f) is the integer that satisfies
Eg > plA; D, flgu ' (3.5)
under the map |
HME) «—— HIA) ~ H(f-1(A) N D) — HI(U): (3.6)

where £ and gy denote the fixed orientations of E and U, respectivély.
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Next, assume that U € R¥ is a metrically n-dimensional embedded neighbor-
hood of a point in X of finite Hausdorff n-measure. Then I/ has a unique (approx-
imate) tangent n-plane 73U at 5#;-a.c. point x € U (see [F, Theorem 3.2.19]). We
view the collection of these planes as a measurable tangent bundle TU over U. The
bundle T is a measurable subbundle of TRY (with respect to the measure J&,| U )
and inherits a metric from RY. An orientation £ = {£,} of TU is a measurable choice
of orientations on the approximate tangent planes:

£ = {’;‘x 1 £y € A, T U is a simple (unif) n—vector}. (3.7)

To say that I is metrically orfented is to say that an orientation £ on TU can be chosen

$0 as to be compatible with a given local orientation gy on U; such compatibility

allows us to use a degree theory for Lipschitz mappings as in the case of a smooth
‘manifold.

Te give a precise definition, let x € U be a point such that the tangent space
Ty = T, U exists. Because U satisfies (3.3) locally, the set

{yeRY: dist(y — x, %) > ely — x|} (3.9)

does not meet U near the point x for each € > 0. (Indeed, otherwise the Ahlfors

 regularity condition (3.3) would imply that U has positive n-density at x along a

set as in (3.8), contradicting the definition for approximate tangent planes see [F,
Theorem 3.2.19].) Thus, if 7, denotes the projection

er:'RN—>x+Tx

to the affine n-plane x + T, the preimage 7 1(x) does not meet U \ {x} near x. In
particular, 7, induces a map

HXNTy) - HXU) (3.9)

as in (3.6). It is easy to see that this map does not depend on the choice of the domain
D in (3.6) for D sufficiently small. Then we say that U is metrically orientable if U
is orientable and if there is an orientation gy of U and an oriéntation E=1&}of TU
such that
&x > gy

under the map in (3.9) for J%,-a.c. point x € U. The pair (g7, £) is called a metric
orientation of U. Finally, we say that X is locally metrically orientable if every point
in X has a neighborhood that is metrically orientable.

Example 3.10

A metric space is locally linearly contractible if for each compact set K in the space
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there is a constant Cx > 0 such that for points x € K and radiir < Ci—(l, the metric
balls B(x, r) are contractible in concentric balls B(x, Cgr). It cleatly makes sense 10
speak about a locally linearly contractible meiric gange.

It is not hard to see that if X satisfies Axiom L, is metrically n-dimensional and locally
embeddable in some Euclidean space, and 18 locally lincarly contractible, then X is
locally metrically orientable. Indeed, if U is as above, the local linear contractibility
guarantees that there is a neighborhood Gof Uin RN anda retractionyr : G =~ U
such that, locally,

ler(y) — y] = € dist(y, 1) 3.11)

with C > 1 independent of y. It is then easy to see, with the above notation, that the
map '
f=von: D—U

is homotopic to the identity through maps D \ {x} = U\ {x}if D is'a small enough
connected open neighborhood of x in U. By using this and (3.11), ope checks that
7y induces an isomorphism in (3.9), and the melric orientation can be defined via

" this isomorphism. (See [Sel] for more discussion on local linear contractibility and
related issues.)

3.]12. Sobolev classes , ‘
Assuming that X satisfies Axiom II, we define Sobolev spaces H LP(U)) in each em-
bedded metrically n-dimensional neighborhood U 1 RY. (The metric orientation is
not needed here.) Althongh the spaces to be defined depend on the chosen embedding,
the membership in-a space of a particular degree of integrability does not Therefore,
it makes sense to speak about (local) Sobolev classes of functions on X. Because
of the rectifiability properties of U, the definition of the Sobolev space Leyyis
rather straightforward. In particular, we domot need the recent and more sophisticated
{albeit equivalent) Sobolev space theories as in, for example, [Cr], [FHK], or {Sh}.
Thus, let U be a metrically n-dimensional set in RY of finite Hausdorff n-
measure. There is a bounded linéar operator & from Lipschitz functions defined on U
to bounded measurable sections of T*U which vanishes on (locally) constant func-
tions and satisfies '
|du] < Lip(s), (3.13)

where Lip(x) is the Lipschitz constant of u, as well as
d(uv) = vdu + udv 3.14)

and

d(fou)= fuw)ydu (3.15)
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for all f € C1(R), where it is understood that (3.13)— (3.15) hold almost everywhere
with respect to the Hausdorff measure 5%, on U. Indeed, du is the approximate dif-
ferential of u, as in [F, Theorem 3.2.19].

For 1 < p < oo we define the Sobolev space H L.p (U ) as the closure of al}
Lipschitz functions on U in the norm

iy = ([ wrast) "+ ([ easms)”. e

Thus, # € HYP(U) if and only if ¥ € LP(U) and there are a measurable LP-
integrable section & of T*U and a sequence (u;) of Lipschitz functions on U such
thatu; ~ u in L?(U) and du; — o in LP(U).

3.17. Poincaré inequality
We say that X supports a Poincaré ineguality if X is locally pathwise connected and if
every point in X has a metrically n-dimensional embedded neighborhood U, together

with constants ¢ > 1 and t > 1, such that

f e — upl’ dot, < C(diamB)Zf dul*d o, (3.18)
B B

for each metric ball B satisfying B C U and for each Lipschitz function 1 in 75,
where 7B denotes the ball that is concentric with B, but with radius T times the radius
of B, and ug denotes the integral average of u in B.

The validity of a uniform Poincaré inequality of the type (3.18), together with
mild assumptions on the Hausdorff measure, implies that the space possesses many
strong geomeiric and analytic properties (see, e.g., {Cr], [HaKo], [HeKo2], [Se5],
[Sh]). In particular, we require the following fact, proved in [FHK, Theorem 10].

PROPOSITION 3.19

If U is a metrically n-dimensional embedded neighborhoed that supports a Poincaré
inequality as in (3.18), then the operator d from Lipschitz functions on U to L?-
sections of T*U is closable.

Thus, under the presence of a Poincaré inequality, the section & above is independent
of the sequence (u); it is denoted by du and called the weak differential of u.
Besides being used in Proposition 3.19, inequality (3.18) is used in Proposition
4.22, which in twrn is crucial in the proof of our main theorem, Theorem 4.2.
‘We note that there are variants of condition (3.18) that could equally well be used
in Axiom II; we have chosen (3.18) for its relative sunphmty (see Section 3.2 for a
further discussion).
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. Example 3.20

If X satisfies Axioms I -1l and in addition is locally linear contractible (as defined in
Example 3.10), then X supports a Poincaré inequality as deseribed above. This fol-
lows from work of S. Semmes [Sell. As pointed out in Section 5.4, in Theorem 2.1 we
cannot replace Axiom IIl by the requirement that X be linearly locally contractible.

3.21. Whitney forms

Let I/ be an n-rectifiable subset of R¥ of finite Hausdorff n-measure, and let & = {&x}
be an orientation on TU as in (3.7). Then the pair (U, £) defines an n-dimensional
current by integration: for each smooth r-form @ in RY, the action

(U, 8), o) = fU (o), £ d ) 32)

is defiped in the usual way by using the chosen a.e. defined orientation and the Haus-
dorff measure.

The action (3.22) can be extended to a larger class of differential forms in RY,
which we call Whimey forms. By definition, these are forms @ of bounded measurable
coefficients whose distributional exterior differential de also has bounded measurable
coefficients. For Whitney forms we have ddw = 0 in the sense of distributions, One
can also pull back Whitney forms by Lipschitz maps, and d F*(w) = F*(dw)if F is
Lipschitz and @ is a Whitney form. '

To briefly explain why (3.22) extends to Whitney forms, we recall that the space
of Whitney m-forms as defined above can be identified as the dual of flat m-chains
in RY in the flat norm (see [W2, Section IX.7], [F, Section 4.1.19]). Now every -
dimensional rectifiable current in RY is a flat m-chain by [F, Section 4.1.24}, and
every oriented m-dimensional rectifiable set is an m-dimensional rectifiable current
through formula (3.22) by [F, Section 4.1.28] (cf. Section 3.26). Although Whitney
m-forms are a priori only a.e. defined with respect to Lebesgue measure of the ambient
space RY, they have representatives such that the action on m-dimensional rectifiable
currents makes sense by integration. This is a theorem of H. Whitney [W2, Theo-
rem 9A, p. 303]. (Compare this with the special and better-known case m = 0 when
the Whitney forms are nothing but Lipschitz functions; the differential of a Lipschitz
function has a well-defined restriction to each rectifiable carve.) Whenever we are
dealing with Whitney forms in this paper, we tacitly assume that the good representa-
tives have been picked. '

Finally, Whitney forms can be defined and studied in any open setin RY.

3.23. Gauge Whitney 1-forms
If X satisfies Axioms I and I, then we can define Whitney 1-forms locally on X via
their action on rectifiable curves by using the local embeddings in Euclidean space
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and the bi-Lipschitz invariance -of line integrals. We call these invariantly defined
forms gauge Whitney I-forms. To be more precise, we let U be open in X; we abuse
notation and understand that U is already embedded in some R”. Then every Whitney
1-form e defined in an open neighborhood G of U in R¥ determines a gauge Whit-
ney 1-form: if U’ is a different embedding of U/ in RM , then there is a bi-Lipschitz
homeomorphism h from U/’ onto U/; the map A can be extended to a Lipschitz map
H:RM - RN by Kirszbraun’s theorem (see [F, Theorem 2.10.43]), and the Whit-
ney 1-form H*(w) is defined in the open neighborhood G’ = H~!(G) of U’ and

satisfies
f H*(w) = f @
H-(y) 4

for all rectifiable curves y in U/,
Axiom IV means that for each point in X there are a metrically oriented neigh-
borhood U and an n-tuple of gauge Whitney 1-forms py, . .., p, defined in I/ such

-that

essinf & (o1 A -~ A py) > 0, (324)

where the Hodge star operator * : A"TU — R is determined by the given metric

orientation. Note that p1 A - - - A py, is a Whitney n-form by [W2, p. 277] or by [Re2,
Lemma 4.4, p. 133]. Condition (3.24) is independent of the chosen embedding of U
in Buclidean space.

Remark 3.25

We could have defined gange Whitney I-forms in Section 3.23 more intrinsically (say,
in the spirit of [W1, p. 4]) without the requirement of local extension in the ambient
Euclidean space. However, such an extension is nécessary for our proof of Theorem
4.2. i we strengthened Axiom II by requiring that X be locally embeddable in some
Buclidean space as a (local) Lipschitz retract, then local extensions of intrinsically
defined forms would exist. This new axiom would also imply the current Axjom 11,
via local linear contractibility as in Remark 3.20 but would not be necessary for the
gauge to be locally branched Euclidean (see Section 5.4). It is not clear whether in-
trinsically defined gauge Whitney 1-forms can be extended (locally) to the ambient
Euclidean space under the present axioms, nor whether our proof could be made to
work without such extension.

3.26. Stokes cycles

We now address the precise technical sense in which our objects define “abstract
cycles” locally; namely, for each local embedding of the gauge in RY, we have the
expected integration by parts formula. In more detail, recall that an n-dimensional
rectifiable current in RY is a current with compact support which is representable
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- by integration over an oriented n-rectifiable set with integer multiplicities (see [F,
Theorem 4.1.28])- Thus, each n-dimensional rectifiable current is associated with a
triple (W, &, i), where W is an n-rectifiable set, & = (Ex}isa measurable choice
of unit n-vectors on A TW,and p is a0 integer-valued 2, -integrable (multiplicity}
function on W. We call a current T in RY an n-dimensional Stokes current if it is an
n-dimensional rectifiable current with compact support and if an associated triple can
be chosen so that the set W is locally compact and satisfies

w Nsptd? = o. 327
In other words, each point in W should have a neighborhood such that
(8T, w) = (T,dw) =0

for each smooth, and hence Whitney, (n — 1)-form w with support in the neighbor-
hood. - :

If we start with an n-rectifiable, locally compact bounded set W, together with a

" choice of orientation EonTW, and if (3.27) hoids for the current T = (W, £), then
we say that W represents an n-dimensional Stokes current in the orientation §.

Stokes currents allow for localization: if (W, £) is an n-dimensional Stokes cur-

- yent and W/ < W is open in W, then (W', & is an n-dimensional Stokes current,
where & = E|W/ is the restriction of the orientation § 0 w’.

We call an n-dimensional metric gauge a (local) Stokes cycle if every point in
the gange has an embedded neighborhood in some Euclidean space which represents
an n-dimensional Stokes current in a metric otientation; whether or not an embedded
neighborhood has this property is independerit of the choices.

We learned the proof of the following proposition from Stephen Semmes, whose
participation we thus gratefully acknowledge. :

PROPOSIT;ON 328 '
If X satisfies Axioms [ and II, then X is a local Stokes cycle.

Proaf :

et U bean embedded. (in RY) metrically oriented neighborhood of a point p in X,
and denote by T = (U, §) the corresponding n-current. We have to show that there is
§ > 0O such that

(T, dw) = fU {dew(x), £)dH#(x) =0 (3.29)

for each smooth (n — 1)-form o with support in the N-ball B(p, 8). We first show
that (3.29) is true for forms of the form

w = F¥a), ' ' T (3.30)
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where & is a smooth (n — 1)-form on 8" and F : RY — §” is a smooth map,
- homotopic to a constant through maps F; : RY > §" such that F,|U \ B(p,8) = o,
where o € 8" is independent of ¢. To this end, we use the pushforward current F(T'),
which satisfies
{F(T), dat} = (T, dF*(@)} = (T, dw).

We have the integral expression

(Fo(T), det) = fs (e, ),
where dy = d#%,(y) on 8", and (y) = Oor
=Y. a@=86, Y  ak.

xeF~1(ynty xeF-tynu

Here & = {¢/;} denotes the standard orientation on 8" and a(x) = 1 if the approxi-
mate differental dF (x) : (T, &) — (T, €y) is sense preserving, and a(x) = —1lin
the opposite case (see [F, Section 4.1.30] for these facts). Now the sum on the right is
the sum of the signs of the Jacobians of F, which equals the degree of F, thus zero,
almost everywhere (cf. (4.29)). (The assumption on metric orientation is used here.)
Therefore, (3.29) follows for forms as in (3.30). ,

To prove the general case, we observe first that by linearity and by change of
coordinates we may assume that « is of the form e {x) = u(x)di,_1, where dh, 1 =
dxi - --dx,_1 and u is a smooth function with compact support. If b(x) is any smooth
bump function with support on B = B(p, 8) and total integral I, then the convolution
we = b % w satisfies (3T, we) — (37T, w) as € — 0(see {W2, (12), p. 176]). On the
other hand, one easily computes that

(0T, we) = (T, dwe) = (T, dbe * w)

= H(Y)L(dbe(x — Vdi,_1, §x) dx dy,

spt

which is zero, provided
-/l;_(dbé (x — y)din_1, gx)dx =0
for all y € R™. This reduces the problem to the case where

w(x) =b(x)dl,—1 (331)

and b(x) is a bump function of our cheice.
It remains to find a form @ that is both of the form (3.30).and the form (3.31). To
this end, let & be an (# — 1)-form on S*! which is a volume form multiplied by a
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. nonnegaﬁve (but nonzero) function on g1 gothate = Oina small neighborhood
of a point o € $"7F, Next, extend o 0 be an (n — 1)-form on 8% 5 gr—1 as follows:
first, pull back by the map 71 © 772, where m : R\ {xpp1 — axis} —> R™\ {0}
and m; : R*\ {0} — §n—1 are projections; then multiply by a nonnegative function
of |xp4-1} which vanishes if lxp41! = 1 /4 and is equal to 1ina neighbothood of 0;

_ and finally, restrict (and extend) to 8 C R+1, Note that this extension o vanishes
on definite neighborhoods of the south and the north poles of 8", as well as on a
neighborhood of a great circle that connects the poles through the pointo.

We now describe a mapping F : RY — §” as required in (3.30). Farst, let
Fi: Rl — s~ be a map of degree 1 that assumes the value o outside B(0, 8.
(We may assume that p = 0 € RY and that 8 > O is small) Then, using coordi-
gates (A, x") in RY =Rt x RNV-ntl e define F = ¢ o F,, where P,z =
(F1 (M, (1/70)arctan(lx'|/8)), P2 - RY - §71 x [0, 1/2), and ¢ is the projection of
gn—1 x [0, 1/2) onto an open subset of 8%. It is easy to see thatw = F * () depends
only on A = (X1, .- , Xq—1) and [x'} = 1(Xns -« - » XN indeed, it is easy to see from
the definitions that @ is of the form w(h, x) = f (R(jx') dxy - - dXn—1 for some
nonnegative (but nonzero) functions f and k.

This completes the proof of Proposition 3.28. O

4, Locally branched Euclidean gauge
We assume in this section that X satisfies Axioms I—IV. Picka point p € X and an
cmbedded (open, connected) neighborhood U of p in some RY . We assume that U
is metrically oriented by (gu,§), that the current (U, &) is an n-dimensional Stokes
current, and that a Cartan-Whitney presenta jon o = (P1s--0» pr) is given on U.
‘Thus, the Whitney 1-forms p1,.--» Pn A€ definedina neighborhood G of UinRY,
and they satisfy )

essinf-*(pl/\---/\pn)28>0 (4.1)

in U. By shrinking U if necessary, we may also assume that each 2-simplex [x,.y, z},
generated by points x, ¥, Z inU,liesin G.In particular, each line segment [p, x] for
x € U liesin G. '

Under these assumptions, we prove the following theorem, which should be re-
garded as the main result of this papet.

THEOREM 4.2
The neighborhood U can be chosen small enough so that the mapping

f(x)ﬂ[ u(p1,...,p,,,), xel, {4.3)

Jp,x]

isa sgnse-preserviﬁg, discrete, and open Lipschitz mapping from U to R" which sat-
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isfies (1.5). In particular, we have

liminf M >¢c>0 (4.4)

ywmyEx =yl
for all x € U and for some ¢ > 0 independent of x. The mapping f is locally bi-
Lipschitz outside the branch set By of measure zero and of topological dimension at

mostn — 2.

A mapping f : U — R” is sense-preserving if the local degree u{A, D, f) defined in
(3.5) is positive for each domain I compactly contained in U and for each component
A of R"\ f(9D) that meets f(D); we assume that R” is equipped with its standard
orientation. A map is discrete if the preimage of each point is a discrete set, and the
branch set By is the closed point set in the domain of f where f does not define a
local homeomorphism. For a discrete and open mapping f, the branch set B always
has topological dimension at most n — 2 by [Ch1], [Ch2], and [V2]. (The hypotheses
in [Ch1}, {Ch2], [V2] are somewhat different from what is required by Axiom I.
However, the proof in [V2] in particular is valid in the present context.)

What we show here is that the mapping f given in (4.3) is a discrete, open, and
sense-preserving map with volume derivative uniformly bounded away from zero.
The BLD-property (1.5) for such maps follows from [HR2, Theorem 6.18]. To be
precise, our axioms are slightly weaker than the assumptions on the source space X
in [HR2]. The axioms are sufficient, however, to 1an the proof in [HR2, Theorem
6.18], for the required analysis. there needs only the validity of a Poincaré inequality.
This is clear from the references used in the proof of [HR2, Theorem 6.18]. As an
additional technical point, one needs to know here that a Poincaré inequality as in
(3:18) implies quasiconvexity of the space (for this, see [Cr, Appendix] or [HaKo,
Proposition 4.4]).

Finally, observe that property (1.3) follows from (1.5) via a simple path-lifting

argument (cf. [HR2, Section 3.3]) and that the sufficiency part of both Theorem 2.1
and Corollary 2.3 follows from Theorem 4.2.
. Next, we define the residue of p by

Res(p, p) = the local degree at p of the map f given in (4.3). {4.5)

Thus, Res(po, p} = 1 ifand mily if p lies outside the branch set of f, and we conclude
that Theorem 2.2 follows from Theorem 4.2, except the claim about continuity in p,
which is clear from the proof.

Proaf of Theorem 4.2
The proof is presented in several subsections.




30 : HEINONEN and SULLIVAN

4.6. f is Lipschitz with uniformly positive volume derivative
One should compare the argument here to that given in [Su] in the context of Lipschitz
manifolds. We have :

|F @) = £ = |F®)] = lelleclx — P,

where p = (p1,...,00)- fx e U, x #p,andyisnea:x;then

re—rol=|[ o=[ o+[ o=[ 4
ip.xl [p.y] [x,¥1 [x.y]
= Ij dpl + f 0
tp.x,¥] fx,y]

< lldplloolip. x, ¥1| + 16lloclx — ¥l

The area |[p, x, y]| of the 2-simplex [p, x, y] is at most a constant times |x — yi,
and we conclude that f is uniformly locally Lipschitz in /. In fact, f is uniformly
Iocally Lipschitz in a small neighborhood of p in the ambient space RY by the same
argument. We may therefore assume that f is Lipschitzin U.

Because f is Lipschitz, its (approximate) differential df = (dfi,....dfn) de-
termines Whitney 1-forms in a neighborhood of U in RV, (See [F, Theorem 3.2.19]
and [W2, Chapter X], and recall that we can extend f to a Lipschitz map RY — R”
by Kirszbraun’s theorem. ) In particular, df € L%, and for x, y € I we have

f (o —df) = f p—(F) — ()
[x,¥1 {x.y1 :

=f p"f p+[ p=f dp,
£} [p,¥] ip,x] [7.x, ¥}

which gives

[ _o-ap| = ldplleoliz.x, ]
{x,5]
= lidplloolp — x1|x = ¥l
if |x — y| < |x — p|. This implies that the L*°-norm of p — df satisfies
e —dflleo = lldplloclp — xI.
By further shrinking U if necessary, we thus find that
dfin--Adfy =8 >0 4.7

almost everywhere in U (cf. [W2, Theorem 7C, p. 265]).
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fl 4.8. Potential theory ”
by . Here we follow the fundamental ideas of Reshetnyak [Rel]. For » € R”, the function :

s
*

. . u(y) = up(y) = —log|y ~ b| 4.9)
solves the quasi-linear elliptic equation
—xdx|dul"2du=0

in R* \ {b}, where * is the Hodge star operator in R". In particular, the (n — 1)-form

o = %|dul** du

is closed in R" \ {b}. Because « is smooth and f is Lipschitz, we have _ : i

df*{e) = f*da)=0 . (4.10)

i i T gy

18 in the nonempty (relatively) open set U \ £~ 1(b). Note that f is not constant in I/ by
i} (4.7).

To justify equality (4.10) and the other upcoming differential calculus on
Lipschitz forms, we refer the reader to the discussion in fW?2, Section X.9] (see also
[Re2, Sections 11.4.3 and 4.4]). Recall that we can think of f as being defined in all |
of RV,

Next, if ¢ is a compactly supported Lipschitz function in I\ f ~1(®), we calculate

d(fM @) = df*(@e + (D" @) Ade = (1) ) ndp, (@11

and recalling Proposition 3.28, we thus obtain

0=(pU. £ @9) = [ a(r @)

= (-1 fU FH@) Adop. ‘ (4.12)

{We suppress the fixed orientation & from the notation here and below.) In conclusion,

0= f fHa)yAdy = f (xf*(@), dp)d s, (4.13) !
U U |

where the *-operator is determined by the fixed inner product and orientation on T*/.
Equality (4.13) means that the 1-form * f* % ldui"‘2 du is coclosed in U \ 7~1(b) in
a weak sense; that is,

.

f {*f* * |du]n“2 du, dgo) dit, =0 (4.14)
4
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for all“compactly Supported Lipschitz functions ¢ in 17 VB
Let us reformulate (4.14) as follows, By (4.7, for almost every x in U we cap
define a linear map

by the formula
G = detdf &)/ "d f )1y 17 (4.15)

[ ota@nn, doja ey - (4.16)

for ail compactly supported Lipséh_jtz functions @in U \f ‘l(b), where 1 = 4 o Sfis
a (locally) Lipschit, function in {7 \ F7®) and

—23/2
00 = {Geyn, )" D126,
To see this, we observe first that '

* [T = (—1yn-1 detdf df-1 (4.17)

now shows that

and hence that

& (dh) = d'etdf("“z)/”(df‘ldf‘lek, dnY=212 oy g 2Yn dftar=1T g
= detdf|df =17 gpp2 g1 dr=17 4
= detdf|dul*2gr~1 4,
=D a2 g,

holds, we hava ) ‘
Fx() = (G(xyy, p)*/? o ((n), ) = i {4.18)

for all measurable sections 5 of 7*[7. The constans i (4.18) are independent of 7.




et 8 it

ON THE LOCALLY BRANCHED EUCLIDEAN METRIC GAUGE 33

4.19. Quasi-continuous Sobolev functions

- Recall the definition for Sobolev space H L2 (1) from Section 3.12. In what follows, -
- we only need the case where p = n. (An analogous discussion is valid for all 1 <

p<oco)ForasetE C U , We deﬁne its n-capacity to be the number
CaE) =int [ (ul” +1dul") 48, 420
U

where the infimum is taken over all u € H1"*(U) such that u > 1 almosteverywhere
in an open neighborhood of E. We also need the following variational counterpart of
Cy- Assume that E is a compact subset of an open set V C U. Then the variational
n-capacity of E in V is the number

cap, (E, V) =inf f ldul" d5#,, “4.21)
v _

where the infimum is taken over ail compactly supported Lipschitz functions # in V
such thatu > 1 on E.

Note that (4.21) was defined by using Lipschitz test functions, whereas 4.20)
used arbitrary Sobolev functions. These are the most natural ways to define the two
capacities, although it is true (and important) that in both cases the pool of test func-
tions can be altered without altering the value of the capacity. Also, note that the def-
inition of cap,,(E, V) can be extended to arbitrary subsets of V in a standard manner
(see [HKM, p. 27]). ‘

A set E in U is said to be of n-capacity zero if C,(E) = 0. One can show by
using the Poincaré inequality (3.18) that for a compact set E, we have Cp(E) = 01if
and only if cap, (E, V) = 0 for every (equivalently, some) relatively compact open
set V containing  (see the arguments in [HKM, pp. 49, 34]).

The next result follows from [HeKo2, Theorem 5.9]; the Poincaré inequality
(3.18) is crucial here.

PROPOSITION 4.22
A compact set of zero n-capacity in U has Hausdorff dimension zero,

A real-valued function x defined on a set E C U is said to be n-guasi-continuous if
for each € > 0 there is an open set G with C,, (G) < € such that » | E\ G is continuous.
A sequence (u ;) of functions on E is said to converge n-guasi-uniformly to a function
u on E if for each € > 0 there is an open set G with Cu(G) < esuchthatu; — u
uniformly in £ \ G. If a property holds except on a set of zero n-capacity, we say it
holds n-guasi-everywhere.
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PROPOSITION 4,23

A function in the Soboley space HY""(U) has an n-quasi-continuous representative,
and two such representatives agree n-quasi-everywhere. Every convergent sequence
of n-quasi-continuous functions in FL/'" () subconverges n-quasi-uniformly to an
n-quasi-continuous function.

The proof for the existence part in Proposition 4.23 is standard. We leave its detailed
verification to the reader following the presentation of [HKM, Chapters 2, 4] and vs-
ing properties (3.13)— {3.15). The same holds true for the last assertion in Proposition
4.23. The proof of the uniqueness up to a set of zero capacity of the quasi-continuous
representative in [HKM, Theorem 4.12] is somewhat complicated, relying on non-
trivial results from the theory of quasilinear variational inequalities in R”, and it is
not clear if the argument can be used in the present setting. However, T. Kilpeldinen
[K] has recently given a short, elementary proof for the uniqueness that applies very
generally; in particular, it applies in our case, and Proposition 4.23 follows.

4.24. f is light
We show that the Lipschitz map f : U — R” given in (4.3) is light, that is, that
the preimage of every point under f is a totally disconnected set. We show that the
fiber £~!(b) has zero n-capacity in U for each b € R”. This suffices by Proposition
4.22. Here we depart from Reshetnyak’s original argument, which used Harnack’s in-
equality for solutions to degenerate e iptic équations, and instead follow the proofin
(HeKo1]. The idea in {HeKo1] (which avoids Harnack’s inequality) was to construct
an n-quasi-continuous function in a neighborhood B of each point in £~1(b) which
takes only two values: 1 on f~1(6) N B, and 0 elsewhere. Then necessarily f~1(h)
has zero n-capacity. o

To this end, pick » € R" and consider the function u = g, as defined in (4.9).
Denote, for each positive integer k > 1,

1
Ekz{k;;k}nzB,

where h = uo f = —loglf — b| as in Section 4.8, B is some fixed open ball (in
U) centered at a point xg € 8 "By N U such that the closed ball B lies in U, and
(1/2)B denotes the closed ball with the same center as B but half the radius. Note that
the required point x¢ exists because [ is not constant and U is connected. It suffices
to show that

Ex = fYB)N %‘E

has zero n-capacity.
With the discussion in Sections 4.19 and 4.8 understood, the argument is very
similar to that in [HeKo1]. For convenience We repeat the main points. (In fact, the
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situation here is easier than in [HeKo1] because the degeneracy of the equation is less
-severe.) -
First, we claim that the minimization problem

I =inf f Fy(dv(x)) d#(x), (4.25)
Fi J B ,
where

T = {v € HDI’”(B) : vV is n-quasi-continuous and

v > 1 n-quasi-everywhere on E }

and F(n) is given in (4.18), is solved by a wnique (up to a set of zero capacity)
minimizer v, € . (Here the Sobolev space HOI’” (B) is the closure of compactly
supported Lipschitz functions in B with respect to the norm (3.16).) The proof of the
claim follows the standard arguments of the calculus of variations (see, e.g., [HKM,
Chapter 5] or [Re2, Chapter IIL.3]). We equip HOI'”(B) with the uniformly convex

norm
1/n
T

ol =il + [ £anyas)

which by (4.18) is equivalent to the norm in (3.16) (with p = n), so that 2 mini-
mizing sequence has a weakly convergent subsequence from which one can extract a
sequence of convex combinations that converges. strongly to a function vy, {by Mazur's
lemma). By the lower semicontinuity of norms, v is a minimizer, and by Proposition
4.23, we may assume that vz is in %;. Finally, the uniqueness follows from the strict
convexity of F.

Next, analogously to [HeKol, Lemmia 4.8], one can show that

wp = kvg < h (4.26)

quasi-everywhere in B \ Ej. The crucial fact in proving (4.26) is the vﬁlidjty of equa-
tion (4.16): because v uniquely minimizes (4.25), we easily obtain

f Fo(dwe) dot, < f Fy(dh) dot,
fwe=h}

{we=h}

* while on the other hand,

f (Fx(dwr) — Fy(dh)) dot, > f (Vi Fx(dh), dwy — dh)d .+,
{wp>h}

{wi=h}

=n / (e(dh), dwg — dh)ds#, =0,
{we=h}
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where the last equality follows from (4.16) by (Lipschitz) approximation. It follows
that wy < h almost everywhere, hence quasi-everywhere by Proposition 4.23.
We have thus constructed a sequence (vi) of quasi—continuous functions in’
Hy"(B) such that
) v = 1 n-quasi-everywhere on Ey;
2) vy < h/k n-quasi-everywhere on B \ Ey.
Moreover, the sequence (vg) is bounded in I-IO1 *(B), so that a sequence of convex
combinations of v;’s converges strongly to a quasi-continuous function v, in B.
(This is, again, by Mazur’s lemma and Proposition 4.23). By (1), veo = 1 n-quasi-
everywhere on E, while by (2), v, = 0 n-quasi-everywhere on B \ E4 because &
is finite outside E. This implies that E . has zero n-capacity, as was to be proved.
Therefore, f : U — R” is a light map.

4.27. f is sense-preserving
For almost every x in U, the approximate differential df{(x) exists (see [F, Sec-
tion 3.2.16 and Theoreom 3.2.19]) and satisfies -

detdf(x) =(dfy A --- A dfp)x) =8 >0 (4.28)

by condition (4.7). Let D be a relatively compact domain in U, and let A be a compo-
nent of R™ \ f(8 D) which meets f(D). Because f 1 (4)N D is open and nonemypty,
and because the fiber f ~1 (¥} is finite for almost every y € R” by {F, Theorem 3.2.22],
there is a point y in A whose preimage in 2 consists of finitely many points x such
that df (x) exists, (4.28) holds, and f is approximately differentiable at x. (We use
here the fact that Lipschitz maps are absolutely continuous in measure.) It follows
from an easy homotopy argument that '

pA, D, fy= > signdetdf(x) >0, 4.29)
xef~ynD

as required. Thus, f is sense-preserving in U.

4.30. Conclusion

It is not hard to see that a sense-preserving light map U/ — R” is discrete and open
{cf. [TY], [Re2, Section I1.6.3], [Ri, Section VI.5]). We have thus shown that the
mapping f given in (4.3) is a sense-preserving, discrete, and open Lipschitz mapping
with a definite lower bound for the Jacobian determinant as in (4.28). As discussed
right after the statement of Theorem 4.2, this suffices, and the proof of Theorem 4.2
is thereby complete. ' : O




