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ABstrRACT. Geometrically finite branched covering maps of the sphere are studied.
We prove that a geometrically finite branched covering map whose post-critical
set iz infinite is combinatorially equivalent to a rational map if and only if it is
combinatorially linearizable and there is no Thurston obstruction for it. For a
topological conjugacy between two geometrically finite rational maps whose post-
critical sets are infinite, we prove that there is a quasiconformal conjugacy isotopic
to it rel the post-critical set. Moreover, if the conjugacy is holomorphic on the Fatou
set, then it is a MObius transformation. We also show that every wandering Julia
component is a simple closed curve for geometrically finite rational maps.

§1. INTRODUCTION

Let f: S% — S? be a branched covering map of the sphere S? with degree
bigger than one. Throughout this paper, we always suppose degree bigger than
one when we say a branched covering map of the sphere or a rational map of the
Riemann sphere C. We call

f) =A{z: deg, /> 1}

the critical set of f, and

P(fy=J @)

n>0

the post-critical set of f. Note that f(P(f)) C P(f) and P(f} = P(f").
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The map [ is called critically finite if P(f) is finite, geometrically finite if P(f)
has only finitely many accumulation points. In the later case, every accumulation
point is periodic.

Two branched covering maps f,g : S? — S? are called combinatorially equiv-
alent if there exist homeomorphisms ¢, : §2 — §2 such that ¢ is isotopic to ¢
rel P(f) and ¢f = gu.

A simple closed curve on §2 — P(f) is essential if it does not bound a disk in

- P(f) f), peripheral if it encloses a single point of P(f). A multicurve I' = {7}
on 5% — ( f) is a finite nonempty collection of disjoint simple closed curves, each
essential and non-peripheral, and no two isotopic rel P(f).

A multicurve determines a transition matrix A(T) : RF — R by the formula

1
Aaqzza:deg(f: o —y)

where the sum is taken over all components a of f~!(y) which are isotopic to
§ rel P(f). Let M) > 0 denote the spectral radius of A(I"). Since A(T') >
0, the Perron-Frobenius Theorem guarantees that A(T") is an eigenvalue of A(T)
with a non-negative eigenvector (see [LT]}. A multicurve T is called a Thurston
obstruction if A(I'}) > 1.

Suppose f is a critically finite branched covering map of the sphere S2. For
every point x in 52, define v¢(z) (which may be co) as the least common multiple
of the local degrees deg, f™ for alln > 0 and all y € 5% such that f*(y) = z.
(Note that vy(z) = 1 if z is not in P(f).} Then

Of = (S2='Uf)

is the orbifold of f and
vy P(f) > NU{oo}

is the signature of Of. A well-known theorem of Thurston says that when the
signature of Oy is not (2, 2, 2,2), then f is combinatorially equivalent to a rational
map if and only if there is no Thurston obstruction. And moreover, the rational
map is unique up to holomorphic conjugations (see [DH, Mec1]).

It is proposed to extend Thurston’s Theorem to geometrically finite branched
covering maps and to show that every component of the Julia set of a geomet-
rically finite rational map is locally connected (see [Bi]). It is known that for a
geometrically finite rational map f whose post-critical set is infinite, there is no
Thurston obstruction for it [Mc1] and that all eventually periodic components of
its Julia set are locally connected [TY].

Suppose that f is a geometrically finite branched covering map of the sphere
5% and a is an accumulation point of P(f) with period p > 1. We say f is



DYNAMICS OF GEOMETRICALLY FINITE RATIONAL MAPS 3

combinatorially linearizable at a if there exist homeomorphisms ¢, : 52 o ¢
such that ¢(a) = 0, ¢ is isotopic to i rel P(f), ¢fPp~'(z) = Az forsome 0 < A < 1
if deg, fP = 1 and ¢fPe~1(z) = 2% if deg, f? = d > 1 on a neighborhood of the
origin. If f is combinatorially linearizable at every accumulation point of P(f), we
say f is combinatorially linearizable. It is clear that the condition, combinatorially
linearizable, is invariant under combinatorial equivalence. Our main result is that

Theorem A. Let f be a geometrically finite branched covering map of the sphere
52 whose post-critical set P(f) is infinite. Then f is combinatorielly equivalent
to a rational map if and only if f is combinatorially linearizable and there is no
Thurston obstruction.

In the theorem the local condition, combinatorial linearizable, is non-trivial.
In §3 we will construct an example showing that there is a geometrically finite
branched covering map which has no Thurston obstruction but is not combinato-
rially linearizable.

One of the main ideas in the paper is so called pullback argument. It first
appeared in Thurston’s algorithm for the finding of a rational map in a combi-
natorial equivalence class of critically finite branched covering maps of the sphere
(see [DH]). It is also developed in the Suilivan’s study of the conjugacy theorem
for hyperbolic rational maps (see [Sul]). In the later context, the idea can be
explained as follows: given a hyperbolic rational map and a new local complex
structure on a small domain about every accumulation point of the post-critical
set of the rational map such that the new local complex structure is compatible
with the map, there is a unique global complex structure on the sphere deter-
mined by pulling back the the new local complex structures to the Fatou set of
the rational map. This global complex structure is compatible with the map and
produces a quasiconformal conjugacy. By combining the analysis near a parabolic
periodic point of a rational map with the theory of extremal quasiconformal maps
(see pp.57, [Mc2]), we first extend Sullivan’s Conjugacy Theorem to geometrically
finite rational maps in §2.

A homeomorphism (quasiconformal or holomorphic homeomorphism) ¢ of Cis
called a topological (quasiconformal, holomorphic) conjugacy between two rational

maps f and g if ¢f = g¢.

Theorem B. Let ¢ be a topological conjugacy between two geometrically finite
rational maps f and g whose post-critical sets are infinite. Then there s a qua-
siconformal conjugacy between f and g isotopic to ¢ rel P(f). Moreover, if ¢ is
holomorphic on the Fatou set, then it ts a holomorphic conjugacy.

Another main idea in the paper is pullback partition. For a geometrically finite
rational map f, by considering its combinatorics, we can construct a partition for
the dynamical system generated by f as follows: take a small linearization disk in
each periodic Fatou domain of f and let U be their union. The geometric finiteness
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guarantees that there is an integer N >'1 such that every component of f~™(U) is
parallel (see §4 for the definition) to a component of f~™(U) for alln,m > N. The
complement of U in € also satisfies this property. The domains of f~V(U) and
the continua C — f~ (U) form a partition of C. We call this partition a pullback
partition for f.

Now suppose f is a geometrically finite branched covering map of S? whose
post-critical set is infinite. If f is combinatorially linearizable, we can construct
a similar pullback partition by taking a small domain at every accumulation point
of P(f). This partition satisfies the property in the previous paragraph. First,
there exists a complex structure on the small domains induced from the combi-
natorial linearization. Therefore, there is a complex structure on the domains of
the partition by pullback. Second, for a strictly-essential (see §4 for the definition)
continuum which is parallel to a component of its preimages under some f”. The
map f™ restricted to this component can be extended to a critically finite branched
covering map of S%2. We then apply Thurston’s Theorem to get a complex struc-
ture on this continuum. The condition of no Thurston obstruction guarantees that
we can glue those complex structures together to get a global complex structure
on the sphere S2. In §4 and §5, we will explore this in more details.

The pullback partition also reveals the topological structure of the Julia set of
a geometrically finite rational map. A Julia component K of a rational map f is a
connected component of the Julia set of f which contains more than one points. A
Julia component K is eventually periodic if there exist £ > 0 and p > 0 such that
FEP(K) = f5(K) and periodic if k = 0, and wandering if f*(K)N f™(K) = 0 for
all n £ m. In §6, we prove the following result.

Theorem C. For a geometrically finite rational map f, every wandering Julia
component of f is a simple closed curve.

Combining the result in [TY], we have

Corollary. Every Julia component of a geometrically finite rational map is locally
connected.

Acknowledgement. In the paper, Theorem B is the motivation, Theorem A is the
main result, and Theorem C is a consequence of the method. Theorem B is first
appeared in the paper [CY] of Cui and Yin. The proof here is simpler. Theorem
C is first announced and proved later in [PT] by Pilgrim and Tan for hyperbolic
rational maps with disconnected Julia set. The method in the paper gives an
independent proof. The first author (Cui) would like to thank Yin for suggesting
a problem which leads to Theorem B and for allowing us to have the statement of
Theorem B in the paper. The first and second authors (Cui and Jiang) would like
to thank Tan for suggestive conversations and Pilgrim for comments and for both
of them to allow us to include their statement in Theorem C in this paper. There is
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another relavent study by Epstein in [Ep] and by Epstein-Keen-Tresser [EKT] on
dynamics of finite type complex analytic maps, in which many interesting results
on the dynamics of a complex analytic map at its parabolic periodic points are
obtained. The first anthor (Cui) also would like to thank the Einstein Chair of
Sciences in the Graduate Center of CUNY for its support and hospitality during
his visit. The second author (Jiang) also would like to thank The Nonlinear Centre
at The University of Cambridge for its support and hospitality during his visit.

§2. QQUASICONFORMAL CONJUGACY BETWEEN
GOEMETRICALLY FINITE RATIONAL MAPS

Let f be a rational map of C. Denote by F(f), J(f) the Fatou and Julia sets of
f respectively. Suppose that zg is a fixed point of f and A = f/(zp) is the multiplier
of f at zg. We call zg a super-attracting, attracting, repelling, rationally neutral
(also call parabolic), or irrationally neutral fixed point of f if A =0, 0 < [A] < 1,
Al > 1, [A] = 1 and A? = 1 for some integer ¢ > 1, or [A| = 1 but A? is never 1
for all integers ¢ > 1. We first list some classical linearization theorems. One can
refer to some standard book for their proofs (e.g., [CG], {Bl], and [Mi]).

Koenigs Theorem. If zy is an attracting or repelling fized point of f, then there
is a neighbourhood D of zy and a conformal map h: D — A, = {2 € C, |z| < r}
such that h(zg) = 0 and hfh~1(z) = Az.

Boettcher Theorem. If zy is a super-attracting fized point of f, then there is
a neighbourhood D of 2y and a conformal map h : D — A, (r < 1) such that
h(zg) = 0 and hfh~1(z) = 2%, where d = deg,_ f > 1.

Note that the domain D in each of the above two theorems is contained in the
Fatou set F(f). We call D a linearization disk at zp. We now list a theorem about
a parabolic fixed point (we also call it a linearization theorem).

Fatou Flower Theorem. If zy is a parabolic fized point of f such that A =1 for
some integer ¢ > 1 and A™ # 1 for oll 0 < m < q. Then there is an integer k > 0
and kq analytic curves which pairwise tangent af zg and which bounded petals V;
(1 < i< kq) such that f is injective on V = UrL V;, F(V) C VU {2} and f™(2)

converges to zy as n — oo uniformly for z in any compact set i V.

We say Vi an aitractive petal of f at zp and V an attractive flower of f at z.
For each attractive petal V;, f9(V;) € V; U {z0}. So Vi C F(f) and there is a
conformal map k from V; into C such that hfh~1(z) = 2z + 1. For this reason, we
also call V; a linearization disk of F(f).

When considering f~' on a neighborhood of zy, we see that there are also kg
analytic curves which are pairwise tangent at zp and which bounded petals V/

1 < ¢ < kq) such that f is injective on V' = UM v, F(VY U {2} D V7 and f9
=1"1
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is holomorphically conjugated to z — z + 1 on each V. We call V an ezpansive
petal of f at zg and V' an ezxpansive flower of f at zp. Furthermore, there are 2kq
analytic curves which are pairwise tangent at zp and which bounded petals V' at
zo such that f is injective on V" = UZV, (V") = V" and f7 is holomorphically
conjugated to z — z + 1 on each V. We call V" a parabolic petal of f at 2y and
V' a parabolic flower of f at zp (see Fig. 1).

It is clear that the union of any attractive flower and any expansive flower forms
a neighborhood of 2y and every attractive (or expansive) petal must intersect with
two parabolic petals (see Fig. 1).

Fig. 1: Topological structude around a parabolic point with three attracting
petals.

For a point z in €, let w(z) mean set of all accumulation points of the forward
orbit {f™(2)}%2.; of z. From the above discussion, if zp is a parabolic fixed point
of f and if w(z) = z for z € C, then either f*(z) = z for some integer n > 0
or there is an integer N > 0 such that f”(z) € V for all n > N since VUV’ is a
neighborhood about zp.

In the literature, the geometrical finiteness of a rational map is usually defined
as J(f)NP(f) is finite. The next proposition shows that our definition is equivalent
to the usual definition for rational maps. To do this, we first introduce a theorem
of Mafié [Ma].

A critical point ¢ of f is called recurrent if ¢ € w(c). A compact forward
invariant set A C J(f) is called expanding if there exist constants C' > G and A > 1

such that {(f*){(z)| > CA® forallz€ A and n > 1.

Mafé’s Theorem. Let f be a rational map and A C J(f) a compact forward
invariant set containing neither critical points nor parabolic periodic points from
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f. Then either A is expanding or AN w(c) # O for some recurrent critical point ¢
of f.

Proposition 2.1. If g is a geometrically finite rational map, then J(f)NP(f) is
finite.

Proof. We only need to prove that each critical point in the Julia set J(f) is
eventually periodic. First, if ¢ € w(c) is a recurrent critical point in J(f), then
¢ is periodic since each accumulation point of P(f) is periodic. But this can not
happen, so there is no recurrent critical point in J(f). By Mané’s Theorem and
‘this argument, every periodic point in J{f) is either repelling or parabolic. If
c € J(f) is a critical point, then there exists p > 1 such that f"P(¢) converges to
a periodic point a € J(f) as n goes to co. By the linearization theorems above, ¢
has to be eventually pertodic. U

Before the proof of theorem B, we give two lemmas about local quasiconformal
conjugacies. The next lemma appeared in [Sul] and we provide a proof here for
the completeness. For a rational map f, denote

QY= FP).

n>0

Lemma 2.2. Suppose ¢ is a topological conjugacy between rational maps f and
g, and W is an attracting, super-attracting or parabolic fired Fatou domain of f.
Then there is an isotopy on W rel W N Q(f)

d: IxW (W), I=[01],

such that ®{t,}f = g®(t,-) for alit € I, ®(0,-) = dplw and B(1,-) is quasiconfor-
mal.

Proof. If W is an attracting or parabolic fixed Fatou domain of f. Define an
equivalent relation on W — Q(f) by 21 ~ 2z if there exist ny,ny > 0 such that
f™(z1) = f™(2z5). With the induced complex structure, the quotient space
By(W) = (W — Q(f))/ ~ is a torus with finitely many but at least one punc-
tures when W is attracting or the sphere with finitely many but at least three
punctures when W is parabolic. _

The conjugacy ¢ induces a homeomorphism ¢ : R¢{(W) — Ry(¢(W)). Since
there are only finitely many punctures for R;{W), there is an isotopy $: I x
Rf(W) — Rg(¢(W)) such that $(0,-) = ¢ and ®(1,-) is quasiconformal. Let @
be the lift of ® so that ®(0,-) = ¢, then it satisfies the conditions in the lemma.

Now let us consider a super-attracting fixed Fatou domain W of f. Define an
equivalent relation on W by 2z, ~ z» if there exist ni,na > 0 such that f*(z) =
f™(22). The closures of equivalent classes give a singular foliation on W. The
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singularities of this foliation occur at all the critical points and their preimages in

Ww.
Let D C W be a linearization disk of f. Then 0D is a leaf. Suppose Ly, , Ly,

are all the leaves in D — f{D) which intersect with Q(f). Denote by 4; (0 < i < n)
the components of D — f(D) —U?_,L;. They are annuli. For each i, The annuli
A; and ¢(A;) can be realized as the strip By = {z: 0 < §z < r} and By = {z:
0 < Sz < R} factored by < z— z+ 1 >, respectively. Let ¢(z) = u(z) + iv(z) be

a lift of ¢. Then ¢(z + ) = ¢(2) + z for all € R. Define

{ u(t, y) = uly)(1 — ) +thy/r
vt y) = v(y)(1 — 1) + {w(0) + [u(ir) — v(0)]y/r}.

Then ®(t, 2 + iy) = u(t,y) + iv(t,y) + = is an isotopy from B; to By modulo the
boundary and @(1, -} is quasiconformal.

Let ® be the projection of ®. define ® on other annulus as above and define ®
on W so that ®(¢,-)f = g®(¢,-) for all t. It is easy to verify that @ satisfies the
conditions of the lemima. O :

Lemma 2.3. Suppose V' is an atlractive flower of a rational map f at a parabslic
fixed point 2y, ¢ is a local quasiconformal conjugacy between rational maps [ and
g defined on the parabolic periodic Fatou domains W of f associated to zp. Then
for any € > 0, there is o domain G OV and a quasiconformal map ¢ defined on
G such that oy = ¢|ly and K(p) < K(¢) + ¢, where K(-) means the mazimal
dilatation of a map on its definition domain.

Proof. We only give the proof for the case that V' contains only one petal. In
general, the proof is similar. Let V; and V{’ be an expansive petal and a parabolic
flower of f at zp, respectively. Define an equivalent relation on Vji by 21 ~ 29 if
there exist ni,ns > 0 such that f™(z1) = f™2(22). With the induced complex
structures, the quotient space V;/ ~= C — {0}. Denote by m; : V; — C — {0} the
projection. Then m¢(Vy' N V;) is the union of two Jordan domains around 0 and
the infinity whose closures are disjoint.

Note that V' < W. So ¢(V{') is a parabolic flower of g at ¢(z0). Let Vj be
an expansive petal of ¢ at ¢(2p). Using the same discussion, we have a projection
Ty V, — C— {0}

The local quasiconformal conjugacy ¢ induces a quasiconformal map é from
mr(ViNV;) into C—{0}. Tt is clear that é can be extended to be a homeomorphism
7 from C — {0} to itself, such that there is a local homeomorphism 1 defined on
a smaller expansive petal U} of f at zp such that T,Zlﬂ'f = my1p and ¢|U}HV)£’ =
qzb]U}nvfn. Furthermore, by Lemma A.3 (see Appendix), for any ¢ > 0, We can

pick a quasiconformal homeomorphism ¢ such that ¢ = Q,DH on some smaller Jordan
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domains A U B around 0 and the infinity and K () < K(#) + ¢, where A U B are
the projection of the intersection of some smaller expansive petal and parabolic
petal of f at z under 7y.

Denote by U} the parabolic flower of f at zp generated by 7 (AU B). Then
there is a smaller expansive petal (we still denote it by UJ’,) of f at zp and a local
quasiconformal map ¢ defined on U} such that U;N f V) CUNUY, ¢mp = mgp
and <P|U}nU;; = ¢|U}QU}I. Define ¢lf-1(vy = @|s-1(v). The 9 is well-defined and
this completes the proof. O

Theorem B. Let ¢ be a topological conjugacy between two geometrically finite
rational maps f and g whose post-critical sets are infinite. Then there is a qua-
siconformal conjugacy between f and g isotopic to ¢ rel P(f). Moreover, if ¢ is
holomorphic on the Fatou set, then it is a holomorphic conjugacy.

Proof. From Sullivan’s Classification Theorem and the fact that the boundaries of
Siegel disks and Herman rings are contained in the closure of the post-critical set,
we see that there are only three kinds of periodic Fatou domains for f: attracting,
super-attracting and parabolic. Note that F(f) # 0.

Take a linearization disk in every periodic Fatou domain and denote by U their
union. Then C — U is connected, U is contained in the union of f~1(U) with the
set of parabolic periodic points and P{f) — U is a finite set. Let @ be the local
isotopy constructed in Lemma 2.2 and denote ¢g = ®(1,-). By Lemma 2.3, there
is a global isotopy (¢, z) rel P(f), ¥(t,z) : I x € — C, such that ¥(0,-) = ¢,
1 == W(l1,-) is quasiconformal and ¥(¢, )|y = ®(¢,-)|y for all £ € 1. Furthermore
we let ¥ip 7.p ) be extremal quasiconformal modulo the boundary.

Let ¥, be the lift of ¥ so that ¥1(0, ) = ¢. Then ¥ (¢, )|z = ®(¢,-)|v for all
t € I and K(y1) = K(v), where 91 = ¥1(1,-). We claim that K(¢) = K{(¢o).
Otherwise, by Theorem A.l (see Appendix) and Lemma 2.3, ¥|s_g_ Py 18 a
Teichmiiller map and hence unique extremal. But ¢1|r-vpy—v # Yl @)-v
since ¢y |f-1ry = dols-1(ry- It is a contradiction.

Inductively, let ¥, be the lift of ¥,,_1 so that ¥(0, )} = ¢. Then V,, (£, )| f=ntry () =
g’n—l(t; ')If—n+1(U), 'l/)n = \I’n(l, ) is quasiconformal and K('t,bn) = K(¢50) So {’{bﬂ}
is a normal family. It is easy to check that ), converges to a quasiconformal map
o of C, ¢f = gy and ¢ is isotopic to ¢ rel P(f).

If ¢ is holomorphic on F(f), let ®(t,z) = ¢(z) on U, then K(py) = 1. So
K(p) =1 and » = ¢ is a Mdbius transformation, O]

§3. COMBINATORIAL LINEARIZATION FOR
GEOMETRICALLY FINITE BRANCHED COVERING MAPS

Suppose that f: S — $? is a geometrically finite branched covering map and
that a is an accumulation point of P(f). Then a is a periodic point of f of period
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p>1. Wesay T' = {7,}5%, is a curve family nested al a if v, C 5% — P_(Jrj-
are pairwise disjoint simple closed curves and y,41 separates v, from a. It is
f-tnvarient if there is a component of f™P(y,,1) isotopic to v, rel P(f) for all
n > 0, and shrinking if for any neighborhood U of a, there is N > 0 and a simple
closed curve 8 C U — P(f) such that g is isotopic to v rel P{f).

Proposition 3.1. Suppose that a is an accumulation point of P(f) with period
p>1 anddeg, f°P = 1. Then f is combinatorially linearizable at a if and only if
there is a shrinking f-invariant curve family nested at a.

Proof. Suppose f is combinatorially linearizable at a, le., there exist homeo-
morphisms ¢, : 82 — € such that ¢(a) = 0, ¢ is isotopic to 1 rel P(f) and
g(2) = ¢fPY~1(2) = Az for some 0 < A < 1 on a neighborhood U of the origin.

Forany 0 < r < 1,let A, = {z € G|z| < r} and C, = JA,. There is a
0 < r < 1 such that A, C U, such that ¢"(C,) N ¢(P(f)) = @ for all » > 0.
Denote v, = ¢~ 1g™(C,.), then {~,} is a shrinking f-invariant curve family nested
at a.

Conversely, we may choose an f-invariant curve family {v,} nested at a such
that v, converges to @ as n — o0o. Let A, be the annulus enclosed by v, and
Yn+1 and let P, = P(f) n A,. So there exists an integer N > 1 such that the
component D,(vx) of 2 — vx containing a contains no critical value of f? and
such that B, = fP(*=N)(Py) for alln > N. We assume N = 1 for the conveniency.

Since Dy(v1) containg no critical value of fP, fP(D,(v)) is also simply-
connected where f, P denotes the inverse branch along a. Let G,_1 = f;F(y,)
for every n > 0, then S8, is isotopic to v, rel P(f) and 3, converges to a as
n — 00. So there exists a homeomorphism 8 of S* such that @ is isotopic to the
identity rel P(f) and 8(v,) = Bn, i.e., fPO{(y,) = Y1 for all n > 0.

Let 0 < » < 1 be a real number and g(z) = Az for some 0 < A < 1. Let
B ={z € Cg(r) < |z| £ r}. There is a a homeomorphism ¢, from A; to B
such that ¢1 fP8 = g¢1 on v,. Inductively, let ¢, be the homeomorphism from A,
to g""1(B) such that ¢,(fPE)"~! = g"~1¢;. Finally, let ¢ be a homeomorphism
from S? to C such that ¢ = ¢, on A, for all n > 1. Then ¢fPAp~'(z) = g(z) on
JAV

Suppose f is a geometrically finite rational map. If ¢ is an attractive periodic
point, Koenigs Theoreni implies that it is combinatorial linearizable. If ¢ is super-
attractive, Boettcher Theorem implies that it is combinatorial linearizable. Sup-
pose a is a parabolic periodic point of f with period p > 1, V is an attractive flower
of fP at a. Let v, € C — P(f) be a simple closed curve such that one component
D(y1) of C—~1 contains fP(V) and such that D(y)nP(f) = fP(V)NP(f). Induc-
tively, let v, C D(yn_1)—P(f) be a simple closed curve such that D(vy,) > frP{V)
and D(v,) N P(f) = fA2(VYn P(f) for all n > 2. Then {v,} is a shrinking f-
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invariant curve family nested at a. So f is combinatoriaily linearizable at a. This
shows that

Proposition 3.2. If a geometrically finite branched covering map of S is com-
binatorially equivalent to a rational map, then it is combinatorially hinearizable.

The following lemmas give some conditions about combinatorially linearizable
for a geometrically finite branched covering maps.

. Lemma 3.3. Suppose that [ is a geometrically finite branched covering map of
'S?, that a is an accumulation fired point of P(f), and that deg, f = 1. If f is
combinatorially linearizable at a, then there is a neighborhood V' of a such that
any f-invariant curve family on V is shrinking.

Proof. Since f is combinatorially linearizable at a and deg, f = 1, there exist
homeomorphisms ¢, v : $2 — € such that ¢(a) = 0, ¢ is isotopic to 9 rel P(f)
and ¢f1~1(z) = g(2) on a neighborhood U of a, where g(z) = Az for some
0< A<,

Let 0 < 7 < 1 be a constant such that A, = {z € C;|z| < r} C U and such that
PP NEA, =0 and ¥(P(f)) N An = g™ (¥ (P(f)) N Ap) for all n > 0, where

An ={z€C: g™ (r) < |z] < g"(r)}
Then for any simple closed curves ay, oz in A, — P{P(f)), if a1 is isotopic to ay
rel ¥(P(f)), then g(ay) is isotopic to g(aq) rel ¢(P{f)).

Denote V = ¢_1(Ag(r))-. For any f-invariant curve family {v,} in V, 8, =
G(¥n) € Ayey and g7 {(Bat1) N A, is isotopic to B, rel Y(P(f)). Thus Buyy is
isotopic to g(8y,) rel ¥ (P(f)). Hence it is also isotopic to g™(81) rel ¥(P(f)) for
all n > 1. But we know that g™(81) converges to the origin as n — oo and that
Yn+1 18 isotopic to ¥~ 1g™(B1) rel P(f). So {vyn} is shrinking. O .

Lemma 3.4. Suppose that [ is a geometrically finite branched covering map of
S? and that a is an accumulation point of P(f). Suppose f(a) = a and deg, f = 1.
If there is only one forward orbit of critical points converging to a, then there i3 at
most one shrinking f-invartant curve family nested at a up to isotopies rel P(f),
i.e., if {vn} and {8} are shrinking f-invariant curve families nested af a, then
there exist k € Z and N > 1 such that vy, % 18 isotopic to 3, rel P(f) for all
n> N.

Proof. Consider the Riemann surface B = C — {0,1,2%1,-..} and let g(z) = z/2
be a conformal map from R to itself. If ¢, § are simple closed geodesics on [t under
Poincaré metric such that ¢™{a)Na =0 and g"(§)Nd = 0 for all n € Z. We claim
that there is k € Z such that gF(a) = §. This observation implies the lemma.
(Compare this lemma with the example (2) in [p.35, Mc2].)
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Now we prove the claim. Let A be the annulus enclosed by « and g(«). Then
ANUpezg™(6) has finitely many disjoint pairwise arcs. If ANUpezg™(0) contains a
whole curve ¢g%(§), then g*(8) is isotopic to either o or g(a). So g*+™(8) is isotopic
to either g"(a) or g" (o) for all n € Z. Otherwise, suppose A NU,czg™(5) dose
not contain any whole curve g*(4). One of the arcs in AMU,ezg™(5) must connect
two points in « and another must connect two points in g{«). Since there is only
one puncture in A, there exists an arc homotopic to a segment of either a or g(a)
modulo the end points. But they are all geodesics. It is a contradiction. O

The following counterexample is one of the main motivations of this paper.

Proposition 3.5. There is a geometrically finite branched covering map which is
not combinatorially linearizable and there is no Thurston obstruction for it.

Proof. Let Q(z) = Az + 2%, 0 < |A] < 1. The origin is the bounded attracting
fixed point of @, zg = —A/2 is the bounded critical point of @ and P = {z, =
Q" (z0) }n>1 converges to the origin as n — co. There is a domain D € C and a
conformal map ¢ : D -» A, such that P C D, ¢(0) = 0 and ¢Qu~'(z) = Az on
A,. Let ag € D — P be a simple closed curve such that one component D(ayg) of
C— oy contains P and @ () C D(ap). Since Q is injective on D, oy, = Q™(ay) for
all n > 0 form an @-invariant curve family nested at the origin and «,, converges
to the origin as n — cc.

We can construct a branched covering map f of C of degree 2 such that f = @
“on (@ — D{ap)) U P U U qaz, and such that f(asner) satisfying the following
condition (see Fig. 2):

(%) There exist paths &, C D(f(asns1)) and 6,41 C D(a2n42) which have
common endpoints 2o,.4.3 and Zopn..4, such that 8,416, runs around ze,42
twice, where 6,410, means the closed path going through 4, and d,+1.

Obviously, P(f) = PU{co} and f({aan41) is not isotopic to ovanis rel P. Denote
Y = gn and Y2y = aopyr1 (0 > 0), then I'™ = {2}, f(v) = ¥11,---} isan
f-invariant curve family nested at the origin for all n» > 0.

Since f(y™ +1) 1s not isotopic to '72'3:11 rel P, each curve in I'™ is not isotopic to
any curve in T»*+1. If T'V is shrinking for some NV, so is I'V+1 since vy | separates
¥ and the origin. By Lemma 3.4, T™ is not shrinking for all n > 0. Because
4% converges to the origin, f is not combinatorially linearizable at the origin by
Lemma 3.3.

Note that D{+{) > D(vi) 2 {z3,24,---}, thus f7HDH])) D {22, 23, - };
where f~1 is the inverse branch along the origin. From (x), f~2(D(v{)) D P
since z1 is a critical value of degree 2. By induction, since D(v7,{) D D(v2{1) D
{Zan+3, Zontas -}, FE(DOR) = YD (v541)) D Pand [ H D)) D
P —{z}. By (x), 2 2(D(vpi)) = F > *(D(mia)) D P
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For any multicurve T, since ¥? converges to zero asn — 00, there is N > 0
such that 8N D(yN) = 0 for all B € T, where D(v¥) is the bounded component of
C—4N. But f~2V(D(yN)) contains P. Thus each component of f =V () is either
non-essential or peripheral. Denote by A(L') the transition matrix determined by
I. That means A(I')2Y = 0. Hence its spectral radius A(I') = 0. So I' is not a
Thurton obstruction. U

Remark. Let § be a simple closed curve in the annulus between ag and @y which
encloses z; and 22, 77 be the simple Dehn twist along 4, T5,41 be the simple
Dehn twist along Q2"(5) so that Th,+1Q%" = Q?"Ty. Then f, = QT2T5---T5,_1
converges to a geometrically finite branched covering map. It is just the above
constructed map f.

§4. PULLBACK PARTITIONS OF A GEOMETRICALLY
FINITE BRANCHED COVERING MAP

Let f be a branched covering map of S%. A connected set F is called inessential
(essential) if there is (not) a simply-connected domain D D E such that DNP(f) =
. An essential set E C S? is called semi-essential (strictly-essential) if there is
(not) an annulus A D E such that AN P(f) = 0, peripheral around e € P(f) if
there is a simply-connected domain D D E such that D 0 P(f) = {a}.
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Two sets Ep, By C S? are called parallel (denote by E; ~ Es) if there exist
continuous maps ¢; : 2 — S? (i = 1,2) such that ¢ *(z) = z for every x € P(Jf),
®i]s2-p(f) s homotopic to the identity, ¢1(E}) C Fy and ¢2(E,) C .

The following is easy to verify. If two connected sets Eq, By C S? are parallel
and F is inessential (semi-essential, strictly-essential, peripheral), then so is Fy.
Since f(P(f)) C P(f), E1 ~ Ey implies f~'(E1) ~ f~'(F2). (This says that
pullback will not destroy the parallel property of two sets.) Every component of the
preimage of an inessential set.is also inessential. Each component of the preimage
of a semi-essential set is either inessential or semi-essential, each component of the
preimage of a peripheral set is either inessential or peripheral. (This says that
pullback will make the property of a set better.) o

A non-trivial open set /' C §? is called tame if there is a branched covering
map f of §% and a Jordan domain D C 82 such that U = f~1(D). From the
definition, if U is a tame open set, then the interior In{S? — U) of S? — U is tame
and the boundary of the interior In(S? — U) is 8U; if ¢ is a branched covering
map, then g~1(U) is also tame. The next lemma is easy to prove:

Lemma 4.1. Let U be a tame open set. Then the boundary 3U of U can be

uniquely decomposed as the union of simple closed curves vy, -+ , v, such that:
(i) For any v; (1 < i < n), there is a unique component D of U so that
¥ C 0D,
{#7) vi Ny is either empty or finite for all1 <i < j < n.
We call v1,- -+ ,vn the boundary curves of U.

Suppose U is a tame open set and H = S% — U{. We call (U, H) a pullback
partition for f if each essential component of U, f~1(U), H and f~1(H)) is parallel
to a component of f~1(I4), U, f~Y(H) and H, respectively. Denote U™ = f~™(Uf)
and H™ = f~"(H) for any n > 0. It is clear that (U™, H") is also a pullback
partition for f.

Proposition 4.2. Suppose f is a geometrically finite rational map whose post-
crifical set is infinite. Then there is a pullback partition (U, H) for f such that:
(1) U C f~HU)UN, where N is a finite set, f(N) C N and there is n > 0
such that f*(N) is the set of all the parabolic periodic points, and
(2) Uiz [ (U) = F(f).

Proof. Since F(f) # 0, take a linearization disk in each periodic Fatou domain and

denote by U their union so that the boundary of U meets P(f) only at parabolic
periodic points. We claim that there is N > 0 such that (L{ = fYU),H =
S§? . Z/[) forms a pullback partition for f. Obviously, U is tame and both (1) and
(2) holds.

First note that f~=1(U} > f~(U) and P(f)N(C— f™(U)) is a finite set for

all n > 0. Second there is a finite set NV C P(f) such that any boundary curve
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does not meet P(f) — N and there is a constant M > 0 such that there are at
most M boundary curves of f~"(U) meet one point in A for all n > 0. Third,
for any two boundary curves «, 8 of f~"(U) and f~™(U) respectively, there is a
component of C — a contained in a component, of C-3

Combine these facts, there is a constant Ny > 0 such that any boundary curve
of f~™(U) is isotopic to a boundary curve of f=™(U) rel P(f) for all n,m > Ny.
Since each semi-essential domain is parallel to a simple closed curve in C - P(f),
every semi-essential component of f~"(U) is parallel to a component of f~™(U)
for all n, m > Ny. ‘ _

For any strictly-essential component V' of f~"(U), there is a component W of
F7"1(U) containing ¥V and hence is strictly-essential. When n > Ny, W con-
tains no other strictly-essential component of f~™(U). So the number of strictly-
essential components of f~™(U) increases for n > Npy. But this number is bounded,
thus there is Ny > Ny such that for all n > Vq, each strictly-essential component
of f~"~1(U) contains a strictly-essential component of f~"(U/) and hence they are
parallel.

It is easy to verify that for n,m > Ni, each component of C— f —™(U) is parallel
to a component of C— f~™(U). Denote Y = f~M(U) and H = C - U. So (U, 1)
forms a pullback partition for f. [J

Remark. One may verify that if (', ') is another pullback partition of f satis-
fying (1) and (2) in the proposition, then each essential component of L', H' is
parallel to a component of Zf and H, respectively.

Proposition 4.3. Suppose f is a geometrically finite branched covering map and
P(f) is an infinite set. If f is combinatorially linearizable, then there are a
branched covering map g from C to itself which is combinatorially equivalent to f
and a pullback partition (U, H) for g such that

1) UC g,

2) Plg)NH is a finile set,

3) g is holomorphic on g~ (U),

4) If a component V of U satisfies g~ %(V) DV for some k > 1, then VN P(g)

s infinite.

Proof. Since f is combinatorially linearizable, there is a branched covering map
g from C to itself which is combinatorially equivalent to f such that for each
accumulation point a; of P(g), there is a Jordan domain D; 3 a; such that whose
closures are disjoint pairwise, U < ¢~ 1(U) (where U/ = UD;), the boundary of U
does not meet _ﬁ@ and g is holomorphic on U.

Following the discussion above, there is an integer N > 0 such that (L[ =

g N, H=C-U ) forms a pullback partition for g. Obviously, 1) and 2} hold.
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Pulling back the complex structure to g~ (i) = g~V ~1(U). Then g is holomorphic
-1
on g~ HU).
For any component V of U, gV (V) is a component D; of U. If g7*(V) D V,
let 7 > 0 be an integer so that ik > N, then ¢**(V) = ¢*¥(D;) C V. Thus V
contains an accurnulation point of P(g). [

Proposition 4.4. Suppose g is a branched covering map of C and (U, H) is a
pullback partition of g satisfying the conditions of Proposition 4.3. Let U™ =
g " (U) and H™ = g~ ™(H) for all the integer n > 0. If there are homeomorphisms
& and o of C such that ¢ is isotopic to ¥ rel P(g), w(H?) is contained in the
interior In(¢p(H)) of ¢(H') and ¢gup~" is holomorphic on In(1p(H?)), then g is
combinatorially equivalent to a rational map.

Proof. Since (H?) C In(¢(H1)), we may assume ¢ln = by and O (H?) is the
union of quasicircles. By Koebe Theorem (refer to [BB]), there is a one-to-one
map @ : C — C such that:

{a) ¢ is conformal on In{@#(#H')) and continuous on the boundary,

(b) w@(dH')} is the union of round circles {a round circle is the image of the

unit circle under a Mobius transformation), and

(c) w¢ is conformal on 4 and for any component V of U, p¢(8V) = dpe(V).
Let ¢, 11 be homeomorphisms of € such that ¢1 is isotopic to ¥ rel P(g), ¢1 = o
on U UH! and vy = ¢y on U U H2. Then g1 = ¢1g¥] " is holomorphic on
S (U U H?)). Particularly, we may modify 11 on the complement of U* U H?
such that ¢, is quasiregular (a quasiconformal map composed with a holomorphic
function).

Note that every grand orbit of g1 goes through the complement of 9 (/! U H?)
only one times. Pulling back the corplex structure, we get a quasiconformal map
which conjugates g1 to a rational map. ]

Remark. Note the rational maps obtained in this proposition are sub-hyperbolic.
A natural problem is finding all the topological conjugate classes with given com-
binatorics.

§5. HOLOMORPHIC EMBEDDING

Let g be a branched covering map of € and (14!, H1) be a corresponding pullback
partition of g satisfying the conditions of Proposition 4.3. Let U™ = g~"(U*) and
H™ = g~(H!) for n > 1. Suppose there is no Thurston obstruction for g, we will
prove that ¢ with (', H!) and (U2, H?) satisfies the assumption of Proposition
4.4. Theorem A follows.

For any connected set £ ¢ S2%, define the enclosure Encl(E) of E the union of
E and the inessential components of its complement. Denote by H the union of
enclosures of essential components of H!, H? the union of essential components
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of g™ YHL). Then HIF! ¢ S(HP), g(HZH!) C H} and each component of HJ
is parallel to a component of H™ for any n,m > 1, where 3(-) means the interior.
Note that if a component H of H1 is semi-essential, then its enclosure is an annulus,
if H is strictly-essential, each boundary curve of it is essential and no two parallel,
if H is strictly-essential and peripheral, then its enclosure is simply-connected and
intersects with P{g) on a point.

Proposition 5.1. Suppose H! is the disjoint union of domains Hl,---  HL If
there exist embeddings ¢; : H} — C and homeomorphisms 8; : H} — H} for all
1 < i < t such that 6; is isotopic to the identity rel H} 1 P(g) and ¢;g(¢;6;)™"
is holomorphic whenever it is defined, then g with (U*, H') and (U?, H?*) satisfies
the assumption of Proposition {.4. In particular, if H; is empty, then g always
satisfies the assumption of Proposition 4.4.

Proof. First note that there is a homeomorphism ¢ of C so that ¢, b 1 is holomor-
phic on In(¢e(H})) for all i. Thus dog(poef;) ! is holomorphic on In(¢e8;(H;NHZ))
for all z.

Since §; is isotopic to the identity, there is a homeomorphism g of C so that
1y = ¢of; on H} and g is isotopic to ¢ rel Pg). So dogig ! is holomorphic on
In(#H2).

From the definition of 2, there is a homeomorphism ¢ of H1 which is isotopic
to the identity rel H2 N P(g) such that Tn{5(H NHL)) D 6;(H> NHL) for all 4,

By Pullback argument, there is a homeomorphism ¢ of ‘H? which is isotopic to
the identity rel #2 N P(g), such that §g¢~! = g on H2. Extend § and ¢ to global
homeomorphisms so that they are isotopic the identity rel P(g). Then

$ob9¢ ™ 5t = dogig "
is holomorphic on In(#?) and
In(god(#' NH,)) D $oC(H* NHL).

Since every component of H' — H. is inessential, we can modify ¢o and vy in
C—H1 so that ¢edgC 245 is holomorphic on In(#?) and In(¢od(H!)) > ol (H?).
[

The following lemmas will be used in the sequel.

Lemma 5.2. Let v be a peripheral boundary curve of HL around a fized point
a € P(g) and let § be the component of g~'(y) which parallel to ~y. Then &
separates v and a. Moreover, & and v are contained in either different component
of HL or a peripheral and strictly-essential component of HL.

Proof. Note that a € HL. By (4) of Proposition 4.3, if V' is a component of
U" peripheral around a, then there is only one component of g~ '(V) peripheral
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around a, which separates V and a. So if 8 is a boundary curve of M| peripheral
around «a, then there is only one component of g~1(3) peripheral around a and
which separates 3 and a. Now the lemma follows. O

Lemma 5.3. Let h be a critically finite branched covering map of S2. Suppose
the signature of Oy is not (2,2,2,2), P D P(h) is a finite sel and h(P) C P.
If for any multicurve T on S% — P, AT) < 1, then there exist homeomorphisms
b, 5% = C such that ¢ is isotopic to 3 rel P and ¢gv™" is a rational map.

Here we use the isotopy rel P instead of P(h) when we say multicurves and their
transition matrices. One may verify this lemma following the proof of Thurston’s
theorem (refer to [DH]). Now we begin to prove Theorem A.

Proof of Theorem A. Step 1. Let H},---, H} (s <t) be all the non-peripheral and
strictly-essential components of H1. Then for every 1 < 4 < s and n > 2, there
is only one component of H?, denote by HJ, parallel to H} and H? C Tn(H}).
So for each 4, there is & > 0 and p > 1 such that gF(HFTPTY = Hj’“ and
gP(H™) = H].

Suppose g(HZ) = HL, (1 <i < r) and g(H?) = H}, then g"(H]™) = H}.
For each boundary curve v' of H{, denote by ¥" the boundary curve of HT
parallel to v!, there are k > 0 and p > 1 such that g®"(y¥"+Pr+1) = oP"+1 and
gP"(aP™t1) = !, where a! is a boundary curve of Hi. By Lemma 5.2, o' is
non-peripheral and hence deg(g?” : a?™t! — @'} > 1 since there is no Thurston
obstruction for g. So deg(g’"|H;~+1) > 1.

For each H}, 1 < i < s, choose a point in each component of C— H} and denote
by P; the union of P(g)N H} with these points. If g{H?) = H}, there is a branched

covering map (or a homeomorphism) h; from. C to itself such that h;| 2 = 9lm2,
deg(h;) = deg(g|gz), hi(P;) C P; and such that there is at most one critical point

in each component of C — H? whose image is contained in P;.

By this extension, A = A, - - - hohy is a critically finite branched covering map,
deg(h) > 1, P{(h} C P, and A(P1) ¢ P;. Note that the signature of Oy, is not
(2,2,2,2). By the choice of P, for any multicurve I' on C~ P, each v €T is
isotopic to a curve 3 € ¢ — P, rel P;. So the transition matrices of ' under A
and g are equal and hence its spectral radius is less than 1. By Lemma 5.3; there
exist homeomorphisms &, ¥ : ¢ — € such that ® is isotopic to ¥ rel P, and
AT~ = R is a rational map.

There is a homeomorphism ®, from C to itself such that &k, ;' = R, is
holomorphic. Inductively, there are homeomorphisms ®; (1 < i < r) from C to
itself such that ®;.4 hz-tﬁi"l = R; is holomorphic. In particular, ®2h1\Df1 =R is
holomorphic and R, --- H. Ry = R.

Ifg(H?) =H} (t>j>s,1<14<s3),let &; be a homeomorphism of C to itself
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such that @ihj@j_l = R; is holomorphic. In other words, for every 4, 1 < i < ¢,
we have homeomorphisms ®;, U, : C — C such that ®; is isotopic to ¥; rel P; and
@ihj\IfJ?I = R; is holomorphic when g(H?) = H}.

To avoid confusion, we denote ®;(C) = €; the different copies of C for all
1 <4 <t Note that ©1(P1 — P(g)) C F(R) since each point of them is eventually
superattracting periodic. Because R : C; — € is critically finite, the Fatou
domains meet ®,{P; — P(g)) are simply-connected. We call them marked disks.
For each marked disk W, there is a conformal map ¢ : W — A; such that
@(W N ®1(P))) = 0. The map g is unique up to rotations. We call ¢~ *({z €
Aq, |z} = r}) marked circles of radius r.

If R;(C) = €y, since R;(Q(R;)) C @1(Py), the components of the preimages of
marked disks under Rj_1 which meet ®;(P;) are also simply-connected. We also
call them marked disks. Marked circles of radius r can be defined similarly.

Step 2. Take all the non-peripheral boundary curves of H} for all 1 <7 < s
and take a boundary curve of H J,,-l when it is semi-essential and non-peripheral.
Let I" be the collection of these curves. Define the transition matrix A(T') by the

formula:
1

A”’:Za:deg(graév)

where the sum is taken over all components a of g~'(y) which are isotopic to 6
rel P(g) and contained in the same component of H! with &.

Let IV ¢ I’ be a multicurve such that for any v € I', there is 7' € IV such that
~" is isotopic to v rel P(g). Then for each vy € T,

D Asy = Ajy

drad!

where A’ is the transition matrix of I'. If v = {v,},er is an non-negative eigen-
vector of A corresponding to the eigenvalue A(A), let uy =3 ., vy, then

A u)g: ZA@; 1 Uyt = Z Z Uy Z A(s,y

e fas N o

- Z ZU’YA‘W Z AAYyvs = AM(A)usr.

LIT 2 d~a!

So A(A) is an eigenvalue of A’ and hence A(A) < A(4") < 1.

Lemma 5.4. Let A be a non-negative matriz, A{A) the spectral radius of A. Then
for any € > 0, there is a positive vector v such that Av < (A(A) + €)v.
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The proof of this lemma is easy. Thus there is an vector v = {v, },er such that
vy 7# 0 for any v € I" and
A(A) +1

Take all the boundary curves of H} when it is strictly-essential and non-
peripheral and take a boundary curve of H} when it is semi-essential. Let I'
be the collection of such curves. By Lemma 5.2 and the discussion before this
paragraph, there is a function v : '/ — R, such that

| v(g(a)) _ AMA)+1
(++) Za:deg(g|a)5 5l

(Av)y <

for all v € T, where the sum is taken over the boundary curves of #2 which are
isotopic to 7 rel P(g) and contained in the same component of H. with ~.

Step 8. Now we want to embed H} into C,foralll1 <i<t Ifl1<i<s,
define ¢; : C — C; as a homeomorphism isotopic to ®; rel P; such that ¢;(v) is
a marked curve of radius exp(—v(v)M) for each boundary curve v of H}, where
M > 0 is a constant. If H} is semni-essential, define ¢; : ¢ - C, such that
¢;(H}) is an annulus of modulus v(y)M (we use the definition of modulus as
m({z € C,r < |z| < 1}) = —logr), where 7 is a boundary curve of H}. If H! is
strictly-essential and peripheral, define ¢; : C — C; such that ¢:(H}) = Ay and
¢:(H; N P(g)) = 0.

For 1 <4 < s, H} and Hj = g(H}) are strictly-essential and non-peripheral.
Since ®;h; ¥, ! = R, is holomorphic and $; is isotopic to ®; rel P;, there is
a homeomorphism #; : € — C; isotopic to ¢; rel P, such that bihih; L= R,
is holomorphic. For each boundary curve ! of H}, let v? be the boundary
curve of H2 isotopic to v' rel P;, then ¢(¥?} is a marked circle in ¢, with ra-
dius exp[~v(g(v?)) M/ deg(gly2)].

The other components HZ of H2 contained in H;' are semi-essential. Let a, Gk
be the essential boundary curves of H2. If g(HZ) = H} is strictly-essential (then
it must be non-peripheral), there exists a branched covering map hy of C such
that Ax{mz = g H2, deg(hx) = deg(gigz), such that there is at most one critical

point in each component of € — HZ, and such that hi(§2(hy)) C P;. Let ¢ be a
homeomorphism of C such that ¢ hyy, ! is holomorphic, then the modulus m of
W(Encl(HE)) satisfies:

v(glar) M v(g(Be))M

+C
deg(Q'ak) deg(glﬁk)

where C' > 0 is a constant independent of M.
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If g(HZ) = H} is semi-essential, let 1, : H — C be an embedding such that
¢rgpy ' is holomorphic, then the modulus of ¥4 (HY) is v(g(cx)) M/ deg(glgz).

By (+#), when M > 0 is big enough, there exists a homeomorphism #; of
H} isotopic to the identity rel P(g) N H such that ¢;6;|zz = iz and such
that ¢;#;4; " is holomorphic on In(yx(HZ)). Thus ¢ig{¢:f;)~" is holomorphic on
Tn( 363 (FI2)).

If H} is semi-essential, the same argument also guarantees the existence of §;.
If H} is strictly-essential and peripheral, since the modulus of ¢(H; — P(g)) is
infinity, there is no obstruction for the holomorphic embedding.

The maps ¢ and ¢; and 6; for 1 < i < ¢ satisfy Proposition 5.1. We complete
the proof. O

§6. GEOMETRICALLY FINITE JULIA SETS

Suppose f is a geometrically finite rational map whose post-critical set is infi-
nite, (U, H) is a pullback partition for f satisfying the conditions of Proposition
4.1. Then J(f) = N2 H™ where H" = f"(H). ‘

Let K be a Julia component and H"(K) be the component of H™ containing
K. Then K = N, H*(K). In Particular, X C In(H™(K)) for all n > 1 when K
does not meet preimages of parabolic periodic points. If K is inessential (or semi-
essential), then there is N > 0 such that H"(K) is inessential {or semi-essential)
for all n > N. If K is strictly-essential, then H™(K ) is strictly-essential for all
n > 0. Since any component of H™ is parallel to a component of H™ for every
n,m > 0, there are exactly k > 0 strictly-essential components for all H". So
there are exactly &k strictly-essential Julia components.

Lemma 6.1. Let D < C be a simply-connected domain and DNV P(f) = 0. Then
for any domain U compactly contained in D, diam(f7"(U)) = 0 as n — oo
independently of i (where diam denotes spherical diameter and f; ™ denotes the
inverse branches on D).

Proof. For any domain U such that U ¢ D, we have a domain Dy such that U C
Dy and such that Dy N P(f) = @. Since P(f) is infinite and f; (Do) N P{f) =0
for all n > 0 and %, {f; "} is a normal family on Dy. If there is a subsequence
which converges to a non-constant function g, then g(Dp) is a non-empty domain
because a holomorphic map is an open map. We first claim that g{Dp)NJ(f) = 0.
Otherwise, if g(Dy)NJ(f) # 0, there is a domain W compactly contained in g(Dp)
such that W N J(f) # 0, so there is N > 1 such that f™(W) covers C except at
most two points when n > N. But f*(W) C Dy for infinitely many n € N. It
is a contradiction. So g{(Dg) C F(f). However, in this case, for any domain W

compactly contained in g(Dp), f™(W) converges to a periodic orbit in P(f). It
contracts to that Do N P(f) = 0. So any subsequence of {f;""} converges to a
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constant function. This implies that diam(f"(U)) -+ 0 as n — oo independently
of 2. O

Proposition 6.2. Every periodic Julia component of f is essential. All but finitely
many of them are quasicircles.

Proof. If a periodic Julia component is inessential, Lemma 6.1 implies that it has
to consist of one point. This contracts the definition of a Julia component. So
the first statement follows. For the second statement, we need only to prove that
each semi-essential periodic Julia component is a quasicircle since there are only
finitely many strictly-essential Julia components.

Suppose K is a semi-essential periodic Julia component with period p > 1,
then there are N > 0 and k& > 1 such that H™(K) is semi-essential for alln > N
and HN**?(K) ¢ In{HY(K)) since K does not meet the preimages of para-
bolic periodic points. Note that fA?(HN+#r(KY}) = HN+E-1Dk(K). The map
bid aN+re(k) can be extended to be a critically finite branched covering map
h of C such that P(h) consists of two super-attracting fixed points, such that
deg(h) = deg(f*7| an+ke(y); and such that A” is uniformly quasiregular. Then h
is quasiconformally conjugate to the map z — 2¢ for d = deg(h). In particular, K
is quasiconformally mapped to the unit circle. So K is a quasicircle. O

Lemma 6.3. For any Julia component K, there is N > 0 such that f™(K) is
essential for allm > N.

~

We say an inessential continuum E C C is e-inessential if there is simply-
connected domain D D E such that DN P{f) = 0 and the modulus of D Encl{£)
is bigger than e.

Lemma 6.4. There is a constant € > 0 depending only upon f such that if Ky is a
semi-essential Julia component, if for somel > 1 fY{Ky) is also semi-essential but
FHY(Ky) s strictly-essential, and if deg(f!|k,) > 1, then each inessential Julia
component K C Fncl(Ky) is e-inessential.

Proof. First by the pullback partition for f and the proof of Theorem A, there
is a constant integer Iy > 1 such that for any serni-essential Julia component K,
deg(f®|x) > 1. Second f'*1(Ky) is eventually periodic because there are only
finitely many strictly-essential Julia components. Now for Kjp in the lemma, let
m > 0 be the biggest integer such that deg(f#.) =1 and let K| = f™(Kg). There
are only finitely many such K; because deg( }a ™) > 1and fI-™+1(K,) is strictly-
essential, because there are finitely many strictly-essential Julia components, and
because there are finitely many critical points of f.

Let H*(Ky), H*(K1), and H"(f!(K,)) be the components in H™ containing
Ky, K1, f'{Kg) for every n > 0, respectively. There is an integer N > 0 (only
depending on Ki) such that H™(Ky), H"(K;), and H™(f!(Kp)) are all semi-
essential for all n > N.
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Since f'(Kp) is eventnally periodic, it is locally connected (refer to [TY]) and
hence arc-wise connected (refer to [WD], p.75). So there is a simple arc o C
H"(f'(Ky)) only cutting f!(Ko) at one point and connecting the two essential
components of C — H*(f*(Kjy)) for some n = N + 1.

Because deg(fl_mlHn(kl)) =d > 1. It follows that H»~¢-m)(K;) — f™(a)
has d connected components. So there is a constant € > 0 such that the closure of
each component is e-inessential.

If K C Encl{Ky), then f™(K) C Encl(K;) and thus contained in one compo-
nent of H?~-m) (K} — f™*(a). Hence f™(K) is e-inessential, so is K. Since
there are only finitely many K, ¢ depends only upon f. U

Proof of Lemma 6.3. If f*(K) is inessential for all n > 0, we will prove that there
is a constant € > 0 such that f?(K) is e-inessential for all n > 0.

Denote by H(é,n) (i > 1, n > 0) the component of H* contains f*(X), then
f(H(i,n)) = H(i—1,n+1). Since f™(K) is inessential, let ¢(n) > 0 be the smallest
integer such that H(i(n) + 1,n) is inessential. We assume i(n) —» co as n — oo.
Otherwise, there is iy > 1 and infinitely many n € N such that i{n) < i, i.e.,
H (49, n) is inessential for these n. But H* has only finitely many cormponents, so
fM(K) is e-inessential for some € > 0 and infinitely many n. Hence it holds for all
n > 0.

Define n; > 1 the smallest integer satisfying i(n) > Iy + 2 (where [, is defined
in the proof of Lemma 6.4) for all n > ny and i¢(n1) > i(ny — 1), ngy1 > nyg the
smallest integer satisfying i(ngy1) > i(ngyp1 — 1) (k > 1). They are well-defined
and ny — oc as k — oo. Moreover, i(ng1 — 1) = i(ng) — (Mg41 —ne — 1) > L.
We claim that (refer to Fig. 3):

(I) H(z(nk) +1- (nk+1 - nk), nk+1) = fPe+17 Nk (H(z(nk) +1, 'ﬂ.k)) is semi-
essential, and

(IT) H(i(ng)—(ngs1—ng), Npp1) = fo+17" (H(i(ng), ng)) is strictly-essential.
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Encl(K, ) £ (Ko) f o) (Ky)
fnk(K) fnk+j (K) foxer (K)

f. ¥ i(n k)-(nk+1 -y )

E fF 0 (N )-(Ng.: -ny )+
LA /;
fe* f o .
. /f’ ./ 0 (M )
e 0 (M, )+

0, :
i(n,) o(-'
ing)+1 ¢

; Fig. 3: The combinatorics of f*(K),
*: strictly-essential, 0: semi-essential, e: inessential.

In fact, the definition of ngy; implies that both of them are essential. If they
are parallel, so are H(i(ng), ng) and H(i{ng) -+ 1, ng). This contradicts to the
definition of i(ng).

Since H(i(ng) — (ngs1 — ng)) is strictly-essential, it contains only one strictly-
essential Julia component, so there is only one semi-essential Julia component Ky
contained in H(i(ng), ng) such that fms+17"(Kj) is strictly-essential. By (I),
™ (K) ¢ Encl{Kjy).

Let 1 < § < my41 — ng be the smallest integer such that f7(X,) is strictly-
essential, then j > [y + 1. Otherwise, since H(i(ny) + 1, ng — 1) is inessential
(because i(ng_1) < i(ng)), H((ng) ~ 7, ng + J) = fFTHHE(ng) + 1, ng — 1)) =
FI(H(i(ng), nx)) D fi(Ko) is strictly-essential and parallel to H(1, ng4s). So
H(j + 2,ng — 1) is parallel to H(i(ny) + 1, ny — 1) and hence inessential. Thus
j4+2>d(np —1)+1>1Iy+3. It is a contradiction. So deg(f7t|k,) > 1. By
Lemma 6.4, f**(K) is e-inessential for every k, so is f?(K) for all n > 0.

Let W,, be a simply-connected domain such that W,, N P(f) =8, W, O f™(K)
and the modulus m(W,, — Encl(f*(K))) > ¢, D, is the component of f~"(Wp,)
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containing K, then m(D,, — Encl(K))} > € and D,, N f~™(P(f)) =@ for all n > 0.
But K C U, f~™(P(f)), this implies that K is a single point. It contracts to

the definition of a Julia component. [

Theorem C. For geometrically finite rational maps, every wandering Julia com-
ponent is a sumple closed curve.

Before to prove Theorem C, we first recall the prime end theorem (refer to [CG]).
A crosscut C of a simply-connected domain G whose boundary contains more than
one point is an open arc in G such that C = C' U {a,b} with a,b € 8G. {Cr} is
called a null-chain of G if:

(i) C, is a crosscut of G (n=0,1,---),
(ll) Cn n C_’ﬂ*i“l = @3
(iti) C,, separates Cp and Cp,y; and
(iv) diam(Cp) — 0 asn — 0.

A prime end is an equivalent class of a null-chain by the equivalent relation:
{C,.} is equivalent to {C,} if for any n, there exits rn such that C, separates Cy
from Cp and C,, separates C;, from Cj.

The set C,, separates G into two domains V3, and G — V, and V, D Vagp1 Do
Then I{p) = N, V,, is a point or a continuum, it is independent of the choice of
the null-chain and is called the impression of the prime end p.

Prime End Theorem. If all the prime end has single point impression, then 0G
18 locally connected.

The next lemma will be used to prove Theorem C. Suppose that Ay, Az C ¢
are annuli and that A, is contained essentially in A (i.e., A2 separates the two
boundary components of A;}. Define

w(Aq, As) = sup i%f{diam(d) : 8 < Ay — Aais a path connecting z and 84, }.
zeAs

Lemma 6.5. Suppose that A, C C (n > 1) are annuli and that Ay, 4s contained
essentially in A, and A=032,A,. If

(1) 37 w(An, Ans1) < oo and
(2) C— A is the disjoint union of two domains G and G' and A is the common
boundary of G and G,

then A is a simple closed curve.
Proof. We only need to prove that dG = A is locally connected. If there is a

prime end p = {C,} such that I(p) is a continuum with diam(7(p)) = € > 0. Then
diam(V,,) > € > 0 for all » > 0.
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By (1), there is an integer N > 0 such that for any z € G, there is a pathd C G
connecting z and Dy = G — An such that diam(d) < ¢/4. Because diam(C,,) — 0,
there is an integer M > 0 such that as n > M, diam(C,) < ¢/6 and V,,N Dy = 0.

Note that diam(V;,) > ¢, so there exists z € Vs such that the distance(z, Car) >
€/2 — ¢/6 = €/3. But Oy separates z and Dy, so 6§ N Cn # . Thus diam(d) >
distance(z, Cps) > ¢/3. This is a contradiction. {1

Proof of Theorem C. Instead of the spherical metric, we use the hyperbolic metric
on C — P(f). For each path § C C — P(f), its diameter is defined by

d(8) = sup I[§{z,w)]
z,wES

where {[§(z,w)] is the length of the geodesics connecting z and w and homotopic
to 8(z,w) in C — P(f). We use this diameter when we apply Lemma 6.5.
In the sequel, we always denote by H™ a component of H", and H™ the interior

of the enclosure of H™. i
Since ||f'(2)i| > 1 for all z € C— f~1(P(f)), there exist constants Mp > 0 and
A > 1 satisfying the following conditions.

L |(f~YY(2)ll <1/ for all z in the union of the enclosures of semi-essential
components of 1.

2. For any semi-essential components H? C H?Y, if H? is an annulus, then
(B, F%) < My,

3. For any strictly-essential component H', if H? C H' and - is an essential
boundary curve of C — H? which separates H? from the boundary curve
B of C — H' (3 is parallel to v) such that v N ﬁﬁ = {, then for any
z € 7, there is a path § C Encl{H!) — H? connecting z and the boundary
of Encl(H?) such that d(d) < My. Moreover, [|{(f~1)/(2)|| < 1/X for all z
in the component of Encl(H') — H? which are parallel to ~.

4. For any strictly-essential component H1, let Ky ¢ H' be the strictly-
essential Julia component. Then for any boundary curve vy of C—Encl(H?),
there is a point z € v and a path § in the closure of Encl(H') — K
connecting z and K such that d{(§) < My. If H?> C H' is semi-essential,
let v be the boundary curve of € — Encl(H?) which separates Ky from
H?, then for any z € v, there is a path § in the closure of a component of
Encl(H') — (Kg U H?), which connecting z and K such that d(8) < Mp.

5. For any semi-essential Julia component Ky, if f(Kj) is strictly-essential,
then for any 21, 29 € Ky, there is an arc é in Ky connecting z; and za such
that d(d) < Mg.

6. From 3.-5., one may verify that there is a constant My > M, which de-
pends only upon Mg and A, such that if H* C H™ ' are semi-essential,



DYNAMICS OF GEOMETRICALLY FINITE RATIONAL MAPS 27

if H” is an annulus, and if f(H™) is still semi-essential but f(H™"1) is
strictly-essential, then w(H™, H™) < M; for any semi-essential H™ D
Hn L

Suppose K is a wandering Julia component of f. By Lemma 6.3, we may
assume K is semi-essential. Notice that K = Ni2 H™(K). Define n; > 1 as the
smallest integer such that H"™ (K) is semi-essential, define m; < n; as the biggest
integer such that f™~1(H™(K)) is semi-essential, define ny > my + 1 as the
smallest integer such that f™(H™ (K)) is semi-essential, and define my < ns as
the biggest integer such that f™2~1(H"2(K)) is semi-essential. Inductively, define

(i) mg > mp_; + 1 is the smallest integer such that f™-1(H™(K)) is semi-
essential, and

(i) my < ng is the biggest integer such that f™+~!(H™ (K)) is semi-essential
for k > 2.

Then mgy1 > my and nge1 > ng. Denote Ap = Hrw (K). I for some k >
1, mp = ng and ngyp = ng + 1, then w(Ag, Agpy) < MoA™™ + by 1. and
2.. Otherwise, f™~1(H"(K)) is semi-essential, f™+(H"+1(K)) is still semi-
essential but f™s(H™+171(K)) is strictly-essential. By 1. and 6., we also have
w(Ag, Aga1) < M A" Since mgyy < g + 1,

o0

Zw(Ak, Ak+1)_ < Q.

k=1

We now complete the proof by Lemma 6.5. To apply Lemma 6.5, we also need
to prove that C — K has two component and that K is their common boundary.
From the above discussion, since my — oo, there is a semi-essential component
H?' such that there exist infinitely many integer n such that f*(K) C H'. For
each point z € K, there is a subsequence of f™(z) converging to a point 2., in the
interior of H'. Take a simply connected domain D 3 2 such that DN P(f) =@
and both of the components of C — H! intersect with D). By Lemma 6.1, there
exist {z,} and {y,} which contained in the two components of C — K respectively
such that they converge to z. This also show that K = N> ; A;. By Lemma 6.5,
K is a simple closed curve. O

APPENDIX. EXTREMAL QUASICONFORMAL MAPS

Let f : R — R’ be a quasiconformal homeomorphism between open Riemann
surfaces. We denote by
( )dZ fidz
Z)— =
AP fidz
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the Beltrami differential of f,

the dilatation of f and K(f) = ||K¢||« the maximal dilatation of f.
Denote by F the set of all the quasiconformal homeomorphisms homotopic to f
modulo the boundary. The map f is called extremal if K (f) < K(g) forall g € F.
A quasiconformal map f is called a Teichmiiller map associated with an in-
tegrable holomorphic quadratic differential ¢ if pg(z) = ko(z)/|o(z)| for some
0 < k < 1. A Teichmiiller map is unique extremal.

Theorem A.1 (Existence of Teichmiiller maps). Let F be a family of quasi-
conformal homeomorphisms of R to R’ which are homotopic modulo the boundary.
Let fo with mazimal dilatation K(fo) > 1 be extremal in F (there always exists an
extremal map in F ). If there exists a quasiconformal map f € F whose dilatation
in some neighborhoods of R K¢ < K(fo), then f is a Teichmiiller map associated
with an integrable holomorphic quadratic differential and hence is unique exiremal.

See [Str]. The next theorem appeared in [RS].

Theorem A.2 (Main inequality). Let f and g be quasiconformal homeomor-
phisms of R to R’ which are homotopic modulo the boundary and that ¢ be an
integrable holomorphic quadratic differential on R, then

“Mf |2
/ |oldz dy </ || anl K,-10 f(2)dzdy.

The next lemma, is a simple application of the above theorems and is used in
Section 2.

Lemma A.3. Let f be a quasiconformal homeomorphism of C — {0} to itself.
Then for any € > 0, there exist 0 < 19 < 1 and a quasiconformal homeomorphism
g of C — {0} to itself such that

(1) g=f on C — R,,, where Ry, = {z € C, 1o < |2| < 1/7q},
(2) K(gr) < K(flec-r.,) + ¢ and
(3) flr,, is homotopic to g|r,, modulo the boundary.

Proof. For r > 0 small enough, let g, be an extremal quasiconformal map from
R, to f(R,) in the homotopy class modulo the boundary. Given any ¢ > 0, if
there is 7 > 0 such that {|z, [l satisfies (2), then it is derived. Otherwise, g- is a
Teichmiiller map associated with an integrable holomorphic quadratic differential
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¢, (we suppose {|p.|| = 1) for all » > 0 small enough by Theorem A.1. Then ¢,
converges to zero as r — 0 uniformly on any compact set in C — {0}. Otherwise,
there is a sequence g,., converges to a Teichmiiller map of C — {0} with maximal
dilatation bigger than 1. This is a contradiction.

For a fixed r1 > 0, since |[gg, {loo < |[ft5ioc, there exists a compact set C' C

C — {0} such that for all v, g-*(R,,) C C. Since @, converges to zero, there is
rg > 0 such that as r < rg, ¢ C R, and

€
|(p-r < 7 -
/Q:I(Rq) < Rl

Apply Theorem A.2 for g,,, ¢- and @,,

11— Hg. |(pr EQ
] = < ©rl K—l o .
/r o0 _/ lo] - PE gry O 97

™

Thus,
K(g,) < fR [or | K g, © 9r

g/ oK, log +/ lor|K gt o gy
om M (Byy) I T R gt By) o
< e+ K(flc—r, ),

as r < rp. It is again a contradiction. Therefore, there is a r > 0 such that ||x, ||
satisfies (2). O
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