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I. Discussion of Results, Motivation and Background

The motivation of this paper is twofold. First we are trying to get a
better understanding via generalization of certain phenomena attached to
complete manifolds M of constant negative curvature. Secondly, we will
try to show that certain general phenomena for Riemannian manifolds
which are fairly standard have interesting interpretations when specialized
to constant negative curvature.

Let r be a torsion free discrete subgroup of isometries of the non-
euclidean hyperbolic space H d+! so that M = Hd+1/r. The critical
exponent 8(r) is defined using the Poincare series Ll'Erexp(-sd(x, yy)),
as the Dedekind cut in s separating convergence from divergence.

In a series of papers Elstrodt [8] developed a relationship between 8(r)
for Fuchsian groups and Ao(M), the edge of the L2-spectrum of the
corresponding hyperbolic surface. Elstrodt used hypergeometric functions
to study the resolvent of .1, derived an inequality between 8(r) and
Ao(M), and treated specific examples.

In another series of papers Patterson [20], [21] constructed an interes-
ting measure on 51 and used Selberg's point-pair invariants in a spectral
analysis of .1 to relate 8(r) to the Hausdorff dimension of limit sets A (r)
of certain Fuchsian groups. Patterson showed 8(r) = A (r) for finitely
generated groups which either have no cusps or which satisfy 8(r) E G, j).
Earlier Akaza [1] had treated such groups without cusps and Beardon [2]
had shown that the presence of cusps implies 8(r) >~, (F nonelemen-
tary).
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Patterson [21] used his spectral discussion to sharpen Elstrodt's in-
equality to an equality. We will give here a new proof of a generalized
Elstrodt-Patterson theorem valid for all torsion free discrete subgroups
of isometries of Hl d

+
1
•

Theorem (1.1). (Generalized Elstrodt-Patterson.) If M = Hl d
+

1/r , then

if 0 ~~d,

if 0 ~~d,

where 0 = o(r).

Most of our proof consists of a general study of A.o(M) for an arbitrary
open connected Riemannian manifold. The rest of the proof is an
estimate of the A. -Green's function J; eAtp(t, x, y) dt on hyperbolic space
derived using only probability and spherical symmetry and not based on
knowledge of special functions.

Here A.o(M) is defined to be the negative of the infimum over smooth
functions with compact support of the Rayleigh quotient J [grad tp1

2
/ J cp2.

Since the numerator is J (J<p) . <p one knows from Hilbert space theory
that .1 has a minimal self adjoint extension to L 2(M), the Friedrichs
extension, with A.o the supremum of the spectrum. We take a probabilistic
route to this interpretation of A.o(M). First one defines the minimal hear
kernel p(t, x, y) as the sup over smooth compact connected subdomains
M; of the positive heat kernels P;(t, X, y) defined by Dirichlet boundary
conditions.

The probabilistic interpretation of Pa (t, x, y) illuminates Harnack's
principle for positive eigenfunctions of .1, Jcp = A.<p, <p > 0 but <p not
necessarily in L2

• One arrives at a direct characterization of A.o(M) as the
infimum of the set of eigenvalues for positive eigenfunctions. Also, these
eigenvalues form a segment [A.o,oo), Theorem (2.1).

Next one studies the A.-Green's function, J; eAtp(t, x, y) dt = gA (x, y), to
see that A.o is also the infimum (which mayor may not be achieved) of the
set of ,\ where gA (x, y) is finite, (see Theorem (2.6». This uses the
traditional calculations in the theory of abstract Markov processes. The
dichotomy of A. o being achieved or not is the dichotomy of recurrence or
transience of renormalized Markov processes with transition probability
q(t, x, y) = eAo'<p(y)p,(x, y)/<p(x) where <p is any positive eigenfunction
with eigenvalue A.o.
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Finally, using the above, Ao is easily interpreted as the edge of the
L2-spectrum for the infinitesimal generator .1 of the minimal heat semi-
group p(t, x, y) (Theorem (2.2».

This interpretation checks with a recent theorem of Stroock [11] that
for the Friedrichs extension .1, e.it has a positive kernel which is indeed
the minimal heat semigroup on M.

Briefly, the first step of our proof of the generalized Elstrodt-Patterson
theorem is to set forth the four determinations of the same real number
Ao(M) valid for any open connected Riemannian manifold M. For the
second part we turn to hyperbolic space itself. We first derive the
structure of the positive A-eigenfunctions of .1 on IHI d+! using Martin's
famous potential theory argument. These functions form a convex cone
with compact base. The extreme rays of this cone (as in Choquet theory)
are precisely labelled by the points of the sphere at infinity for HI d+! the
corresponding extreme functions are the multiples of the familiar yO (in
the various upper space models) with 8(8 - d) = A and, it is important to
note, 8 ;;;. d12, i.e. 8 = ~d + (A + ~d2)1I2. This structure is due to Karpelevich
[15] in the context of general symmetric spaces. For the convenience of
the reader we give a simpler discussion which is possible here in the
special case of hyperbolic space. The simpler argument makes use of
spherical symmetry and probability and avoids knowledge of special func-
tions.

We then develop new results relating the growth of ¢J and its boundary
measure, JL(p, ¢J), (see Theorem (2.11». For example, one interesting
inequality, Theorem (2.13), reads: for JL (p, ¢J )-almost all geodesic direc-
tions g

<!>(g, R);;;' R e-(d/2)R

where R = hyperbolic distance along the geodesic.
There is also an easily derived relationship between exponential upper

bounds on ¢J and lower bounds on the Hausdorff dimension of JL-positive
sets on the sphere, Theorem (2.15). Namely, ¢J > 0, .1¢J = A¢J and

(g E A, JLA > 0) ,

implies that D(A) (the Hausdorff dimension of A) is at least
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Finally, we come to an algebraic point. The formula relating the
eigenvalue A and the exponent {j is -A = {j(d - {j) (or the more familiar
-A = {j(1- {j) in the hyperbolic plane). In other words, the two exponents,
symmetric about ~d, {j and B" = d - {j lead to the same eigenvalue,
- A = 8(d - 8) = 8*(d - 8*) = {j8*.

One manifestation of this duality is the following: let X C s' be a set of
finite positive Hausdorff measure in dimension D which is one of the
numbers 8 or 8*. For each point p in IHI d+! let <Px(p) denote the total
Hausdorff D-measure of X in the metric on s' viewed as rays from p.
Then <Px is a positive eigenfunction of .J with eigenvalue A = -{j{j*. The
boundary measure of <pX is the Hausdorff D-measure supported on X in
case D is the larger of {j and {j *, otherwise the Hausdorff D-measure is
more subtle than the boundary measure of <Px. (See Theorems (2.11)-
(2.14).)

Another manifestation of this duality occurs in the unitary represen-
tation theory of G(d) = group of isometries of IHI d+!. There is a non-trivial
intertwining operator for G(d) acting on {j-densities on s' and on
{j*-densities on s' [14]. This together with the obvious pairing between 8
and {j* densities leads to a unitary structure on densities and the com-
plementary series of irreducible unitaries for G(d), ~A' _~d2,,;;; A ,,;;; O.
These representations are interesting for us here. First, positivity has been
a recurrent theme in the considerations above (potential theory, prob-
ability theory, Hausdorff measures, lowest eigenstates, etc.). It turns out
that the unitary representations ~A contain invariant cones (of positivity)
and can be so characterized.'

Secondly, consider the case when r has a finite-sided fundamental
domain. In [25], [26] we carried the Beardon-Patterson program further
and showed that 8(r) equals the Hausdorff dimension D of the limit set
for all geometrically finite groups. If 8(r) > ~d we showed that Ao(M)

possessed an L2-eigenfunction <p.
We may lift <p to the frame bundle of M to get an element <po in

L 2(G(d)jr) which is invariant by the maximal compact subgroup. The
orbit of <po under G(d) defines then an irreducible unitary ~A where
- A = D(d - D), D is the Hausdorff dimension of the limit set.

As we vary the group r by deformation (imagine changing the
geometry of the fundamental domain of r while preserving the com-

1 The reader interested in this characterization may want to study the interpretation in the
physical models of Irving Segal.
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binatories) one expects the Hausdorff dimension to vary. (It is known to
do so in various special families and even to vary real analytically in
analytic parameters of r [23], [20]) and so the unitary 'leA varies in the
complementary series of G(d) (see Subsection 2.3). Thus we can interpret
the complementary series 'leA of G(d) in a dynamical and geometrical
context of limit sets and negatively curved manifolds.

A positive Ao-eigenfunction allows one to define a modified notion of a
random path on M (Subsection 2.1). For example, if M possesses a
positive square integrable eigenfunction <I> the modified random process
preserves the finite measure <1>2 dy. In effect M has been renormalized to
have finite volume. In the hyperbolic case of this example there are
several results usually only valid for finite volume manifolds which
become true in a renormalized interpretation for these infinite volume
manifolds. In some statements the sphere s' of dimension d with
Lebesgue measure is replaced by the limit set, its fractal dimension, and
Hausdorff measure. For example, for finite volume manifolds the entropy
of the geodesic flow relative to Lebesgue measure is d while for
geometrically finite examples the entropy of the geodesic flow relative to
Hausdorff measure is the Hausdorff dimension, [26].

To conclude, in this paper we have tried to make a synthesis of several
mathematical discussions in the context offered by complete negatively
curved manifolds and discrete groups.

2. Precise Statement of Results to be Proved Later

2.1. Riemannian Manifolds: Definition of Ao(M)

Let M be an open connected Riemannian manifold without boundary.
Define the real number Ao in (-00, 0] as the negative of the infimum of
JM [grad <1>1

2
/ JM 1<1>1

2 over smooth functions <I> on M with compact support.
First, the potential theory approach to Ao(M). Say that a smooth
function <I> on M is A-harmonic if LJ.<I> = A<I>, where LJ. is the Laplacian.

Theorem (2.1). For each A~ Ao there are positive A-harmonic functions on
M. For each A < Ao there are no positive A-harmonic functions on M.

Compare [6], [10], [19].
Secondly, we take the Hilbert space approach to Ao(M). There is a
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canonical self-adjoint operator (also denoted .1) on L 2(M) extending the
Laplacian on smooth functions with compact support. If M is complete,
all self-adjoint extensions agree and .1 is unique, [12]. In the general case
we take for .1 the infinitesimal generator of the (minimal) heat semigroup,
f(x, t) = IMP, (x, Y)f(y) dy. Here the symmetric positive kernel p, (x, y) is
defined to be the supremum (an increasing limit) over all smooth compact
subregions with boundary (Ma , aMa ) of the fundamental solutions
p;(x, y) for the heat equation in M; vanishing on the boundary aMa ,

PI(x, y) = sup p;(x, y) and
a

(Compare [7].)

Theorem (2.2). The closed L 2-spectrum of .1 contains Ao and is contained in
the negative ray (-00, Ao]'

Compare (Friedrichs, Stroock [11]).

Corollary (2.3). For A > Ao' the symmetric kernel 10'" eAtp,(x, y) dt defines a
bounded operator on L 2

, namely 1/.1 - A.

Combining Theorems (2.1) and (2.2) we have the following spectral
picture for any open Riemannian manifold: Ao~ a and Ao separates the
L 2-spectru m from the "positive spectrum".

Ao
111111 I .. d. III 111111111

'L2-spectru m' of .1 'positive spectrum' of .1

Example (2.4). For M the real line (or euclidean space), Ao= 0, the
functions e'", a real, are a 2-harmonic and {e- ia X

} are virtual L 2 eigen-
functions belonging to -a2 as continuous spectrum.

Example (2.5). For M the hyperbolic plane, Ao= -~, the posinve A-

harmonic functions for -~ ~ A ~ a are related to the complementary
series of SI(2, IR), see Subsection 2.3, and the virtual L 2 eigenfunctions, as
continuous spectrum on (-00, -~] are related to the principal series of
SI(2, R).
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Thirdly, we have the Markoff process approach to Ao. We say that A
belongs to the Green's region of M if for some pair (x, y), x ~ y,

Je-Atp,(x, y) dt < 00.

o

A variant of a classical proposition (see Section 5) is that for A in the
Green's region the integral converges for all pairs (x, y), x ~ y, and
defines the A-Green's function gA (x, y) which is locally integrable and
satisfies

(zl, - A)gA (x, y) = Dirac mass at y.

So for each y, gA(X, y) defines a positive A-harmonic function on M\{y}.

Theorem (2.6). For any open Riemannian manifold the Green's region
consists of either (i) the open ray (Ao' (0), or (ii) the closed ray [Ao, (0).

In case (i), fo'" e -AOIP,(x, y) dt = 00, M is said to be Ao-recurrent. In case
(ii), f: e -AOIP,(x, y) dt < 00, M is said to be Ao-transient.

Now we discuss situations in which positive Ao-harmonic functions are
unique (up to constant multiples).

Theorem (2.7). (Recurrent case.) If the Green's region is (Ao'00), i.e.
I; e -AOIP,(x, y) dt = 00, then the positive Ao-harmonic functions are constant
multiples of one another.

Theorem (2.8). (Square integrable case.) Suppose the spectral measure of Ll
has an atom at Ao• Then the Ao eigenspace of Ll is one-dimensional and is
generated by a (square integrable) positive Ao-harmonic function l!Jo'

Also, the integral Jo'" e-AOlp,(x, y) dy diverges so M is Ao-recurrentand any
(not necessarily square integrable) positive Ao-harmonic function is a mul-

tiple of l!Jo'

We note here the related statement: if any atom of the spectral
measure of Ll is represented by a (square integrable) positive A-harmonic
function, then A = Ao and this atom is situated at Ao- This follows directly
from Theorems (2.1) and (2.2).
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Corollary (2.9). If a complete manifold M possesses a posutue square
integrable eigenfunction cP for.1, then the eigenvalue is Ao(M) and cP is
unique up to a constant multiple.

2.2. Renormalization of Random Motion

Given any positive A-harmonic function we can add to the usual
random motion on M a force field or drift term grad log cPo Then we have
a biased random motion (the cP-process) corresponding to the second
order operator .1 + 2 grad log cP, which acts on functions by (cf. Section 8)

f ~ ilf+ 2 grad log cP . grad f.

The transition probabilities for the cP-process are (e-AtcP(y)/cP(x» x
p,(x, y) dy. When the cP-process preserves the constant
function 1 we say that cP is complete. This amounts to the reproducing
formula

cP(x) = Je-Atp,(x,y)cP(y)dy.

M

(The inequality ~ is always true.) When cP is complete the cP·process also
preserves the measure cP 2(y ) dy (cf. Section 8).

When there is only one positive A-harmonic function up to a multiple
we refer to the cP-process as the A-process,

Theorem (2.10). Suppose Mis Ao-recurrent (g e-AO'p,(x, y) dt = 00). Then the
Ao·process associated to the second order operator .1 + grad log cPo preserves
the function 1, the measure cP~(y) dy, and is recurrent-almost every path
of the Ao·process starting from any point in M enters every set of positive
measure infinitely often.

In the square integrable case (Theorem (2.8» the Ao-process preserves a
finite measure, cP~(y) dy.

2.3. Hyperbolic Manifolds

Let M be the unique connected complete simply connected (d + 1)-
manifold of constant negative curvature IHI d+1

• We recall the two kinds of
examples of positive A-harmonic functions on IHI d+

1
•
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First, consider a Borel set A in IHJd+bSvisual sphere at infinity s' which
has finite positive Hausdorff measure in dimension a. Define a positive
a(a - d)-harmonic function cPA on IHJd+! by the rule: cPA(X) = Hausdorff
a-measure of A in the visual metric on s' as viewed from x. (That ¢JA is
A-harmonic follows from the discussion below.)

Second, given g in Sd choose stereographic projection of the ball model
for IHJ d+! to the upper half space model for IHJ d+! with g~ 00. If y is the
vertical coordinate then ¢J(x, a, g) = (y(x)Y is a positive a(a - d)-har-
monic function on IHJ d+l. (In these coordinates, L1 = l (Euclidean L1) +
(1- d)y May.)

Note that in these examples both a and d - a lead to the same
eigenvalue A = a(a - d) = (d - a )«d - a) - d). Also A is a minimum
_~d2 for a = ~d.

Theorem (2.11). (i). For IHI d+!, Ao= _~d2 [17], [21].

(ii). Fix p E n--n d+!. Then every positive A-harmonic function ¢J is uniquely

expressible in terms of the ¢J(. , a, g),

¢J(x) = J cP(x, a, g) d/L (p, cP )(g) ,

Sd

where a = ~d +(,\ - AO)' I2, the ¢J(', a,~) are normalized to be 1 at p, and

/L(p, ¢J) is a unique positive measure on s' with total mass ¢J(p) [15].

The next two theorems concern the boundary measure /L (p, ¢J) and its
measure class for any positive A-harmonic function ¢J. Let /L(p, ¢J, R) be
the measure on the sphere S(p, R) of hyperbolic radius R centered at p,

i.e. /L(p, ¢J, R) = 1/cR ' (¢J restricted to S(p, R»· spherical measure, where

{

e-(d-a)R

c -
R - R -(d/2)R. e

Theorem (2.12). In the compactified space H d
+1 U s: the boundary

measure /L(p, ¢J) of Theorem (2.11) is constructed from ¢J as a weak limit of

the /L(p, cP, R),

lim /L (p, ¢J, R) = /L (p, ¢J) .
R ...'"
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Now we consider radial limits, along hyperbolic rays (R, g) emanating
from p, of a positive A-harmonic function 4> with 4>(p)= 1.

Theorem (2.13). (a). For g outside the closed support of J.t (p, 4»,

(b). For J.t (p, 4> )-almost all g,

-(d-a)R

4>(g, R) ~ {~ e -(d/2)R

(c). For all g,

as R ~oo.

forA>-~d2,

for A = _~d2.

as Rr--»»,

Now a generalization of Fatou's theorem. Suppose 4>1 and 4>2 are
positive A-harmonic functions and J.t (p, 4>1) is absolutely continuous with
respect to J.t (p, 4>2) with Radon-Nikodym derivative l/J(g).

Theorem (2.14). For J.t (p, 4>2)-almost all g

In particular if 4>1 :s;; 4>2' then J.t (p, 4>1):S;; J.t (p, 4>2) by Theorem (2.12), and
the conclusion holds.

Define the exponential growth of 4> along a hyperbolic ray (R, g) from p
in the direction g by

. log 4>(R, g)
hmsup .

R ....co R

By Theorem (2.13) this growth is always :S;;a = ~d + (A + ~d2)1/2. Suppose
the growth is smaller, <o; for a set of directions A C s' of positive

J.t (p, 4» measure.
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Theorem (2.15). (i). The Hausdorff dimension of A is at least

757

(ii). In particular if ¢J is bounded, the Hausdorff dimension of any
J.l (p, ¢J )-positive set is at least ~d + (A + ~d2)1/2.

We describe the behaviour of the A-Green's function gA(X,y)=
Io"" e-Atp,(x, y) dt on Hd+t, which is finite for AE [AO' 00) and only depends
on r = d(x, y) for r near 00. It is convenient to include a description of the
A-spherical function SA (x, y) which is by definition the unique (up to a
multiple) positive A-harmonic function of x in Hd+t, spherically symmetric
about y in Hd+l. These two functions are solutions of the second order
differential equation in the radius R which has regular singular points at
R = 0 and R = 00.

Theorem (2.16). For A~ AO' gA (x, y) and SA (x, y) generate the two-dimen-
sional space of spherically symmetric solutions of (.1 - A)f = 0 on Hd+1\{y}.

The A-Green's function (fo"" e-Atp,(x, y) dt) is the small (or recessive)
solution near R = 00, and the A-spherical function (fSd ¢J (x; g, a) d8(g» is
the small (or recessive) solution near R = O.

Thus if a = ~d + (A + ~d2)112, gA - constant· e-aR near R = 00, while
SA - constant· e -(d-a)R near R = 00, except when a = ~d where SA-
constant· R e-(dI2)R near R = 00.

Now let r be any discrete group of hyperbolic isometries. If r has no
torsion then H d

+
1/r is a complete Riemannian manifold with constant

negative curvature to which the generalities of Subsection 2.1 apply. We
have the generalized Elstrodt-Patterson theorem.

Theorem (2.17). For M = Hd+l/r, Ao(M) satisfies

if S(r) ~~d ,
if str,» ~d,

where S(r) is the critical exponent of r.

Recall the critical exponent S(r) is defined so that the Poincare series of F,
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g(x, y, s) = L exp - (sd(x, yy»
rEF

converges for s > 8(r) and diverges for s < 8(r) where (x, y) is any pair
of points in IHJd+1.

CoroUary (2.18). (Of proof) If M = IHJd+1/r, Mis Ao-recurrent iff 8(r) ~ ~d

and the Poincare series diverges at s = 8(r).

Now A-harmonic functions on M are just r-invariant A-harmonic
functions on IHJ d+!. From the definition it follows that for any positive
A-harmonic function <p on IHJ d+! and for any isometry y of IHJ d+!,

where Iy'l is the linear distortion of the visual metric on Sd as viewed
from p, a = ~d + (A + ~d2Y/2 as before, and Y*IL(set) = lL(y(set».

Thus if <p is invariant by F, then IL (p, <p) on s- satisfies

(2.1)

where 8 = a and y E r.
Thus Theorem (2.17) yields the existence of measures on s' satisfying

(2.1). Curiously, a bit more can be said about this question than the
A-potential theory implies. The following theorem generalizes earlier
results of Patterson and the author:

Theorem (2.19). (i). If r is any discrete group of isometries of IHJd+1 (except
for elementary parabolic or cocompact groups) there is a finite positive
measure on s' satisfying y* IL = /y'llllL, Y E F, iff 8 E [8(r), (0).

(ii). We may further suppose that IL is concentrated on the limit set of r
unless r is geometrically finite without cusps. In these latter cases (including
cocompact groups) the only such measure on the limit set is the Hausdorff
measure in dimension 8(r).

The limit set of r is by definition the set of cluster points in s' of any r
orbit in IHJd+!. The condition geometrically finite without cusps means that
r has a finite sided fundamental domain in IHJd+1 which does not touch the
limit set.
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Remark (2.20). For the elementary parabolic groups there are point
measures in s' satisfying (2.1) for any 0 in [0,00) even though o(r) = ~

x (rank of parabolic subgroup) > O.

We mention two more theorems relating the A-potential theory of
M = 1HId+1/r and the Hausdorff geometry at infinity.

Theorem (2.21). (i). If T is geometrically finite and M = 1HId+1/r then

D~~d,

D~~d,

where D is the Hausdorff dimension of the limit set.
(ii). M has a square integrable positive Ao-harmonic function iff D > ~d.

Mis Ao-recurrent iff D ~ ~d.

Corollary (2.22). Let M = IHI d
+
1/r where r is geometrically finite. Then

whether or not the Hausdorff dimension of the limit set belongs to (0, ~d)
and if not its exact value in Hd, d) is determined by the A-potential theory
ofM.

Any discrete group of isometries of the hyperbolic plane 1H1 2 is a union
of geometrically finite groups. This allows a general result.

Theorem (2.23). For any complete connected hyperbolic surface S let D
denote the Hausdorff dimension of the set of those geodesics emanating
from any fixed point in S which returns infinitely often to any bounded
neighbourhood of that point. Then Ao(S) satisfies

1

A.o(S) = {~(D - 1)
D ,< l

-.c;: '2,

D~~.

Recall G(d) denotes the group of proper motions of IHI d+l. Then G(l) =

PI(2, R) and G(2) = PSI(2, C).
Now Theorem (2.21) allows a canonical geometric interpretation of the

complementary series in terms of hyperbolic manifolds IHI d+1/r and the
Hausdorff geometry of the limit sets of the discrete groups r.
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Theorem (2.24). Let 4Jo denote the square integrable positive Ao-harmonic
function on M = H d+1/r where r is geometrically finite and the Hausdorff
dimension of the limit set D = 5(r) > ~d. Then the linear span of the
G(d)-orbit of 4Jo in L 2(G(d)/r) generates the member of the complementary
series labeled by Ao(M) E (-~d2, 0).

For example, if r has no cusps (or all cusps have rank OE;.D) then 4Jo(p),
the K-invariant vector, is just the function on HI d+l which assigns the
Hausdorff D-measure of the limit set ofT calculated in the metric as viewed
from p.

Remark (2.25). There are examples where deformations of one F make Ao
cover the entire (spherically symmetric) complementary series, [24], [3].

3. Compact Manifolds with Smooth Boundary

Let M; be a compact manifold with smooth boundary. Let p~(x, y) be
the fundamental solution of the heat equation in M; vanishing on aMa

(cf. [22]). The infinitesimal generator of the semigroup

f(x, t) = J p~(x, y)f(y) dy,

defines a self-adjoint operator L1 on L 2(M
a ) extending the Laplacian

acting on smooth functions vanishing near the boundary [22].
By the compactness of M; there is a discrete set of eigenvalues for L1

and a complete basis of L 2 consisting of eigenfunctions vanishing on the
boundary.

Since IA~I is the infimum of fM [grad 4J12/ fM 14J/2 over smooth functions
a a

vanishing near the boundary, any eigenfunction 4Jo belonging to A~ does
not change sign (see Section 8 for an alternative argument). It follows that
A~ has multiplicity 1 and 4Jo is unique up to a constant multiple.

Since one may write an absolutely convergent eigenexpansion for
p~(x, y),



(3.1)

[22], one has

(3.2)
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where ¢J~ is the unique positive normalized zeroth eigenfunction.
From the probabilistic interpretation [18] of p;(x, y) dy as the prob-

ability density of endpoints of random paths starting at x which have not
hit the boundary before time t, one has from (3.2) that the probability of
starting from x and hitting the boundary iJMa by time t is asymptotically 1
like

(3.3) 1- constant e(A(j)1 .

Now recall the Dirichlet problem for M a . If f is a continuous function
on iJMa the harmonic extension of f inside M; may be written

(3.4) f(x) = J f(g) dJLa (x, g)

where JLa (x, g) is the probability measure associated to hitting the boun-
dary with random paths starting from x.

Now weight the hitting probability by e- Ar where T is the hitting time
and A is any number> A~ . By (3.3) the resulting measure JL ~ (x, g) is well
defined and finite. Again if f is a continuous function on the boundary

(3.5) f(x) = J f(g) dJL ~ (x, g)

defines a smooth A-harmonic function in M; with boundary values f. The
classical proof of (3.4) may be modified to give (3.5) replacing ..1 by zl - A.

Now recall that the generalized Poisson measures JLa (x, g) of (3.4) are
equivalent for various x and that for fixed Xo in M; the ratio
dJLa (x, g)/dJLa (xo, g)= t/Ja (x, ~) is for g fixed a positive harmonic function
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(which is zero on aMa \{~} and has a pole at n Similarly
d,u: (x, ~)Jd,u: (xo, ~) = 1/1: (x, ~) is for ~ fixed a positive A-harmonic func-
tion on M; (which is zero on aMa \{~} and has a pole at n (See
Subsection 2.3 for examples.)

This shows the Harnack principle for positive harmonic functions is
also valid for positive A-harmonic functions, A> A~. Namely, write (3.5)
as

(3.6)

showing that the values of f around x are fixed convex combinations
(f(~) d,u:(xo, ~» of values (1/1: (x, ~» which only vary in a bounded ratio.

4. Proof of Theorem (2.1)

Now consider the directed set of all compact connected regions
M; eM with smooth boundary. Since A~ (of Section 3) is the negative of
the infimum over smooth functions supported on interior M of
f Ma [grad ¢J2JfMa 1¢12, the number Ao defined in the introduction clearly
satisfies

a

and Ao> A~ for all a.
Then by Section 3 there are positive A-harmonic functions on M; for

any A~ Ao> A~. By the Harnack principle described in Section 3 we have
compactness with respect to uniform convergence on compact sets for
those positive A-harmonic functions which are ~1 at a fixed point xo' We
can form convergence subsequences of those defined for an exhaustion of
M by M; and thereby prove the first part of Theorem (2.1).

The second part of Theorem (2.1) follows from the fact that a positive
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t\-harmonic function f continuous on Ma satisfies

(4.1) f(x) = Je-Alp~(x, y)f(y) dy + fe-AT d (Wiener measure),

p

where p is the set of paths which hit oMa at T < t. So

f(x)~ Je-Alp~(x,y)f(y)dy.
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This shows t\ ~ t\~ using (3.2) and completes the proof of Theorem (2.1).

5. The Green's Region and t\-Superharmonic Functions

Consider the function gA (x, y) = f; e -At P,(x, y) dt and suppose gA (x, y)
is finite for one pair x 'i- y. From the definition gA (x, y) is symmetric and
as a function of x it is

(1). The increasing limit of continuous functions (and so lower semi-
continuous, f(x) ~ limXj"'X f(x; )).

(2). Decreased pointwise by at least the factor eAI by the heat semi-
group, f(x, t) =fMP,(x, y)f(y) dy. Namely, f(x, t) ~ e-Atf(x).

Functions of x satisfying (1) and (2) (and not identically +(0) are called
X-superharmonic. So if t\ belongs to the Green's region there is a
t\-superharmonic function, is, (x, y) for each y).

Conversely, suppose f is t\-superharmonic and let P; denote e- At (heat
operator). We apply the operator equation

(5.1)

T I T+t

J Id- P; 1J 1 Jp A ds = - r: ds - -
S t t S t

o 0 T

to f and deduce using (1) and (2) that either

(5.2) r; f = f for all x,

or t\ belongs to the Green's region.
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Using the fact that for smooth functions of compact support c/J

(5.3)
Id- e:
_------'-I c/J ~ - (,1 - A)c/J ,

t

uniformly on compact sets as t~ 0, one obtains by duality that a A-
superharmonic function (which is locally integrable by I~ P: f) satisfies

(5.4)

in the sense of distributions. Thus -(,1 - A)I is a positive Radon measure
approximated by «(f - P: f)lt) dy, whenever 1 is A-superharmonic.

Calculating the latter for gA (x, y) (as a function of x for y fixed) yields

1

Id - P: 1J -At---gA (x, y) = - e p.i», y) ds
t t

o

which approaches the Dirac mass at y as t ~ O. A coroIlary is that gA (x, y)
is finite for all x =I- y and defines a positive A-harmonic function on

M\{y}.
Another coroIlary is that if A belongs to the Green's region then for

every compact K in M

(5.5) lim e-A1 JPT(X, y) dy = O.
T_oo

K

To see this choose £j ~ 0 and T; ~ 00, write g(x, y) = limT;_oo. <;-0

f;i e-Atpl(x, y) dt, and use the heat equation to calculate (,1 x - A)
X (gA (x, y». One gets two terms, the one near zero converges to the right
answer, the Dirac mass at y, so the other one corresponding to 00 must go
to zero. Since the convergence is that of Radon measures, (5.5) results.

Besides the Green's function, positive A-harmonic functions also pro-
vide examples of A-superharmonic functions. This foIlows using (4.1)
repeatedly,
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Pt(X, y) = SUp p;(X, y), and M =U M a •
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a a

More precisely, (4.1) shows that (..\0,00) is contained in the Green's region
because the second part (5.2) must hold for a positive Ao-harmonic
function whenever the A of (4.1) belongs to (Ao, 00).

Now if A< Ao then A< A~ for some a and if A belongs to the Green's
region, (5.5) implies fKe-A~tpt(x, y)dy~O as t~oo contradicting (3.3).
Thus the Green's region does not contain A and must consist of either
fA,oo) or (Ao' 00). This proves Theorem (2.6).

6. The LZ-Spectrum of J and the Proof of Theorem (2.2)

Using the spectral theorem and the positivity of Pt(x, y) one sees
immediately that if the interval fA, 00) does not intersect the LZ-spectrum
of J (the infinitesimal generator of the semigroup f(x, t) =
fM Pt(x, y)f(y) dy), then the bounded operator on LZ, 1/..::1 - A is
represented by the positive kernel J; e-A1pt(x, y) dy. Applying the opera-
tor to a positive function with compact support shows that
f;'e-Atpt(x,y)dy is finite a.e. Thus [A,oo) is contained in the Green's
region. So the entire component of the complement of the spectrum
containing the positive reals is contained in the Green's region.

For the other inequality required by Theorem (2.2) consider the L Z
_

norm of PJ = f M Pt(x, Y)f(y) dy. This is the square root of f M (J Pt(x, YI) X

f(YI) dYI f Pt(x, yz)f(yz) dyz) dx. Thus,

(6.1)
1(2

IIP,fIlL2 = ( J PZt(Yl' YZ)f(Yl)f(yz)) ,

MxM

by the semigroup equation for Pt(x, y).
Now consider a positive, bounded, measurable f, with support con-

tained in a compact K in the interior of M. By (5.5) for each Yz,
e -At f Pt(x, YI)f(YI) dYI~ 0 as t~ 00, if A belongs to the Green's region. For
a set A of Yz's in K of almost full measure this convergence is uniform.
Thus if g is f times the characteristic function of A we have, by (6.1), that
the LZ-norm of Ptg times e- At goes to zero as t~oo. The linear span of
these g is dense in LZ. It follows the LZ-spectrum of J cannot have points
greater than A, for then there would be elements h in LZ so that the L2

_
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norm of ~h would not decrease as fast as e". This proves Theorem (2.2).
o

The corollary to Theorem (2.2) is explained by the first paragraph of
this section.

7. On the Uniqueness of Positive AD-Harmonic Functions
(Proofs of Theorems (2.7) and (2.8»

Suppose the convex cone of positive Ao-harmonic functions is not a
single ray. The base of this cone {4>1 4>(xo) = I} is convex, metrizable, and
compact in the topology of uniform convergence on compact sets by the
Harnack principle of Section 3. Let f and g be two different extreme
points of this compact convex set so that f ~ g and g ~ f are both false
and form 4> = min{f, g}.

Let p;o be the operator of Section 5. From (4.8) it follows that p;of~ f
and P;Og ~ g. Thus by positivity of p;o, P;°4> ~ 4> so 4> is Ao·super-
harmonic (Section 5). Since 4> is not smooth 4> cannot be AD-harmonic.
(There is a transversality detail here which can be treated using multiples of f
and g if necessary.) Thus, P;°4> =I 4> for some t and the second case of (5.2)
must hold. Thus AD belongs to the Green's region, i.e. f; e -AO'p,(X, y) dt < 00.

This proves Theorem (2.7).
Now suppose there is an atom at Ao for the spectral measure of ..1 on

L2
• Since ..1 - Ao is the infinitesimal generator of p;o we must have

P;°4> = 4> for 4> in the AD eigenspace of ..1. In particular, IIP;Ogl/ does not
approach zero as t -HXJ for a dense set of L2

• Thus by (5.5) AD is not in the
Green's region. This proves the second part of Theorem (2.8).

Now we give a proof that any 4> in L2 satisfying P;°4> = 4> cannot
change sign. By Theorem (2.2), p;o is a contraction on L2

, so IIp;ol4>llb ~
1114>llb where 14>1 is the absolute value of 4>. On the other hand,

14>(x)1 = 1P;°4>(x)/ ~ p;ol4>/(x),

so (14)I(x)? ~ (P;ol4>l(x)f Combining these two gives 14>/(x) = P;O!4>I(x)
a.e..

If 4> is not entirely negative, at a generic point where 4> (x ) > 0 we have

4>(x) = Je-AO'p,(x, Y)4>(Y) dy

M
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¢(x) = 1~I(x) = f e-AO'p,(x, y)I¢J(y) dy.

M
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So ¢ = 1<1>1 a.e. and ¢ must be entirely positive.
Since any ¢ does not change sign no two can be orthogonal in L2

• This
completes the proof of Theorem (2.8).

8. The ¢-Process and Completeness of A-Harmonic Functions
(Proof of Theorem (2.10»

It is formal that the operator defined on functions by the kernel
e-At¢(y)/¢(x)p,(x, y) and on measures by duality preserves the function 1
and the measure ¢2(y)dy iff ¢(x)=IMe-Atp,(x,y)¢(y)dy (i.e. ¢ is
complete in the terminology of the introduction).

The differential operator or infinitesimal generator associated to this
diffusion operator is [¢r 1(..1 - A)[¢] where [¢] denotes the multiplication
operator by ¢. Thus [¢r1(L1-A)[¢]f= ¢-I(L1-A)¢f= ¢-I«L1¢)·f+
¢ . L1f + 2 grad </> • grad f - It.¢f) = L1f + 2 grad log ¢ . grad f, since
L1¢ = A¢.

If M is Ao-recurrent and ¢o is the unique positive Ao-harmonic function
(up to a multiple), then by (5.2) we must have ¢o(x) =

IMe-AO'p,(x, Y)¢o(y) dy, namely the first of (5.2) holds. For otherwise, by
the second of (5.2), Ao belongs to the Green's region. This proves all but
the last part of Theorem (2.10).

To prove recurrence we simply check the criterion for recurrence that
the Green's function of the process is identically +00. For the ¢-process
the Green's function is I; e-AO'¢(y)/¢(x)p,(x, y) dt which equals +00 since
the ¢(y)/¢(x) factor does not matter. This proves Theorem (2.10).

Now let us discuss the question of completeness for A-harmonic func-
tions. We will give several arguments for the existence of complete
A-harmonic functions which depend on auxiliary hypotheses.

Argument (8.1). (Fixed point property.) Let C6A note the convex cone of
positive A-superharmonic functions. The heat semigroup operates on C6A •

Using compactness of the base of C6A and continuity of P, (if true
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simultaneously) we have, by the fixed point theorem, fixed rays in eeA •

Taking the minimum A, namely Ao' the equation P'c/> = cc/> implies c =
e -Ao' and we arrive at a complete positive Ao-harmonic function. (I am
indebted to Dan Stroock for pointing out that a topology making eeA have
a compact base and P, continuous for a general Riemannian manifold is
not obvious.)

Argument (8.2). (Minimal A-harmonic functions.) Let tleA denote the
convex cone of non-negative A-harmonic functions. The base of tleA is
compact by the Harnack principle of Section 3. Suppose the heat semi-
group preserves tleA or that even tie = tleA n P,tleA ¥ 0 is a nontrivial convex
cone with a compact base. Let 1 lie in an extreme ray of tie and let
r = P;f. Then I~r by (4.1) and r belongs to tie. Now g = 1- r is
non-negative and A-harmonic. If1= P~h, then g = P~ (h - f) so g belongs
to tie. Since 1= g +r we must have g = cd and r = cd since 1 is
extreme. But C2 < 1 is impossible for then r would not be A-harmonic.
Thus 1=r;1 for any extreme ray. By linearity and Choquet, h = P; h for
any h in tie.

So if tie = tleA n P'tleA is closed and nontrivial it consists entirely 01
complete A-harmonic functions.

Example (8.3). If M is the interior of a compact manifold with boundary,
a continuous positive A-harmonic function c/> is rarely complete. By (4.1)
it is necessary that c/> vanishes on the boundary. Thus A = Ao and 4> must
be proportional to zeroth eigenfunction 4>0' which is complete.

Example (8.4). (Another Argument.) If M (or a covering space) has
bounded geometry, that is each point is centered in a neighbourhood of
fixed radius which is a bounded distortion of the unit ball in Euclidean
space, then every positive A-harmonic function is complete. This follows
because the constants in Harnack's principle are uniform (so a positive
A-harmonic function 4> grows at most exponentially) and the heat kernel
satisfies an inequality p,(x, y):s;; c ea

(d (x, y»2 for i « 1 and d(x, y) ~ 1 (so
p,(x, y)c/>(y)dy has little mass near infinity). Now a straightforward esti-
mate shows that a positive A-harmonic function is complete.

Problem (8.5). (Stroock and Sullivan.) Which open connected manifolds
have complete positive Ao-harmonic functions?

We now turn to the proofs of the theorems in Subsection 2.3.
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9. Proof of Theorems (2.11) and (2.16)
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If for some A, there is a positive A-harmonic function ep on Hd+1, then
we can average ep over the compact group of isometries fixing some y in
H d+l. We obtain a spherically symmetric positive A-harmonic function
ep(R)= S). (x, y) where R = d(x, y). Then ep(R) satisfies

(9.1)

where A(R) = the area of the sphere of radius R about y, and A'(R) =

(d/dR)A(R).
For R near zero and infinity respectively, this equation becomes

(9.2)

R=O:

R = 00:
d2 d

(- +d- - A) ep =0.
dR 2 dR

The exponential solutions near 00 are determined from the indicial
equation u2 + du - A =O. In other words if a = -u, A = a(a - d). Real
exponentials result iff A~ _~d2. Thus there are spherically symmetric
positive A-harmonic functions iff A~ _~d2. This proves Theorem (2.1l)(i).

Before proving Theorem (2.11)(ii) we must prove Theorem (2.16) and
analyze the A-Green's function, g). (x, y) = f:: e -Atp,(x, y) dr, Looking again
at the 'equations in the form (9.2) one sees: (i). Near R = 0 there is a
l-dimensional subspace of bounded solutions, the rest of the solutions
have a standard Green's singularity, 10g(I/R) if d = 1 and (l/R)d-l if
d> 1.

(ii). At R = 00 there is a l-dimensional space of solutions asymptotic to
a constant· e- aR where a = ~d + (A + ~d2)1/2. The rest are asymptotic to a
constant· e -(d-a)R if a > ~d or constant· R e -(d/2)R if a = ~d.

We know from Theorem (2.11) and Theorem (2.6) and the non-unique-
ness of positive Ao-harmonic functions that the Green's region is [Ao, (0).
We know from (L1x - A)g). (x, y) = Dirac mass at y that g). (x, y) has a stan-
dard Green's singularity at x = y, R = O.

We have seen from the definition that S). (x, y) is bounded near R = 0
and therefore S).(x, y) is the small (or recessive) solution near R = O. We
want to show that g). (x, y) is the small (or recessive) solution at R = 00.
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Claim (9.1). The recessive solution at R = 00 for A~ Ao is positive for all
R > 0 and has a Green's singularity at R = O.

Proof of claim. The bounded solution at R = 0, SA (x, y), has the simple
formula'

JcP(x;~,a)dO

where dO is the spherical measure on Sd with y the center of the unit ball
model and the cP(·; ~, a) of Subsection 2.3 are normalized at y.

A special case of the calculation in the proposition of the proof of
Theorem (2.13) shows that SA is a large solution near R = 00. Thus g, the
recessive solution at R = 00, cannot also be recessive at R = 0 because it
would then be a multiple of SA (which is large at R = (0).

Thus g tends to 00 as R .... 0 and must cross SA for some smallest
R = Ro. At Ro the Wronskian gS~- SAg' = g(Ro)(S~ - g') is negative since
g(Ro) = SA (Ro)> 0, and S~(Ro)< g'(Ro). Since the Wronskian does not
change sign and S~ < 0, each of the following behaviours

Fig. 1.

is ruled out. So g > 0 and we have the picture (Fig. 2, opposite page), which
proves the claim and a bit more. 0

To finish the proof that g = constant· gA (x, y) write gA (x, y) as the
sup, g~(x, y) where D; is an exhaustion of H d

+
1 by balls centered at y,
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Fig. 2.
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and g:(x, y) is the A-Green's function for Da • Now cig - C2SA is zero on
aDa and has the same weight singularity at R = °where C1 and C2 are
positive constants. So cig - C2SA= g; (x, y). Thus g; (x, y) ~ constant· g.
The constant is fixed, so gA (x, y) = sup a g; (x, y) ~ constant· g. It follows
that gA(X, y) is small (or recessive) at R = 00 and must be a constant times
g. This completes the proof of Theorem (2.16).

Now we are in a position to prove Theorem (2.1l)(ii) by Martin's
construction (1941). We sketch. the steps of this famous argument.

Choose a reference point Xo in IHI d
+

1 and consider the quotient
kA(x,y)=gA(X,y)/gA(XO'y). As a function of y, (x fixed) kA(x,y) is con-
tinuous on Hd +

1 U S" with kA(x,~)= q,(x,~, a) (normalized at xo) for ~ in
s'. This follows from Theorem (2.16), a = ~d + (A + ~d2Y/2.

Let q, be a positive A-harmonic function which is a limit of A-potentials

y

of Radon-measures JLn on IHI d
+

1
, (all are as we shall see). The measures

J1- ~ = gA (xo, y)J1-n have total mass ~q,n (x) (~q,(x) + 1 for n large). So let J1-
be a weak limit measure in IHI d+1 U s'. Since (..1 - A)q,n = J1-n and
(..1 - A)q, = 0, J1- must be supported on s'. We calculate
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c/J(x)=li~c/Jn(x)=Ii~ JgA(x,y)dtLn(Y)

y

= lim JkA (x, y) dtL~(Y)
n

y

= Jk, (x, y) dtL (because k, (x, y) is a continuous function of y)

y

= Jc/J(x,~,a)dtL(~),
f

since tL lives on s: This proves the existence part of Theorem (2.11)(ii)
for a limit of potentials.

We now give the classical argument to see that any A-superharmonic
function I is an increasing limit of potentials. Form In = min{f, nGAXn}
where Xn is the characteristic function of the ball of radius n about some
fixed point and GAXn(x) = f MXn(y)gA (x, y) dy. Then In is non-negative
bounded, A-superharmonic, In increases to I, and In satisfies inf T....cc P~/n =

o(the latter, since this is true for nGAXn and inf{P~/, P~g}~ P~ inf{f, g}).
Now apply (5.1) to In and let T ~ 00 to obtain

GA (1!t(fn - P: In» = lit JP~/n ds.

o

The right hand side is increasing to In as t~ 0 since In is A-super-
harmonic. Thus In is the increasing limit of potentials GAtL, where IL, =
1lt(fn - P: In)' This implies that I is the increasing union of potentials and
completes the proof of the existence part of Theorem (2.l1)(ii).

The uniqueness follows from Theorem (2.12) (which only uses the
existence part of Theorem (2.11)(ii) in its proof).

10. Proof of Theorems (2.12), (2.13), (2.14) and (2.15)

To prove Theorem (2.12) we must first calculate the normalizing factor
for IL(P, c/J, R) = 1!cR • (c/JIS(p, R»· spherical measure. We want
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cP(p) = l/cRI cP/S(p,R)d8R(x),
x

773

where d8R is the unit spherical measure on S(p, R). Write cP as an
integral of the cP(·, g, a),

cP(x) = I cP(x,g,a)df-L(p,y)(g),

f

where f-L (p, cP) has total mass cP(p). Substituting, gives

cP(p)CR= I I cP(x,g,a)df-L(p,cP)(g)d8R(x)
x f

f x

Thus cR is the function of R, S),(R)= Ix cP(x,g, a)d8R(x) where x=
(R, g), which we have seen in Section 9 to be of the order e -(d-a)R for
a > ~d and R e -(d/2)R for a = ~d. With the indicated choice of CR the total
mass of f-L (p, cP, R) is cP (p).

Now let I be a continuous function on ~d+l C s' and let R ~ 00. Then

l/cRI I df-L(p, cP, R) = lIc I I' cP . d8R
R

= l/cRI I(I cP(x, g, a)df-L(p, cP)(g)) d8R(x)
x f

= I (lICRI l(x)'cP(x, g, a)d8R(x)) df-L(p, cP)(g)·

[ x

Outside a disk of radius e > 0 (fixed so that I is near I(t) on this region)
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in polar coordinates (R, ~), cP(x,~, a) is of the order e -aR. On the other
hand, the integral f cP(x,~, a)dOR is larger, e-(d-a)R or R e-(dJ2)R as in-
dicated above.

Thus the inner integral is concentrated near ~ and converges to f(~) on
u-.». Thus

lim Jf· dJL(p, cP, R) =Jf dJL(p, cP),
R....""

proving Theorem (2.12).

Remark (10.1). This proof of Theorem (2.12) for a > ~d was shown to me
by Mary Rees who offered it as an alternative to the sketch of Theorem
(2.13) for a > ~d in [25]. The questions of Mary Rees were part of the
motivation from the exposition here.

Now we prove Theorem (2.13). First we have a proposition asserting
that no finite measure JL on s' is more diffuse than Lebesgue measure.

Proposition (10.2). Let JL be a finite positive measure on s'. Then for
u-olmost all ~ in s'.

I· . f JL (~, r) > 0imm --d- ,
r-O r

where JL (~, r) is the JL measure of a disk of radius r centered at ~.

Proof. Let A be the set of ~ in s' so that for every 8 > 0 and ~ in A there
is a sequence rj ~ 0 with JL (~, rJ ~ er1. By the covering lemma ([9, Th.
2.8.14]) there are (arbitrarily fine) coverings of A using disks of these radii
(and centers on A) which fall into K = K(d) collections consisting of
disjoint disks.

One of these collections C must contain at least 1/K . JL (A) of the mass
of JL. Thus

I/K'JL(A)~"2-JL(~,rJ~£ "2-r1
c

~ e . Lebesgue measure of s' .
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So j.L(A) ~ 10 • K· measure of Sd for any e > O. This proves the proposi-
tion.D

Fix ~o and calculate for x = (R, ~o)

</J(x) = J</J(x,~, a) dj.L (p, </J)(~) •

f

Divide the integral into 3 parts: (i) d(~, ~o) ~ e -R, (ii) e-R
~ d(~, ~o) ~ 10,

and (iii) d(~, ~o) ~ 1O. Here 10 > a is a parameter and d is the spherical or
Euclidean distance in the unit ball model.

An elementary calculation (see [27, Section 1]) shows that for x =

(~o, R) in these 3 regions </J(x, q, a) is comparable to

(i) e+aR

where s = d(g, qo)' Thus

(00) -s« II 2a11 e . s (iii) e-aR ,

</J(x) = </J(g,R)= JeaRdj.L+ J e-
aR l /s2a dj.L + J e-aRdj.L.

(i) (ii) (iii)

The first term is comparable to eaRj.L(qo, e-R
) . The third term is at most

e -aR. We treat the second term by partial integration to obtain (ignoring
constants)

= e -aR J j.L(qo, S )ls 2a
+

1 ds - (constant· first term) + constantts) .

Now by the previous proposition for j.L-almost all ~o, j.L(qo' s) is even-
tually ~C(gO)Sd. So, II = e?" fc-R ...... j.L(qo, s)ls 2a+1 ds is
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(10.1)
-(d-a)R

~ {~ e -(d/2)R

if a >~d,

if a = ~d.

It follows that for R large either the first term (i) is at least as large as
II or the second term (ii) is of the order of II. Thus (i) + (ii) is at least as
large as II which is much bigger than (iii). This proves Theorem (2.13)(b).
The others are easier.

We have also derived the fact that the essential contribution to <!>(x) =

<!> (R, fo) for R large (~R (£» and JL -almost all f ocomes from the part of
the integral with dU, fo) ~ £ for any e > O. This is useful for Theorem
(2.14).

We now write out

<!>I(X) = Jx (f)<!> (x, f, a) dJL,

e

<!>2(X) = J1 . <!>(x, f, a) dJL,

e

where JL = JL(p, <!>2) and x(f) = dJL(p, <!>1)/dJL(p, <!>2)(~)' By the above for
JL-almost all ~o and for R large we only need consider the integrals for
d(~, fo) < c.

Now consider a set A of ~ of positive JL-measure where X(~) is
approximately a. For x = (R, ~o), <!>(x, g,a) only depends on d(g, go), as
indicated above. Moreover, <!>(x,~, a) only varies up to a constant near 1
in ratio on annuli of a definite shape around ~o (again, from the above).

For each ~o in a subset Be A of full JL-measure we can choose e so
that if we divide the s-disk about ~o into concentric annuli of (relative)
constancy for <!>(x,~, a) (x = (R, ~o), R > R(e» each of these annuli will
be mostly filled (relative to JL) by points of A, and the JL-integral of X on
each is approximately a. This follows from Lebesgue density and
differentiation. Then we see that <!>I(X) and <!>ix) are sume of terms in
approximate ratio a which is approximately X(~o)' These sets A fill up JL.
This proves Theorem (2.14).

Now we turn to the proof of Theorem (2.15). Let A be a set of positive
JL-measure so that <!>(R, 0 ~ e(u+E)R for e > 0 and R > R(~, c). Fixing e
we can make R (~, c) independent of ~ by reducing A a little to B. Write
8 = (J + e and r = e- R

• Referring to the decomposition of the integral for
<!>(x) above, we deduce that the first term is ~e~R. Thus JL(~o, r) ~ ra-~ for
any ~o in B.

For any covering of B by balls of radius rj centered at ~j in B we have
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0< J.L (B) :s;; 'Z J.L (gi' r;):S;; 'Z rf-8 .
i
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Thus the Hausdorff (a - o)-measure of B is positive. So the Hausdorff
dimension of A::J B is ~a - 0 = a - U - E for every E > O. This proves
Theorem (2.15).

11. Proof of Theorems (2.17), (2.19), (2.21), (2.23) and (2.24)

If M = Hd+!/r, then p~(x, y) is just LyerP,(xO, rye) where x", yO lie in
H d+

1 over x,y. Thus g~(x,y)=L ye r g,\ (XO, rYe). So if Xo is not on the r

orbit of yO, then g~ (x, y) has the order of the Poincare series
L r exp(-ad(xO, rye)) by Theorem (2.16), a = ~d + (A + id2Y/2. Thus
g~(x,y)<oo for xr!'y if a>o(r) and g~(x,y)=oo for a <o(r) when
ocr) ~ ~d. This means Ao(M)= o(r)(o(r) - d) if o(n ~ ~d by Theorem
(2.6). Otherwise Ao(M) = -id2

, since Ao(M) ~ -id2 by Theorem (2.1) and
Theorem (2.11). This proves Theorem (2.17).

Theorem (2.19) is partially proved in [25] generalizing [20], namely
ocr) is the minimum power (which is achieved) for a measure satisfying
(10.1), [25, Section 2].

If 0> o(n, put a Dirac mass at each point of the orbit r(Y) of a point Y
in the open ball model Bd+! of Hd+l with weight Ir'YI8. A measure of finite
mass results because the Poincare series converges ato > ocr). This
measure satisfies (10.1) but is not supported on s'. The set of measures of
bounded mass satisfying (10.1) supported in the closed ball is a closed set.
Thus let Y approach infinity in a fundamental domain and take a limit to
prove Theorem (2.19)(i).

To prove Theorem (2.19)(ii) we merely let Y approach a limit point
staying in one fundamental domain (then all the mass approaches the
limit set) and this is possible unless r is geometrically finite without cusps.

In that case there is only a measure of exponent ocr) and this is
Hausdorff measure by [25, Section 3]. This completes the proof of
Theorem (2.19).

To prove Theorem (2.21)(i) we merely quote [26], which proves o(n =

the Hausdorff dimension of the limit set for geometrically finite groups, and
apply Theorem (2.17). Part (ii) also follows from [26]. Thus Theorem (2.21) is
proved. The corollary is a local consequence.

Theorem (2.23) follows from Theorem (2.17) and [25, Th. 26]. Theorem
(2.24) follows from Theorem (2.21) and the definitions (see [14]).
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