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Abstract. We prove the rational egodicity of geodesic flows on divergence type
surfaces of constant negative curvature, and identify their asymptotic types.

0. Introduction
We discuss recurrence and transitivity properties of geodesies on hyperbolic surfaces
(complete, two dimensional Riemannian manifolds with constant curvature -1).
Every such surface has the unit disc as universal cover and can be viewed as H/Y
where H is the unit disc equipped with the hyperbolic metric and Y is the covering
group of isometries of H. If SF is a fundamental domain for Y in H then H/Y can
be pictured as 9 with some identifications on dSF.

Let TV be a small ball in the hyperbolic surface H/Y, I be a directed geodesic on
H/Y and xel. Let x(l, t) denote the point on / which is directed distance t from
x We discuss the property,

f
Jo

lN(x(l,t))dt =

for almost all geodesies / and in this case, we try to say something about the rate
at which Jo lN(x(l, t)) dt tends to infinity, as T tends to infinity.

This property is better viewed in terms of the geodesic flow of the surface which
is defined on the space of line elements on the surface (the set of points equipped
with directions). The space of line elements on the surface H/Y may be viewed
as X r = ̂ x [ 0 , 2TT) and the geodesic flow, <p'r:Xr^Xr preserves the measure
mr = Hyperbolic area x Lebesgue measure.

The above mentioned property now boils down to

1A - <Pr(<») dt = oo for mr-a.e. weXr, where A = TVx[0,2v). (1)
Jo

In the case where the surface H/Y has finite area (and wir(Xr) < oo), E. Hopf [6]
proved that the geodesic flow is ergodic which implies that \™ 1A- <p'r dt = oo
mr-a.e. for every TV, and indeed, by Birkhoff's ergodic theorem, that

* mr(A)/mr(Xr) wir-a.e.
T-»oo

In 1939, Hopf, using his ratio ergodic theorem [7], proved that geodesic flows on
hyperbolic surfaces of infinite area are either totally dissipative (J*/- <p'r dt < oo
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166 J. Aaronson and D. Sullivan

a.e. for every feL+(mr)) or conservative and ergodic ( /"/• <p'rdt = <x> for every
/e U(mr), J/>0).

The 1939 result of Hopf is the only one about geodesic flows which we assume.
(A more accessible proof is given in [9]). These results extend canonically to geodesic
flows of arbitrary dimension.

If the integral J^ mr(An<pf'A) dt converges, it is immediate that the geodesic
flow <pr cannot be conservative. It is more difficult to show that if this integral
diverges, then the geodesic flow is not totally dissipative. This was done by M. Tsuji
[18], using complex function theory. We shall give a simpler proof of this result
(which generalises easily to arbitrary dimension) by proving (lemma 1) that:

supj S,(lA)2dmr/Yj S,(lA)dmrJ <oo (2)

for A=Nx(0 ,2w) where S,(f) = \'of- <ps
r ds, and then using a continuous time

version (lemma 2) of the Borel-Cantelli lemma of Renyi [14, p. 391]) to show that
if J^ mr(A n (pf'A) dt = oo then <pr is not totally dissipative.

Lemma 1 is proved by inspecting mr(A n <pf'A) in terms of the arrangement of
the lifts of N in H. The quantity /nr(An<pf'A) is closely related to the angle
subtended at points of N (lifted) by translates yN of N at a distance approximately
t from N, and indeed the integral j ^ mr(An<pf'A) dt diverges iff the total angle
subtended by all translates yN of N at points of N is infinite. The angle subtended
by yN at points of N is approximately 4 diam Ne~2f>^ where py is the hyperbolic
distance between the centres of N and yN. In the case where N is centred at 0
then 4 e~2p* ~ 1 - |y(0)|2. The series Z > e r (1 - |r(0)|)s, 5 > 0, is known as the Poincare
series of F (see proposition 1). We have outlined a new proof of:

T H E O R E M 1. The geodesic flow on the hyperbolic surface H/Y is conservative and

ergodic if and only if the Poincare series of T diverges at 5 = 1 .

Such surfaces are called of divergence type.
The main point of this paper (besides the elementary proof of theorem 1 - see

also [17, chap. 8]) is to say something about the growth rate to infinity of

for <pr an ergodic geodesic flow on a hyperbolic surface of infinite area. We do this
by showing that an ergodic geodesic flow of a hyperbolic surface is rationally ergodic
and identifying its asymptotic type (theorem 2). We now proceed to explain these
terms and their relevance to growth rates.

Let (X, 08, fji, T') be a conservative (= recurrent) ergodic measure preserving flow
of a o--finite measure space. Set

S,(f)=[ f-Tds for/eLV).
Jo

Then, for /e L\, S, (/)|oo a.e. and one may ask for its asymptotic growth rate as t -> oo.
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Rational ergodicity 167

If/u.(X) = 1 then the Birkhoff ergodic theorem states that S,(f)(x)/t^t^$xfdfi
for /t-a.e. x,feLl, and so the growth rate of S,(/)(x)(/e Ll+) is independent of
/ e Ll+ and x e X(mod /i).

If (j.(X) = oo then the Hopf ratio ergodic theorem states that S,(f)(x)/S,(g)(x) -*•
\xfdfj.l\x gdfi for /x-a.e. xeX,f g e L1, Jg^O. This shows that the growth rate
of S,(/)(x) is independent of feL]+, but the only 'absolute' information (w.r.t.
xe X) that can be deduced is that

S, (/)(*)/f-»0 forn-a.e.xeX,feV+.

A search for 'absolute' growth rates for S,(f)(x) (those independent of / e L\ and
x e X mod /A) leads to a study of properties like:

Jx
/<*/* in some sense, for a l l / eL 1 , (3)

x
where a(f) are constants.

Unfortunately, when (i(X) = oo, there are never constants a(f) which satisfy the
convergence (3) in the a.e. sense (see [1] for the analogous result for transformations,
which easily implies this). However, there are flows with fi(X) = oo, for which there
are constants which satisfy the convergence (3) in weaker senses. We s a y / , e L '
converges feebly to ge V if every subsequence of {/,} has a subsequence whose
Qesaro means converge to g a.e., and write ft-~*g- For some (but not all) ergodic
measure preserving flows on X, (fi(X) = oo), there are constants a(t) for which

|
J x

1for some, (and hence all, by Hopfs ratio theorem) / e L1. (The analogous property
for transformations is discussed in [3]). For such flows, the a(t) are uniquely
determined up to asymptotic equality and their growth rate is called the asymptotic
type of the flow. A sufficient condition for (4) is the property rational ergodicity (see
[2])-

A measure preserving flow (X, 38, fj., T") is said to be rationally ergodic if there
is a set A e 38, 0</i(A)<oo and a constant M so that

J Sf(U)2d/i<M(j S,(U)<i/*) for fa 1. (5)

The asymptotic type of T' is then

The inequality (2) is (5) for the geodesic flow. Our main result is:

THEOREM 2. (a) The geodesic flow on a hyperbolic surface of divergence type is
rationally ergodic.

(b) The asymptotic type is given by

a(t)~ I e-
2pUyiy)) any x,yeH.
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168 /. Aaronson and D. Sullivan

It follows from results of M. Rees [13] that for H/Y a Z" cover, f = 1,2, of a
compact surface, ar(t) grows as fi, (v=\), log f, (v = 2).

Theorem 1 (in dimension 2) was noted by Nicholls [10] who combined the results
of [18] and [8]. Independently the second author proved the theorem (in all
dimensions) ([15], [16]) using Brownian motion to get the equivalence of:

(i) ergodicity of the geodesic flow on X/Y;
(ii) recurrence of Brownian motion on H/Y;
(iii) the non-existence of a positive finite Green's function;
(iv) the divergence of the Poincare series;

where: (ii)<=>(iii) is well known in the theory of Markov processes, (iii)<=>(iv) in
dimension 2 is due to Poincare [12] (see also [18]) and (i)<=>(ii) is based on the
fact that a Brownian path in H has an angular limit at oo almost surely.

Properties (ii) and (iii) make the 'construction' of examples quite easy: let A be
any closed subset of the Riemann sphere C containing at least 3 points; then the

A

Riemann surface C - A = M has universal cover H and so admits a hyperbolic
metric. Brownian motion on M with the hyperbolic metric is equivalent to a time
change to Brownian motion on C stopped at A. Thus, Brownian motion on M is
recurrent iff A is invisible to almost all paths in C. This happens precisely when A
has logarithmic capacity zero (for every positive measure ft on A:

G(x) = log \x — y | dfi(y) is infinite

compare (iii)).
One knows that the hyperbolic area of M is infinite as soon as A is infinite. So

we have many examples of infinite volume, hyperbolic surfaces whose geodesic
flows are ergodic.

This article is about surfaces in order to preserve simplicity. Analogous
theorems hold in arbitrary dimensions. Divergence type in dimension d +1 is
Z T e r e~2dp(x>r<y)) = oo and the asymptotic type of the geodesic flow on a divergence
type manifold is a{t) = lpixy(y))sl e^*-^".

1. Notation
We establish notation by recalling the definition of the geodesic flow on a hyperbolic
surface, beginning with

H = {z = (u, v)eU2: \z\ = Ju2 + v2< 1}.

(Readers wishing a more complete recall are referred to [9]). The hyperbolic geometry
on H is given by the arc length element

and the hyperbolic area element

dA(z) = dudv/(l-\z\2)2.

(here z = (w, v)). The hyperbolic distance between two points x, ye H is defined as

p(x, y) = inf \ ds: a is an arc joining x and y \,
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Rational ergodicity 169

and it turns out that p(x, j>) = tanh~' \(x-y)/(l -xy)\, (here the multiplication is
complex). The isometries of H (i.e. transformations of H preserving hyperbolic
distance) are precisely the Mobius transformations of H (z-»(Az-a)/( l — az),
where | A | = 1 and a e H) and their complex conjugates (z -» g(z) where g is Mobius).

The geodesies in H (arcs in H for which the ds-length of any segment is the
hyperbolic distance between the endpoints of the segment) turn out to be diameters
of H and circles orthogonal to dH = {zeR2: \z\ = 1}. A geodesic meets dH at two
end-points, and is actually characterized by these two points. A geodesic can be
directed by ordering these points, and then the geodesic is considered as directed
away from its first endpoint (and towards its second).

The space of line elements of H is H x[0,2n). To each line element co =
(x(a>), 0((o))eX there corresponds a unique directed geodesic passing through
x((o), whose directed tangent at x(o>) makes an angle 6 with the radius (0, 1)<= H.
The geodesic flow transformation tp' is defined as follows at w. If / > 0 , the point
x((p'cj) is the unique point on the geodesic at hyperbolic distance t from JC(&>) in
the direction of the geodesic (away from its first endpoint). If / <0 the point x(<p'a>)
is the unique point on the geodesic at hyperbolic distance —t from x(w) in the
opposite direction of the geodesic (towards its first endpoint). The direction d{<p'io)
is the angle made by the directed tangent of the directed geodesic at the point
x(<p'(o), with the radius (0,1). For example: ^'(0, 0) = (tanh t e'e, 6). Isometries g
of H also act on X in the natural manner:

g(^) = (g(*(<*>)), direction of tangent of g( f) wherever I passes through
x(a>) in direction 6(a>))

It turns out that <p' ° g = g ° <p' wherever g is an isometry of H. Both the geodesic
flow transformations and isometries preserve the measure dm(x, 6) = dA(x) dd on X.

Now let F be a discrete group of isometries of H (i.e. F(x) has no cluster point
in H for xe H). The surface H/T is defined to be H/Y = {T{x): xe H}.

A typical geodesic in H/Y is given by Y(l) where / is a geodesic in H. It turns
out that the space of line elements in H/Y is given by Xr = X/Y = {Y((o): a>eX}
and the geodesic flow on Xr is given by

The surface H/Y may be pictured intuitively as a fundamental domain for Y in H,
that is, a set 9£ H with the property that for every xe H there is unique y e Y
so that y(x)e& (e.g. &={xe H: p(x,0)<p(x, y(0)) for all y*e, yeY}) and
XT=&X[0,2TT).

Via this picture, the measures A on H, and m on X project naturally onto Ar

on H and mr on Xr respectively.
For geometric constructions of fundamental domains, see [4].

2. Recurrence of geodesies and the Poincare series
In this section, we prove theorems 1 and 2 by studying the amount of time spent
by geodesies in small balls of the surface. To fix ideas, let ^ r be a fundamental

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0143385700002364
Downloaded from https:/www.cambridge.org/core. IP address: 24.45.145.250, on 25 Jun 2017 at 15:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0143385700002364
https:/www.cambridge.org/core


170 /. Aaronson and D. Sullivan

domain for F. Let x, y e 3^, and e > 0 be so that

(Here, Np(x, e) = {ze H: p(x, z)<e}). Set

A* = Np(x, e) x[0, 2TT) C y r x[0, 2 77)

and let A* be the projection of Ax in Xr. We first study the average amount of time
spent in A^ by geodesies starting in Ax. Set, for t > 0:

ar(x,y;t)= X (1 -tanh2p(x, y(y))) = a(x,y; t)

PROPOSITION 1. {̂  mr(Axn (pfsA^) ds = oo iff a(x,y; t)^,^xoo, and in this case:

1 ' • • • - - • • — • (2 .2)

\ w I

Proof. Set a(t) = | 0 mr(b
r
xn (prsAr

y) ds. Then

a ( r ) =

where

o Jo

Setting 4>z(w) = z + w/l+zw, and using <I>2 • <ps = (ps • <t>z,

, z )= I | I U;>yAv-<ps(O,0)dsd0
rer Jo Jo

= 1 l^'yH^itanh seie)dsd0
rer Jo Jo

[2ir rtanhl Ar An

yer Jo Jo 1 - r

r= 1
yer J NP(O,I)

>r1
Now suppose that we JVp(4>r1y(j;)» e), then

Thus:
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Rational ergodicity 171

and, since p(z, x)<e:

<P(t,z)>A(Np(y,e)) ^ (1 -tanh2 (p(y(y), X)-2B))

p(y(y),x)st-2e

>e-*°A(Np(y,e))a(x,y;t-2e)

since

, , 1-tanh2 ((±5) cosh21 2R

c"2*< —-- = -y- -<e 2 s forS>0,
1-tanh2/ cosh (t±S)

whence
a(f) — e~AeA(Np(0, e))2a(x, y; t — 2e) = e~4e —5 mr(A)2a(x, y; t — 2e). (2.3)

Also:

•,z)s I (l-tanh2(p(z,r(j;))-e)) f - - 1^,
yer JJVP(O,I) |w|

s ^ (l-tanh2(p(z,y(y)-£)) J

Now, for y 5̂  e

tanh(p(y(y), z)-£

^ — \ — A(Np(y,e))
tanh e

Hence

a(t)<const. a(x,y;f +2e).

This proves that a(OT°° iff a(x,y; r)foo. Noting that JNp(4,j'r^),E) (1/|H)
A(iVp(_v, e)) as p(x, y(y))^-oo uniformly in ze Np(x, e), we see that when a(f)T°°:

li^ ?tl} < e
4EA(NJ0, e))2 = e4e ( - ^ mr(A)2 ). (2.4)

•~°° a(x, y, t+2e) p \4TT /
Now, when a(r)|oo, necessarily a{t +e)~a(t) as r-»cx) for all e>0, (Qsa'(t)^
mr(A), so (2.3) and (2.4) now yield (2.1) and (2.2). •
Next, we prove slightly more than the inequality (5) for the sets A .̂

LEMMA 1. For every x, y e 9r and e > 0 so that Np(x, 3e), Np(y, 3e) £ 3FT there is a
constant M < <x> so that

where

5.(U)= I JA-
Jo
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172 J. Aaronson and D. Sullivan

Proof. Writing Ax = Np(x, e) x[0, 2TT), and Ax for the projection of Ax in Xr

Sl(lAx)
2dmr = 2\ mT{^yn<pr"^x

J \\ Jo Ju

= 2 [ Ht,z)dA(z),
J Np(y,e)

where

<K',z)= I I I I \^x-<pu{z,e)\y^-<pv(z,e)dudvde
/3,-yer Jo Jo Ju

= \ I U;.pN(tanhMc'*) I I l4,->yN(tanhvew)dvd6du,
Jo £eru Jo -yer(/3) J u

er:|p(/3(x), z)-u|<e}, N = Np(x, e) and

er: Uj'pN(tanh Me'e)U;lTiV(tanh ue'e)

Denote by AT the angle (set) subtended by <£>~lyN at 0. Clearly

Now one can calculate that for yeH, p(0, y) > e, the angle subtended by Np (y, e)

where J = |3;|e'arg->') 0<argj<27r and | | 0 - ^ | | = min{|6>-^|, (2ir- | f l-^ |)}. This
shows that if p(0, $7 l PW)^p(0 , <&r'r(^)) + e and Ap n Ay # 0 then:

where M is constant. Set

rl(p) = {yer:p(0,<i>;ll3(x)^p(0,^:ly(x)) + e and

||arg <&7'/8(x) -a rg * : ' y (x ) | |

Since r(y3)cr ,( /3) , we have that

, z ) s | I I f | l^yN(XanhveM) dvd0.
Jo Peru 7er,(/3) Jo Ju

Fix M,/3eTu and yer,( /3) . Then:

f2" f
Jo Ju Z y ' X'S

= r [tanhiiN
JO Jtanhu

drdd
"TV

- f izH!, r ,
J | w | lNp(*2'y(x),e)(lM

;j
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Rational ergodicity 173

where dAl(w) = (l/\w\) dA(w). Hence, for u and /3eF u fixed:

I I I \*7'yN(tanhv eie)dvd6
rer,(/3) Jo Ju

p(O,<t>j y(x)st+e

y , ( / )
p(O,<t>r y(x))st+e

since A,(JVP(O, e))<oo and A,(Np(x, e))-» A(JVP(O, e)) as |x|-» 1. In order to pro-
ceed, we need further information about r,(/3). Suppose that u,VeH satisfy
p(0, «)<p(0, V) and |argw-arg V| < X e"2p(0-u). Let u1

 = (|M|/| V|) V. Then, since
0, M1, V lie on a single geodesic:

0,V) = p(0,u1)+p(u\V).

Also, since |M| = |M'|, p(0, w) = p(0, M1), and, by the triangle inequality:

p(«',V)

Thus:

p(0, V)>p(0,M)+p(u, V)-p(u, u1)

To estimate p(u, M1), we integrate ds along the circular arc centred at 0 and joining
u to u\ and obtain

Hence, p(0, V)>p(0, w)+p(«, V)-(X/2). If, instead of p(0, «)<p(0, V), we only
suppose that p(0, w)<p(0, V) +e, then we obtain

p(0, V)>p(0,M)+p(u, V)-max{*72,2e}.

Now set r2()S) = y3"1rl(/3). If yer2(/3), then /3yer,(j3) and so

P(O, *;'/3(x)) < p(o, o ^
||arg <D;')3(x) -arg *7'/8y(x)|

Thus, from the above,

p(0, *7'0y(x)) > p(0, *;'/3(x)) +p(*7'j8(x), <D;^y(x)) - max {M/2, 2e}

= p(j, )8(x)) +p(x, -y(x)) -max {M/2,2e}- e,

(since p(y, z) < e), which shows that

yCx))^ fyj,, e-2p(y,p(x)) y e-2p(x,y(x))

Now, yer2(/3), p(0,4>j'y3-y(x))</ + e implies that

p(x, y(x)) < p(0, *7'/8-y(x)) -p(y, /8(x)) +max {M/2, 2e}

< r +max {M/2,2e} +2e.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0143385700002364
Downloaded from https:/www.cambridge.org/core. IP address: 24.45.145.250, on 25 Jun 2017 at 15:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0143385700002364
https:/www.cambridge.org/core


174 J. Aaronson and D. Sullivan

Thus:

r<*)> < M" e-2p(y-p(x))ar(x, x; f +max {Af/2, 2e} + 2e)

p(O,*j'r(x)si+e

and therefore:

i/»(r, z)<M"ar(x, x ; /+max{M/2, 2e}+2e) X e~2p(-yMx)) du.
Jo /3sru

To finish, we note that:

I £ e-2p(^(*»dMs4ear(>>,x;/+2e); (2.5)
Jo ?er,,

a r(«, V:0se2 p < u-u ' ) + 2 p ( V ' v" )a r(u1 , V1; f + p(w, M1) +p( V, V1)); (2.6)

— Q r U ^ , < + M )
hm — < o o ; (2.7)
'-«> ar(x, x, 0

obtaining:

I S,(lAJ2dmr=\ ^{t, z) dA(z)

5,( lAJdmr) ,

by proposition 1. D

Proposition 1 shows that a hyperbolic surface with recurrent geodesies is necessarily
of divergence type. The fact that a divergence type surface has some recurrent
geodesies will follow from lemma 1 and the next lemma (which is a continuous
time version of the Borel-Cantelli lemma of Renyi mentioned in the introduction).

LEMMA 2. Suppose that (X, 3ft, (i) is a finite measure space and that for t>0, A,eB
so that lA,(x) 's a jointly measurable function of (x, t). If J^ M(A,) dt = <x> and

lim fj,(AunAv)dudv/(\ n(As) ds ) =/C<oo,
(-.oo Jo Jo / \Jo /

then

Proof. Set 6(0 = Jo/*(*,) ds, <D, = (1/6(0) J£ U.ds, and Aco = {xeX: | " lA,(x) ds =
oo}. Since ft(0^°° we have that <I>,(x) -^^co0 for every xeAc

x. Also, there exists
/„ -> oo so that

I
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Rational ergodicity 175

This means that the sequence {<&,„} is uniformly integrable on X (and hence on
A^). Therefore

> 0
n-»oo

(because <!>,„ —» 0 on A^,). But, \ x <&, d/i = 1 for every f, so

> 1 .
f

By the Cauchy-Schwartz inequality:

n-»oo

and so

Kn>:l D

Thus, we obtain that if A*c X r where F is divergence type, then

mr | w e X r : lAr • <p'r(a>) dt = oo\\ > 0 ,

(i.e. there are some recurrent geodesies), and hence, by [8]:

the geodesic flow is conservative and ergodic.

This completes the proof of the advertised part of theorem 1.
Since we now know that the geodesic flow on a divergence type surface is

conservative and ergodic, the inequality (5) tells us that it is rationally ergodic. The
next proposition completes the proof of theorem 2 by identifying the asymptotic
type of the flow.

PROPOSITION 2. Let F be of divergence type. Then there exists aT(t) such that

S,(f) L. fdmr
«r(0 Jxr

for every fe L\mr), where S,(/) = j'of- <ps
T ds. Moreover, for every x,yeH:

ar(x,y;t)~ar(t)/4ir2 a

Proof. Clearly, any such constants a(t) must be defined uniquely up to asymptotic
equality. Thus, to prove the proposition, it suffices to show that for any x,yeH,

fdmr/4Tr2 forfe V(mr).

Choose x,yeH. Evidently ar(x, y;t) = ar(x, y(y); t) for y e F, t > 0. Thus, without
losing generality, we may assume that p(x, y)<p(x, y(y)) for every y e F , y^e.
From this, we deduce that there is a fundamental domain & for F with x, y e &P.
Hence, for e > 0 small enough, proposition 1 and lemma 1 apply to

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0143385700002364
Downloaded from https:/www.cambridge.org/core. IP address: 24.45.145.250, on 25 Jun 2017 at 15:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0143385700002364
https:/www.cambridge.org/core


176 /. Aaronson and D. Sullivan

K=Np(x, e) x[0, 2TT) and A* = Np(y; e) x[0, 2TT). TO begin, fix e > 0 small enough
and set

Then, clearly:

f (S,(l^/a(t))dmr=mr(M
2

and, by lemma 1:

sup I (S,(lA')/a(*))2 dmT«x>.

We show that S,(f)/a(t) -~» Jx r /dm r . To do this, suppose ffc-»°o. There exists a
subsequence (also denoted by ffc)'and <I>e L2(A£) so that

* weakly in L2(AD-

Clearly JA» 4> dmr = mr(Ae)2. There exists a further subsequence (still denoted by
tn) satisfying:

I r
< 1/2",

for 1 < m < n — 1. In this situation:

Now the set on which this convergence takes place is clearly ^-invariant, as is the
limit function 3>.

By ergodicity of cpr, the convergence set (containing A*) must be almost all of
Xr , and the limit function 4> must be constant. But jA'3> dmr= mr(A

£)2, so
<J> = mr(A*) and

1 N

— Z (S,n(\&;)/a(tn)) —» mr(A
E) a.e.

and, by Hopfs ratio theorem:

i I (S,,(/)/a(O) -> I fdmr a.e. forall/eL1

N n=\ Jxr

LThis proves that S,(f)/a(t) -^» fdmT f o r a l l / e L 1 .
Jx

The above is true for a(t) = ae(t) for e > 0 small enough. Thus, fixing e0 small
enough, we have that ae(t)~ ac°(t) as f-»oo for every 0 < e < e o - But, by proposition
1, we have that

lim
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Rational ergodicity 177

Thus for e > 0 small enough:

e,t, aAx,y;t)
a it) ^ — asf-»oo •

If mr(Xr)<oo then, by the Birkhoff ergodic theorem, ar(t)~ t/mr(Xr) and so, by
proposition 2, we recover the well known result that

. , 4ir2t 2-nt

In this case (mr(Xr) <oo) we can do better. Hedlund [5], proved that the geodesic
flow is mixing, i.e.

mr(An<pr'B) * mr(A)mr(B)/mr(Xr).
t-*oo

In particular:

I mr(Kn<pr*A;)dS > 2cmAK)mr(L'y)/mr(XT).
Jt-c <-°°

for c, e > 0.
On the other hand, a calculation along the lines of proposition I shows that

, . + c

ao(t) e-4eA(N)2u(x,y,c~2e,t)^ mr(A* n <pr':Ae
y) ds

J l-c

where u{x, y, c, t) = Zyer,\P(xMy))-t\^c e~2p(xMy)) and ao(t), a, (t) ->„„ I, from which
we obtain that

4TTC
u(x, y, c, t) * for c>0.

From this one can obtain that

2 t } > ir/A(Hr);

(see Patterson [11] where this, and refinements thereof, are obtained by different
methods).
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