AN ANALYTIC PROOF OF NOVIKOV'S THEOREM
ON RATIONAL PONTRJAGIN CLASSES

by D. SULLIVAN (1) and N. TELEMAN (2)

We give here an analytic proof for the following:

Theorem 1 (S. P. Novikov [3]). — The rational Pontrjagin classes of any simply-connected compact oriented smooth manifold are topological invariants.

This problem was previously posed by I. M. Singer [4] and D. Sullivan [5]. Theorem 1 is a direct consequence of the following Theorems 2 and 3.

Theorem 2 (D. Sullivan [5]). — Any topological manifold of dimension $\neq 4$ has a Lipschitz atlas of coordinates, and for any two such Lipschitz structures L_i, $i = 1, 2$, there exists a Lipschitz homeomorphism $h : L_1 \to L_2$ close to the identity.

Remark 1. — The proof of theorem 2 in general uses Kirby's annulus theorem to know that topological manifolds are stable. The proof of Theorem 2 for stable manifolds is more elementary. Simply connected manifolds are stable and these are sufficient for proving Novikov's theorem.

Theorem 3 (N. Teleman [6]). — For any compact oriented boundary-free Riemannian \mathbb{R}-manifold M and for any Lipschitz complex vector bundle ξ over M, there exists a signature operator D^*_ξ, which is Fredholm, and its index is a Lipschitz invariant.

Theorem 2 allows a strengthening of the statement of Theorem 3.

Theorem 4. — For any simply-connected compact, oriented, boundary-free topological manifold M of dimension $2 \mu + 4$, and for any complex continuous vector bundle ξ over M, there exists a class $\mathcal{C}(M, \xi)$ of signature operators D^*_ξ which are Fredholm operators. The index of any of these operators is the same and is a topological invariant of the pair (M, ξ). When M and ξ are smooth, the smooth signature operators D^*_ξ (cf. [1]) belong to this class $\mathcal{C}(M, \xi)$.

(1) Partially supported by the NSF grant # MCS 8102758.
(2) See also P. Tukia and J. Väisälä [7] and [8].
Proof. — Pick a Lipschitz structure \mathcal{L}_i on M by Theorem 2, and regularize the bundle ξ up to a Lipschitz vector bundle $\xi_\mathcal{L}$. Theorem 3 says that the class $\mathcal{C}(M, \xi)$ is not void, and because the Lipschitz signature operators generalize the smooth signature operators, the last part of the theorem follows.

Suppose now that \mathcal{L}_i, $i = 1, 2$, are two Lipschitz structures on M and that $\xi_\mathcal{L}$ are corresponding Lipschitz regularizations of ξ.

The Theorem 2 implies that there exists a Lipschitz homeomorphism $h : \mathcal{L}_1 \to \mathcal{L}_2$ close to the identity (isotopic to the identity). As h is isotopic to the identity, the bundle $h^*\xi_\mathcal{L}$ is Lipschitz isomorphic to $\xi_\mathcal{L}$; let $\overline{h} : \xi_\mathcal{L} \to \xi_\mathcal{L}$ be such an isomorphism. Take any Lipschitz Riemannian metric $[\xi_\mathcal{L}^\Gamma]_i$ on M, $i = 1, 2$, and any connection Δ_i in $\xi_\mathcal{L}$; the signature operators $D_\Delta^\xi_\mathcal{L}$ are defined. From Theorem 3 we know that the index of $D_\Delta^\xi_\mathcal{L}$, i fixed, is independent of the Riemannian metric Γ_i and the connection Δ_i chosen. In order to compare Index $D_\Delta^\xi_\mathcal{L}$ and Index $D_\Delta^\xi_\mathcal{L}$ themselves, we chose Γ_2 and Δ_2 arbitrarily, but we take

$$\Gamma_1 = h^*\Gamma_2, \quad \text{and} \quad \Delta_1 = \overline{h}^*\Delta_2.$$

From the very definition of the signature operators, we get that the homeomorphisms h, \overline{h} allow us to identify the corresponding domains and codomains of the operators $D_\Delta^\xi_\mathcal{L}$, $D_\Delta^\xi_\mathcal{L}$; with these natural identifications, $D_\Delta^\xi_\mathcal{L}$ and $D_\Delta^\xi_\mathcal{L}$ coincide, and therefore, they have the same index.

Proof of theorem 1. — Suppose that M^{2n} is a smooth manifold, and ξ is a smooth complex vector bundle over M. The signature theorem due to F. Hirzebruch, and subsequently generalized by M. F. Atiyah and I. M. Singer [1], asserts that

$$\text{Index } D^\xi = \text{ch} \xi.L(p_1, p_2, \ldots, p_w)[M]$$

where L is the Hirzebruch polynomial and p_1, p_2, \ldots, p_w are the Pontrjagin classes of M. Theorem 4 implies that the right hand side of this identity is a topological invariant of the pair (M, ξ). By letting ξ to vary, $\text{ch} \xi$ generates over the rationals the whole even-cohomology subring of $H^*(M, \mathbb{Q})$. From the Poincaré duality we deduce further that the cohomology class $L(p_1, \ldots, p_w)$ is a topological invariant. It is known that the homogeneous cohomology part L_i of degree $4i$ of $L(p_1, \ldots, p_w)$ is of the form (see e.g. [2])

$$L_i = a_i p_i + \text{polynomial in } p_1, p_2, \ldots, p_{i-1}, \quad a_i \in \mathbb{Q}, \quad a_i \neq 0.$$

Therefore p_1, p_2, \ldots, p_w are polynomial combinations with rational coefficients of L_1, L_2, \ldots, L_w, which, as seen, are topological invariants.