
CONFORMAL DYNAMICAL SYSTEMS* 

by 

Dennis Sullivan 

i. Iteration 

In many parts of geometry and analysis the situation arises in 

which one considers a set of differentiable transformations of an un- 

derlying manifold obtained by iterated composition of a given set of 

initial or ~en__~e[ati~ transformations. One is then interested in the 

possible positions and shapes of the images of a neighborhood of a 

general point by the total set of transformations. Questions as to 

whether the images of an initial neighborhood return infinitely, often 

to intersect the initial neighborhood or whether the iterated images 

wander off to accumulate elsewhere -- perhaps even a9 ~ if the un- 

derlying space is non-compact -- are the basic questions of %o9_p_ ~- 

logical dynamics. 

The distribution of the images of a generic point relative to 

a given measure on the space is the subject of measurable dynamic ~ or 

er~odic theory (a name especially used for a singly generated set of 

transformations -- because of the Von Neumann-Birkhoff ergodic theo- 

rem). The features relative to topology and measure theory can be 

quite different when the iterated transformations squeeze of distort 

the neighborhoods in an unbounded manner. 

For example, let C denote a Cantor set of positive measure 

on the circle S 1 bounding the unit disk D. Let F denote the 

group of transformations of S I in PSL(2,R) generated by the set of 

non-Euclidean reflections of the disk D which interchanges each 

* This paper is an expanded version of the Colloquium Lectures of 
the 1982 American Mathematical Society Winter Meeting and of the 

lecture given at this Conference August 1981. 
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complementary interval I of the Cantor set with "-(SI-I). Then every 

F orbit of a point on S I is dense in S I But the orbit of the 

Cantor set partitions a part of the circle having positive linear 

measure zero into disjoint copies of the Cantor set. 

F is the group generated by 

reflections in the sides of 

non-Euclidean convex hull 

of the Cantor set. 

On the other hand it is easy to show that a group of transfor- 

mations of a manifold which do not distort distance at all and which 

has dense orbits acts er~odically -- given two sets A and B of 

positive measure some image of A intersects B in a set of positive 

measure. 

In the above example the transformations have an unbounded 

amount of geometric distortion. Thus we are faced with the problem of 

understanding the distortion produced by l__ar~e iterated com~positiens 

of transformations from a ~iven set. If the set of transformations 

under study form a continuous group it is only the distortion trans- 

versal to the orbit which needs to be considered. To make the prob- 

lem tractable the generating set will usually be finite or ~t least 

compact. For example the phenomenon of the example cannot happen for 

a finitely generated subgroup of projective transformations, PSL(2,R), 

acting on the circle. (See Theorem i.) 

Of course, for any composition of differentiable transforma- 

tions the tangent map is the product of the tangent maps of the suc- 

cessive factors. Thus for the linear part of the distortion we will 

have a large, random product of matrices taken from a bounded set. 

Understanding such random products is a field in itself. The main 

tools are the boundary theory of Lie groups of Furstenburg as used in 

work of Margulis, the multiplieative ergodie theorem of 0silidec, and 

the Shale, Anosov, Pesin approach. 
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Actually, there is already a rich supply of dynamical examples 

when all the derivatives encountered are scalar multiples of ortho- 

gonal transformations (~ conformal transformations). These include 

all differentiable examples in a space of one real dimension, all 

complex analytic examples on a one complex dimensional manifold, and 

any group of Moebius transformations of the n-sphere. For these con- 

formal dynamical systems the understanding of the linear distortion 

simplifies to the problem of determining the scalar multiples or con- 

formal factors. This is of course an abelian computation as for dimensioi 

one, and we shall see common features of 1-dimensional systems and 

conformal systems in higher dimensions. 

After one has come to terms with the linear part of the dis- 

tortion of an iterated composition (the tangent map) there remains 

the difficult problem of the non-linearit~, the unbounded deviation 

of the iterated composition on a neighborhood from any linear approx- 

imation. 

For conformal transformations the non-linearity problem is si- 

milar to the non-linearity problem in dimension-one. In dimension 

one a natural measure of non-linearity of a transformation f is 

L(f) = (~ f' )' = fx/f, where prime denotes differentiation. The com- 

position law L(fog) = (L(f)og) g' + L(g) leads to a general prin- 

ciple of linearity for certain situations in dimension one. (See 2)). 

This principle is also valid for the volume distortion of an iterated 

composition of expanding maps. 

Again in dimension one a natural measure of non-projectivity 

of a transformation f is the Schwarzian derivative S(f) = L(f)' - 

- i/2(L(f)) 2 = f/"/f' - 3/2(fH/f" ) 2. The composition law S(fog) = 

= (S(f)og)(g') 2 + S(g) leads to certain results (David Singer, 

Misuriewicz~ Guckenheimer). 

2. Distortion lemmas, C 2 Denjoy theory. 

We study the non-linear geometric distortion in an iterated 
\ 
composition gn = fnOfn_l o ...o fl" Let f/ denote a numerical 

measure of distortion which multiplies under composition. For exam- 
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ple, volume distortion or linear distortion for conformal maps. Sup 

pose the non-linearity measuremert, grad(log f'), is bounded by N 
n-i 

for each of the generating transformations f. and that ~ dis- 
l 

i=O 
tance (xi,Yi) < L where x 0 and YO are two initial points and 

(xi,y i) = (fi(~i_l),fi(Yi_l)) = (gi(×0),gi(Y0)). 

• ' at the two point~ x0,Y 0 is bounded on Lemma 1 The ratio of gn 

both sides by exp I(L'N). 

Proof .  ( c l a s s i c a l )  

Ilo~ g ~ ( X o ) / g ~ ( y o ) ]  = 

n 

log ]q q(xi_ I) - log U f'i(Yi_l) I 
i= 1 i=l 

n 

l=l 
]log f[(xi_l) - log f[(Yi_l) I 

n 

-< ~ N • distance (Xi_l,Yi_l) < N'L. 
i=i 

Q.E.D. 

Remark. In particular for an infinite sequence fl,f2, ... 

distance (xi,Yi) = L < ~ we have for all n, 
i=0 

so that 

flog g~(Xo)/g~(yo) I is bounded independently of n (by L'N). 

This simple computation has a second corollary for one-dimen- 

sional transformations. Let C be a collection of compositions (or 

words) in the generating transformations which satisfies 

gn = fn°fn-I o...o fl in C implies gn-I = fn-i °'''° fl in C. 

Let gnt denote the linear distortion 

t 
Lemma 2. [x I E gn (x) < ~} 

gn c c 

Proof. (Schwartz). If k > i, 

length n in C that there is 

distance (x0,Yo) < 6 . Namely, 

is an open set. 

one shows by induction on the word 

> o so that g~=~ ~(x0) for 
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n 
t 

I l o g  g n ( Y o ) / g ; ~ ( x o ) l  ~ z 
i = l  

n 

; E 

i = l  
n 

< Z 

i = l  

=<NX6 

N distance 

N distance 

g[_l(X~) 
n-i 
Z 

i=l 

(Xi_l,Yi_ I) 

(gi_l(xo),gi_l(Yo) ) 

distance (x0,Yo) 

t 
gi_l(X0) by induction. 

If ~ g~.(x0) < ~, then we can choose 8 small enough to 
gi 6C 

complete the induction. But then distance (x0,Y0) < ~ implies 

( ) '( ) 
gn < ~ E gn x0 < ~ Z ' Yo = 

gn  6C gnEC 

From these general remarks it is easy to derive much of the 

C 2 Denjoy theory. For example, 

(i) (Denjoy) A C 2 diffeomorphism of the circle without a 

periodic point has only dense orbits (and thus by Poincar6 

is topologically conjugate to a rotation). 

(ii) (Rosenberg and Sullivan) A complex analytic homeomorphism 

of a neighborhood of an invariant rectifiable closed curve 

in ~ with no periodic points on the curare has only dense 

orbits on the curve. 

(iii) (Sacksteder) In a C2-codimension one foliation of a compact 

manifold by simply connected non-compact leaves all leaves 

must be topologically dense. 

These are all results of topological dynamics. There are also direct 

corollaries in these three cases relative to the natural one-dimen- 

sional measure and measurable dynamics. 

Theorem i. In each of the examples above there is no set of positive 

measure which intersects each orbit (or leaf) in at most one point. 

Namely 7 these d}~amical systems are recurrent or conservative -- for 

every set of positive measure A infinitely many iterated transfor- 

mations brin~ part of A back to A. 

Problem. Is case (iii) ergodie? (i) and (ii) are known to be 

(Katok, Herman,...) 
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Proofs and generalizations. 

(i) (Denjoy) If a C 2 diffeomorphism f of the circle has an 

invariant Cantor set, the complementary intervals have finite total 

length, and are wandering. By Lemma 1 the derivatives of n-fold com- 

positions at various points in one inter%~al are commensurable. Thus 

the total sum of derivatives along one orbit is comparable to the 

total length of intervals and so is finite. This is valid even at 

the endpoints of one interval. By Lemma 2 the sum of derivatives 

along one orbit is finite on a neighborhood of one of these endpoints 

x 0. In fact from the proof for an interval I about x 0 I (fn)'yl 

is bounded by a constant times I (fn)I x0 I , and so it tends uniformly 

to zero. By recurrence at x 0 some fn(xo) lies close to x 0 • 

Thus we can assume fnl c I and we have a periodic point. This con- 

tradicts the assumption, proving f is topologically transitive. 

(it) (Rosenberg-Sullivan) The salne argument as in (i) works here. 

One point of some subtlety perhaps is that the one-dimensional calcu- 

lations are valid for measuring lengths of images of rectifiable arcs 

by fn because f is a conformal map. 

Problem. (a) Is such a statement as (it) true for a complex analytic 

homeomorphism defined near any invariant topological curve? 

(b) Is there a real analytic homeomorphism of the circle giving 

a Denjoy type example (no periodic points but not topologically tran- 

sitive)? 

(iii) The proof is similar to that of (i) using the holonomy pseudo- 

group on one transversal which generates a collection C of transfor- 

mations with (by compactness) a finite number of generators. If there 

is a non-trivial minimal set of leaves it must intersect the trans- 

versal in an invariant Cantor set. The complementary intervals must 

wander because the Cantor set is a minimal closed invariant set. Now we 

are in position to do the argument in (i) line by line using the 

C-orbit here in place of the fn-orbit there. One constructs a con- 

tracting periodic point and thus holonomy in one leaf. This contra- 

dicts simply connectivity. 



731 

Remark. Lest the reader think this type of argument (invented by 

Sch~arz and Saksteder for the above case) goes forever we mention the 

following example. If D denotes the endomorphism @ ~ 2@ on the 

circle for each irrational ~ there is (Douady, Sullivan, Thurston) 

a minimal D-invariant Cantor set K(~) where D identifies exactly 

2 endpoints and the order structure of x,Dx,D2x~.., for a general 

point of K(~) is that of the orbit of a point under the rotation 

by ~. 

However, one can easily prove 

(iii)' There is no proper infinite closed invariant set for an 

expanding endomorphism D of S 1 on which D is a homeomorphism. 

Proof. (Douady) An infinite compact metric space cannot have a self 

homeomorphism which uniformly decreases the distance between suffi- 

ciently near pairs of points. 

Theorem 1 Proof. A dynamical system is conservative if and only if 

for almost all points x the sum of volume distortions evaluated at 

x of all transformations defined at x is a divergent series. 

(Exercise) . 

In real dimension one we have by Lemma 2 this convergence set 

is open. The set is invariant by definition. But we have already 

proven above these three dynamical systemS (i), (it), (iii) are minimal 

(all orbits are dense). Thus if this set is non-void it is everything. 

Then again we construct periodic points which contradict minimality. 

3. Analytic functions and mappings. 

In the 1880's Poincar~ introduced the subject of discrete sub- 

groups F of complex linear fractional transformations 

w 9 aw + b/cw + d acting conformally on the plane or Riemann sphere. 

These were the monodromy groups of 2nd order differential equations 

a(z)w 'l + b(z)w' + c(z)w = 0 where the inverse function of the multi- 

valued (ratio) solution defined in C-[ zeroes of a (z)J was single 

valued in some domain. Thus Poincar6 investigated complex analytic 

functions F(w) invariant or automorphic under the action of F. 
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The natural domains of definition of the automorphic functions 

F(w) were the connected components of the coJuplement of the Poincar6 

limit set to which every orbit of F in C clustered. 

In the first part of this century Fatou and independently Julia 

studied the topological dynamics associated to the iterated composi- 

tions of a complex analytic self mapping of the sphere, z ~ R(z). 

Fatou was interested in analytic functions satisfying functional equa- 

tions associated to rational substitutions of the form z 9 R(z). For 

example, F(R(z)) : X'F(z), studied for Ikl / 1 by Koenig, Shroder, 

and by Poincar6 in the nineteenth century, and for IXI = 1 by 

C.L. Siegel in the 1940's. 

Again the natural domains of definition for these functions 

satisfying functional equations were the connected components of the 

complement of a limit set associated to the dynamics of z ~ R(z). 

This limit set -- now called the Julia set -- is defined to be the 

complement of those points which have a neighborhood where the con- 

formal factors (in the spherical metric) of the iterates R, R'R, ... 

are uniformly bounded (the stable points). 

We will mention some common features of these two situations 

related to the conformal prope~cties of the mappings involved. 

First the topological dynamics. For the Poincar6 limit set 

A(F) of an~ discrete group F one knows the V orbit of any point 

is dense in A(F). In complete analo$~r for the Julia set J(R) o_~f 

the rational ma~ z ~ R(z) one knows (Fatou-Julia) the backward 

orbit of any point in J(R) is dense in J(R). 

On the complement Q(F) of the Poincar6 limit set A(F) the 

action of F is properly discontinuous (for each compact K c Q(F) 

the?e are only finitely many y 6 F so that ¥K n K / 0). One can 

then form a quotient Riemann surface Q(F)/F. A famous theorem of 

Ahlfors (1965) is that this Riemann surface for a group F of d-ge- 

nerators has finite type (it is obtained from a compact Riemann sur- 

face by removing finitely many points.) In particular, the components 

of the complement of the limit set A(F) fall into finitely many F 
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orbits (~ 2d-2), and it is impossible for one of these orbits to be 

a wandering disk. 

The topological picture of the action of z * R(z) on the 

complement of Julia limit set J(R) was less well know until recently. 

For example, could one component be a disk D so that all the images 

D, R(D), R'R(D) .... are disjoint? If such a wandering disk exists, 

the total area on the sphere is finite. Thus ~ IRa' (z)I 2 < ~ for 
n 

almost all z in D. 

One is tempted to use the ideas of 2) to arrive at a contra- 

diction in the manner of Denjoyts theorem for C 2 diffeomorphisms of 

S 1 (which analogously asserts there is no wandering interval on S I.) 

Such an elementary proof is not available at the present. One 

proves the following theorem by using the measurable Riemann mapping 

theorem (Ahlfors-Bers 1960) to construct, if the conclusion is false, 

an infinite dimensional space of complex analytic self-mappings of 

C U ~ with a given degree, and thus a contradiction. 

Theorem 2. (Sullivan [ 1982]). Under the forward iteration of a ra- 

tional map of degree d, z 4 R(z) the connected domains of the 

complement of the Julia limit set J(R) map into finitely many cyclic 

orbits of domains. 

These cyclic stable regions can be classified into five types. 

The first two types, attractive basins and parabolic basins have fun- 

damental domains for the equivalence relation: x ~ y if and only if 

fn x = fmy some n,m ~ 0. The third type, s__u_perattractive basins do 

not, but they are foliated by the closures of the classes of the equi- 

valence relation, x ~ y if and only if fn x = fny, n ~ O. The last 

two types are rotation domains, Siegel disks or Herman rings, which 

are foliated by the closures of forward orbits. (See figure i.) 

(i) An attractive basin D arises from an attractive periodic 

cycle ¥ with nonzero derivative of modulus less than one, 

y z U fz U...U fn-I : z, fnz = z, 0 < [(fn), (z)l < I, and D con- 

sists of the components of W (y) = U [y [ lim distance (fny,fnx)=O] 
s 

xE y n*~ 
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containing points of y. Fatou [ 1918] showed that such a D must 

contain a critical point of f. Thus there are no more than 2d-2 

attractive basins for an endomorphism of degree d. 

If we remove from D the inverse orbit of Y, { U f-ny} , 
n~0 

the set of ~ equivalence classes (x ~ y if and only if fnx = fmy) 

defines a torus with branch points corresponding to the critical points 

of f. This follows easily from the local model of f near y ~ whel~e 

near a fixed point of a power of f we have z 4 k z, I~ I < i. 

(ii) A parabolic basin D arises from a non-hyperbolic periodic 

cycle y with derivative a root of unity, y = z U f(z) U...U fn-lz, 

z = ~'(z), ((fn), (z))m = I, ¥ is contained in the frontier of D, 

and each compact in D converges to y under forward iteration of f. 

(Fatou [ 1918] .) The local picture of the dynamics consists of para- 

bolic sectors arranged around the fixed point of a power of f which 

t 
in fecal coordinates is z ~ z + z + .... Fatou [ 1918], Camaeho 

[ 1979] • 

o moe 

Z -~ Z + Z + .°o 

The local model produces a fundamental domain for the global 

dynamics on D because all orbits in D tend to y. Looking at 

the local picture then shows the quotient of D by the x ~ y 

equivalence classes is a union of twice punctured sphere with branched 

points coming the critical points of f lying in D (there must be 

at least one critical point in D~ Fatou [ 1918] ). 



i 
/ 

( i i i )  

736 

f 

I 

2 fundamental domain 

A superattractive basin D is defined just like an attract- 

ive basin but now the derivative of the power of f having a fixed 

point is zero. Now points arbitrarily near the attracting cycle are 

identified by f and there is no true fundamental domain ~or the 

equivalence classes. The more precise relation x ~ y if and only 

if fn x = fny, n ~ 0 ,defines a foliation of D t = D - inverse orbit 

of y by the closures of the ~ equivalence classes. The leaves are 

compact 1-manifolds which are not necessarily connected and which have 

n-prong singularities at the inverse orbit of other critical points 

in D. The local linearization near a superattractive fixed point 

shows the leaves near y are nearly concentric closed curves around 

the points of y. The rest of the foliation of D' is obtained by 

applying f-i to this concentric foliation near y. 

(iv) A Siegel disk is a stable regions which is cyclic and on 

which the appropriate power of f is analytically conjugate to a ro- 

tation of the standard unit disk. Siegel [1942] proved these occur 

near a non-hyperbolic periodic point if 1/R-argument of the derivative 

is far from the rationals. Far from the rationals means ]@ - p/q] > 

> c/q V for some c > 0, v > 0, and all p/q reduced fractions. 

Fatou and Julia showed that if such regions existed their 

frontiers were contained in the ,mion of the w-limit sets of critical 

points. 

Siegel disks around the origin occur already in the family 

2 
z @ ~z + z , I~] = i. However, they do not occur when I/~ arg 

is sufficiently Liouville because then there are periodic points 

tending to zero in this case (an easy calculation). 
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(v) A Herman rin~ is a stable region similar to a Siegel disk. 

Now we have a periodic cycle of annuli and a power of f is analy- 

tically equivalent to an irrational rotation of the standard annulus. 

Again the frontier is contained in the W-limit sets of critical points. 

Such examples were found by Michel Herman in the family 

e ~ ( ~ _ a _ ~  ~ 

appropriate 8 ,a small. Herman uses Arnold' s theorem [ 19603 about 

real analytic conjugations of real analytic diffeomorphisms of the 

circle to rigid rotations when the rotation number is like a Siegel 

number. Note that both Siegel disks and Herman rings are foliated 

by the closures of orbits and the leaves are closed curves. 

More dynamical properties. 

(i) One knows there are only finitely many cyclic stable regions 

described in (4) Sullivan [1982] . But it is a problem to find the 

sharp upper bound in terms of the degree. Is it 2d-2 ? 

(it) Also for polynomials one knows each bounded stable re,ion is 

simply connected (apply the maximum principle to f,f29... ). Thus 

polynomials do not have Herman rin~_s. 

(iii) An amusing corollary of the classification of stable regions 

in (4) is the following: if all critical points of f are ~entuall Z 

periodic but none are periodic then the Julia set of f is all of ~. 

(Because each type of cyclic region besides the superattractive basin 

requires a critical point with an infinite forward orbit.) Examples 

o f  t h i s  t y p e  a r e  z ~ a n d  t h e  q u o t i e n t  o f  s o m e  h i g h e r  d e g r e e  

e n d o m o r p h i s m  o f  a o n e - d i m e n s i o n a l  t o r u s  b y  t h e  e q u i v a l e n c e  r e l a t i o n  

x ~ - x .  

(iv) F a t o u  a n d  J u l i a  s h o w e d  f on  J ( f )  i s  t o p o l o g i c a l l y  t r a n -  

sitive. (In fact, for any z in J(f) the inverse orbit 

U f-n(z) is dense in J(f).) If no critical points tend to J(f) 
n~O 
or touch it Fatou showed some power of f is expanding on J(f). 

He surmised the dynamical structure was continuous in the coefficients 
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for such examples (now called Axiom A or expanding systems -- see 

below) and guessed that this property should be true except for 

special values of the parameters. 

Even when J(f) is contaminated by critical points one may 

think of J(f) as the"hyperbolic" part * of the dynamics. The Siegel 

disks and Herman rings are in the "elliptic" part of the dynamics. 

The attractive basins and the parabolic basins are the ~roperly d i~- 

continuous part of the dynamics. The superattractive basins are both 

wanderin [ and of elliptic character. 

Newton's method. We recall that it is still a difficult problem to 

find the zeroes of a complex polymomial f(z). Newton's iterative 

method z ~ z - f/f' provides a natural example where the dynamics 

above is encountered. 

For a general polynomial f of degree d,N(z) : z - f/fl is 

a rational map of degree d. The zeroes of f determine fixed 

points of N where IN" zl < i. Thus they determine attracting 

domains for the dynamics of N. In practice one also finds other pe- 

riodic attracting domains for N(z). 

It is hoped one could account for these in general. Then if 

one could in addition show the Julia limit set has 2-dimension measure 

zero, a general understanding of Newton's iteration for almost all 

points would ensure, Figure 2. 

We note that Fatou [1919] proved each contracting periodic 

domain for a rational map contains a branch point. In curious analogy 

David Singer proved the analogous result for a smooth endomorphism of 

the circle with a negative Schwarzian derivative (1975). 

Problem: Find a common explanation of Singer's and Fatou~s theorem. 

The words "hyperbolic" and "elliptic" are meant to suggest chaotic 

and rigid structure respectively in the dynamics. 
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Fractml ~eometry of limit sets. We construct conformal measures of 

exponent 6 in the Julia set of any rational map and use these to 

discuss the Hausdorff geometry in the expanding case. This discussion 

in the analogous case of Kleinian groups was carried out in Sullivan 

[1980] motivated by papers of Bowen [ 1980] and Patterson [ 1976]. 

Theorem 3. There is a positive , finite measure ~ on the Julia set 

J(R) of a rational map z * R(z) satisfying for some real number 

8 = ~(~) 
r 

~(~(A)) = I I~'(~)I ~ ~(z) (*) 
J A 

for any Borel set A c J(R) where R is in~ective. Moreover, 

0 < 6 (R) ~ 2 and if any 6 satisfies (w) for some measure ~ then 

Proof. If J(R) = @ take Lebesgue measure. If J(R) ~ ¢ by Fatou 

there is an open set U in the complement of J(R) so that the 

inverse branches of R -n are defined and the inverse images 

R~Iu, R~I(R~Iu), .. are all disjoint (with the exception possibly of 

one sequence of choices of inverse branches when U belongs to a disk 

or annulus on which R is equivalent to an irrational rotation) and 

converge towards J(R). 

For each x in U let l(x) denote all the R~n(x) (except 

for the exceptional sequence if present). If y 6 I(x) satisfies 

Rn(y) = x then define d(y) = I (Rn)' (y) I -I (in the spherical metric). 

Since all the inverse images of U are disjoint and the area of the 

sphere is finite ~ d(y) 2 < ~ a.e. x in U by Lebesgue mono- 

y~I(x) 
tone convergence (solution of exercise above). 

Let x 0 in U be any point where the series converges and 

define 6 = inf[s I E d(Y) s < =} • Note 6 > 0 because there N d n points 
yCI(x o) 

in the n th level and the factors d(y) are decreasing no faster than N K -n where 

IR'(z)l! K on J(R) . Suppose for now ~ d(y) ~ = 

yeI(x 0) 
Define measures Us by putting atomic masses of weight d(y) s at y and 

normalizing to total mass 1 . Let ~ be any weak limit of the ~s as s ~ ~ . By 

our divergence assumption ~ is supported at J(R) . 
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If U is a neighborhood of z O in J(R) where R is in- 

jective, then R is bijective between l(Xo) ~ U and I(Xo) Q R(U). 

(If z O is a critical point then U can be arranged so that R is 

k to one between I(Xo) ~ U and I(xo) ~ R(U).) In the first case 

further assume U is chosen so that ]R'z I is a constant % up to 

a factor near i. (In the second case assume U is chosen so that 

]R'z] is < ¢.) 

Thus in the first case we have ~s(R(U)) is ~6~s(U ) up to 

a factor near one. (In the second case ~s(R(U)) < k'~6.) (s is near 6.) 

and then shrinking U we deduce for any atomic Letting s ~ 6 

parts of ~ we have 

~({Rx}) = ] R ' ( x ) ]  6 ~ ( [ x ~ ) .  (~)  

We m a y  r e m o v e  t h e  c r i t i c a l  p o i n t s  f r o m  c o n s i d e r a t i o n  a n d  c o n s i d e r  ( ~ )  

in the locally injective part. Then letting s ~ 8 and shrinking U 

we deduce (where R is locally injective) dR~/d~ = IR' I 8 a.e. 

and this proves (~). 

If ~ d(y) 6 does not diverge, introduce new weighting 

Y 6 I ( x  O) 
h ( d ( y ) ) d ( y )  s f o r  m a s s e s  p l a c e d  a l o n g  I ( x  0)  t o  d e f i n e  Us  factors 

where 

(~) Z h(d(y))d(y) 6 (recall E d(y) ~ = o~, = ~o for s < 6) 

y~I(x o) 

(it) h(x) is a positive function of x increasing to += as 

x ~ O in such a way that for all e > O and O < ~ < ~, 

lh(kx)/h(x)l 6 [l-e, l+c] for O < x < Xo(e,k ) . Thus ~ > 0 implies 

h(x) < x -~ for x sufficiently small. 

Now carry through the argument as above. By (it) the new 

factor h(d(y)) introduces only a factor near 1 in the computa- 

tions. (In the second case one has to divide a neighborhood of the 

critical point into countably many nice anns%i and calculate using it) and 6 > 0.) 

This completes the proof of the existence of conformal measures on any Julia set. 

Since the conformal measures form a closed set in the weak 

topolo~ on the probability measures we can go to the minimal d~men- 
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sion, by definition 5(R). If 5(R) were zero there could be no 

atoms by (ww) above (since ~ is a finite measure and full orbits 

are infinite). Then working where R is d to 1 if d = degree R 

we deduce R~ = d~ contradicting total mass ~ = total mass Rw~. 

This proves Theorem 3. 

Say that R is expanding on the Julia set if for each x in 

J(R) there is an n so that I (Rn)' (x)] > i. Then it is easy to 

see that some fixed m I (Rm)' (x) I > 1 for all x in J(R). We now 

work with R m and denote it by R. 

Let B(x~r) denote any ball of small radius r centered at 

a point x in J(R). By the distortion ]emma 1 there is an n so 

that if B = B(x,r) and B' : Rn(B), then B' has a definite size 

and Rn: B ~ B' is a "quasi-similarity" (~ the ratio of derivatives 

at various point of B are comparable) because in the notation of 

Lemma 1 the [distance (xi,Yi) ] form a ~eometrie series. One deduces 

~(B) is comparable with fixed bounds to r 6 . (This follows since aU 

B' of a definite size have a definitely positive ~ mass since 

is positive on open sets of J(R) by topological transitivity.) 

By a relatively simple general proposition (see Federer "Geo- 

metric Measure Theory" and §2 of Sullivan [1980]) such a measure 

is boundedly equi]~alent to the Hausdorff 5-measure. Thus the measure 

class of any conformal measure H is determined by the ~eometric 

properties of the ~et J(R). 

]4e collect ibis information in 

Theorem ~. In the expandin~ case there is one and only one eonformal 

measure ~ on the Julia set J(R). The exponent 6 = 6 (R) of 

is the Hausdorff dimension and ~ is a constant times the Hausdorff 

6-measure H 6 on J(R). Moreover, 0 < ~(R) < 2 . 

Corollary. The Hausdorff 5-measure is a finite and positive measure, 

the Hausdorff 6-measure of a ball of radius r in J(R) is compar- 

6 
able to r , and The Hausdorff 6-measure is er6odic relatively to 

R acting on J(R). (In the expanding case). 
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Proof of Theorem and Corollary. If HI and ~2 are conformal meas- 

ures of exponent 8 and total mass one so is 1/2 (~I + M2 ) = m. 

The ratio of ~i to m is defined and is an R-invariant function. 

Since m being a conformal measure is ergodic (its measure class is 

determined by the geometry of J(R)) this Radon ratio is constant. 

Thus m = ~I = M2 and conformal measures of dimension are unique. 

By the same reasoning the exponent 6 is unique being the Hausdorff 

dimension of J(R). (Since Lebesgue measure J(R) = 0, see proposition below, ~ < 2.) 

Now we know the Hausdorff measure H 5 by definition satis- 

fies the defining equation (~) to be a conformal measure. In this 

expanding case we know'it is also a finite measure. Thus by the 

above uniqueness H 6 is a constant times the unique normalized con- 

formal measure. This completes the proof of the theorem. 

The statements of the corollary follow directly from the above. 

Remark. One can prove Theorem 3 and Theorem 4 for expanding rational 

maps using Markov partitions and Gibbs measures as Bowen did for 

quasi-fuchsian surface groups. We have chosen this way because 

Theorem 3 is more general and Theorem 4 is obvious once Theorem 3 is 

known. The Bowen proof, however, produces the ~ by a method which 

evidently converges geometrically fast. Lucy Garnett [19833 used 

finite approximations to calculate the Hausdorff dimension 6 (R) for 

2 
the family z ~ z + p for p real and small. A quadratic curve 

with minimum at p = 0 was found. Based on this calculation by 

Garnett I asked at this conference whether 6 (R) varied smoothly or 

even real analytically as R varies in an analytic family of expand- 

ing examples. This was answered by Ruelle using Bowen's infinite 

procedure. 

Theorem 5. (Ruelle, 1982) The Hausdorff dimension of J(R) is a 

real analytic function of the coefficien~ of z 4 R(z) in any open 

connected set where each such map is expanding. 

Problem. Is Theorem 5 true for analytic families of expanding 

Kleinian groups (for each x in the Polncare limit set there is 
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y 6 F s o  t h a t  IY'xl > 1) 

We close with a remark about classifying these expanding groups. 

They determine compact 3-manifolds (with boundary) and Thurston has 

characterized which topological 3-manifolds arise in this way. The 

abstract group structure of the fundamental group F determines the 

topology of the limit set A(F) and the topological action of V on 

A(F). The simplest example is: F is a free group and A(F) is the 

Cantor set of infinite words in V. In another class of examples 

(the acylindrical 3-manifolds) A(F) is always homeomorphic to a 

Sierpinski curve obtained by removing from a 2-disk a dense collection 

of smaller disks. 

Sierpinski Curve 

This is the one dimensional analogue of the 0-dimensional Cantor set. 

We ask now the question -- what invariants besides this topo- 

logy determines the geometric realization of F as a discrete ~i~oup? 

Theorem 6. (Sullivan [19813) The geometric realization of F as a 

discrete group in PSL(2,C) with the expanding property is detern~i{]ed 

up to isomorphism by the Hausdorff dimension 5 of A(F) and the 

abstract measurable dy~lamics isomorphism class of F acting on A(F) 

relative to Hausdorff 8-measure. 

The proof uses the ergodicity of the action of F on A(F) X 

X A(F) and a characterization of Moebius transformations as measur- 

able transformations preserving the cross ratio of almost all 4 tuples 

of points. The analogue of this theorem for rational maps is not 

known -- maybe its proof will use the Schwarzian derivative. 
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Remark. Theorem 3 for all Kleinian groups and Theorem 4 for expanding 

groups go through just as above, as we mentioned before, using the 

"Poinear6 series method" -- putting mass along the orbit. Now, how- 

ever, Markov partitions are not always obviously available, and even 

when they are certain discontinuities arise which don't occur in the 

rational map case. 

Quadratic maps. In the family 

knows R is expanding on J(R). 

R 2 
z • kz + z where I~l < i, 

(For these the critical point 

one 

-~/2 tends to the attractive fixed point 0.) Thus by Ruelle 

D(~) = Hausdorff dimension of J(R) is a real analytic function for 

l~l<l 

Theorem 7. D(~) is strictly greater than one and strictly less than 

two for 0 < l~I < i. (See Bowen [ 1980] , for the analogous theorem 

on quasi fuchsian groups.) Moreover, J(k) is an Ahlfors quasi-circle. 

Proof. The Julia set moves continuously in 0 ~ I~ I < 1 and so is 

always a Jordan curve. See Ma~6, Sad, Sullivan [19823 where more is 

proved. 

We need now show that J(R) is not rectifiable and the 

Lebesgue measure is zero. The second case is ruled out by the fol- 

the Lebesgue measure of 

lowing. 

Proposition. For an expanding z ~ R(z) 

J(R) is al~ays zero. Thus ~ (R) < 2. 

Proof. Take a density point x and radii r i ~ 0 so 

m(J(R) n B(x,ri))/m(B(x,ri)) 4 1 

where m is Lebesgue measure. Expand B(x,ri) up to a definite 

n i 
size B( using R . By the quasi-similarity lemma 1 we still have 

l 

m(J(R) N B[)/m(B~) ~ i. A limit B' of the balls Bi 1 will satisfy 

m(J(R) n B')/~(~') = I. Thus B'c J(~). Then J(R) = g w~ich con- 

tradicts the expanding property. 

Remark. Because the curve is quasi-self similar it is a quasi-circle. 

(see Ahlfors book "Quasi-conformal Mappings.") 
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For the first possiblity using the Riemann mapping theorem on 

each component of the complement of J(R), we obtain 

¢P 1U~2 
D 2 U D 1 C J(R) analytic. Conjugating the dynamics back 

to D 2 U D 1 we obtain two 2 ~ 1 maps of the standard disk. The 

one for the component of C - J(R) containg ~ is z 4 z 2. The one 

for the finite component is z * z " ~-~z~Z-k (if the Riemann map sends 

the fixed point to the origin). 

The Riemann maps q01 and q0 2 extend continuously to the 

boundary by Caratheodory's work. Moreover, if J(R) is rectifiable 

these Caratheodol~y maps are non-singular with respect to arc length 

measure (by a harmonic measure argument). Thus we obtain a continuous 

2 and absolutely continuous conjugacy between z 4 z and 

z ~ z " Ql--~z)Z-~ restricted to I zl = I. But this is impossible. 

For both are essentially expandin~ and locally eventually onto and 

thus each one is ergodic with respect to the Lebesgue measure class 

on Izl = i. Also each one preserves Lebesgue measure d@ (which is 

the harmonic measure of I zl = 1 relative to z = 0 which is fixed 

by each map.) 

Thus the conjugacy sends d@ to 

tation. This contradicts the fact that 

derivative when ~ ~ 0. 

d9 and must be a rigid ro- 

z-k 
z ~ z • has a varying 

l-Xz 

2 
Remark. Since for ~ ~ 0 we obtain for the simple map z ~ ~z + z 

(or z ~ z 2 + c, c ~ 0) Julia sets which are non-rectifiable quasi- 

self similar fractal curves of Hausdorff dimension > 1 one is tempt- 

ed to plot these on a computer. Here are some examples~ Figure 3. 

Bifurcations of conformal dynamical systems. It is very interesting 

(Figure 3, 4) %o study the bifurcations of J(R) for z R, Xz + z2 

as k varies (see Douady-Hubbard, Mandelbrot,...). We have seen for 

IX I < 1 J(R) is a moving Jordan curve whose Hausdorff dimension is 

really varying. As k hits the unit circle J(R) even changes to- 

pologically. 

If ~ hits at a root of unity the curve pinches ~ogether at 
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Julia s e t  of 

2 
Z 4 Z + C 

c = i/4,0,-9 

1/4 

figure 3 
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Julia set of 

2 
z 4 z + i 

L, 

figure 4 
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the origin and all the preimages. The collapsed circle is still local- 

ly connected (Hubbard and Douady). If ~ hits at an irrational angle 

which is far from the rationals J(R) does not reach the origin which 

is contained in a Siegel rotation disk. 

Problem. Is the boundary of the Siegel disk a Jordan curve, and is 

J(R) locally connected? If so, the topological picture of J(R) can 

probably be described using the invariant Cantor set for e ~ 28 men- 

tioned above. 

The case where 

locally connected J(R). 

hits at a Liouville angle leads to a non- 

More precisely, 

Theorem 8. (Douady-Sullivan) I_~f z R~ ~z + z2 where ~ = e2~i@ 

with @ irrational but R is not linearizable near z = 0, then 

J(R) is non-locally connected. 

Proof. The Riemann map of the exterior of the unit disk to the ex- 

terior of J(R) extends continuously to the boundary if J(R) is 

locally connected (Caratheodory). Let C contained in S 1 be those 

angles (of exterior rays) which land at the fixed point z = 0. The 

Riemann map conjugates z 4 z 2 to z 4 R(z). 

If C were finite, some power of R k would have an invardant 

line tending to zero. Since the derivative is an irrational rotation 

this line spirals in to the origin. It is then possible to find a 

region near zero which is invariant by R -k. But R -k is non-llnearlzable. 

Invariant region (the 

snail enters its shell) 

This is a contradiction. So C must be infinite. 

2 
Clearly C is closed. Also 8 ~ 2@ (the action of z ~ z 

on rays) restricted to C must be a homeomorphism because R is a 



750 

bijection on those rays which land at the irrational fixed point. But 

this contradicts the proposition in the first section (because an in- 

finite compact metric space cannot have a homeomorphism which uniform- 

ly expands distances between sufficiently near points). 

5. Characterization of complex analytic dynamical systems. 

One says that a diffeomorphism of part of the plane is K-quasi- 

conformal if infinitesimal circles are mapped to infinitesimal ellipses 

of eccentricity ~ K. The definition can be extended to homeomorphisms 

or even branched coverings of any Riemannian surface. 

Consider a collection C of transformations of a Riemannian 

surface S which is closed under composition and which are all 

K-quasi-conformal in the sense of the extended definition. 

Theorem ~. There is a complex analytic structure on S (compatible 

with its original quasi-conformal structure) so that all the trans- 

formations of the dynamical system C become complex analytic. 

Note. The condition of the theorem, K-quasi conformality of all the 

transformations in C is clearly necessary for the statement of the 

theorem (which asserts it is sufficient). 

Corollary. Yhe dynamical systems determined by 

(i) 

(it) 

(iii) 

complex analytic self-mappinGs of ~ U ~ 

entire functions f: C 4 C 

a collection of Moebius transformations of S 2, are 

characterized by the condition of uniform qnasi-conformality_ 

of all the iterated compositions. 

Proof. First one forms an invariant measurable eonformal structure 

by a barycenter construction in the set of similarity structures on 

the tangent space at each point. Then one introduces complex analytic 

coordinates using the measurable Riemann mapping theorem. 

C.losin~ problem. In either of the conformal dynamical contexts, ra- 

tional maps or finitely generated Kleinian groups are the expanding 

systems dense? 
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