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w 0. Introduction 

This paper is based on the principle that probabalistic independence of certain sets in 

Euclidean space is forced by a disjoint collection of spheres in a Euclidean space of  one 

higher dimension. (See Figure 1.) 

This principle allows a new proof  of (a new variant of) Khintchine 's  approximation 

theorem for almost all reals by rationals w 3. The new proof  extends naturally to the 

approximation of  almost all complex numbers by ratios of integers p/q ,p ,  q E 0 (~  / - d  ) 

in imaginary quadratic fields. 

Let  0~<a(x)<l ,x a positive real, be any function so that the size of  a(x) up to 

bounded ratio only depends on the size o fx  up to bounded ratio. The following theorem 

is proved in w 7. 
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Figure 1. 

THEOREM I (generalized Khintchine).  For almost  all complex numbers z. there are 

infinitely many pairs p, q ~ V  ~ - d  so that 

Iz-P/ql <<- a(Iql) and ideal (p, q) = #(X/ - d  ) Iql 2 

i f f  

l ~ a(x)2 dx = oo. 
J x 

It turns out such approximation results for fixed d are equivalent to the way in 

which a random geodesic on a certain complete hyperbolic three manifold Vd of  finite 

volume (but non-compact)  occasionally ventures out into one of  the cuspidal ends.(~) 

The analogue of  these approximation results is proved in the same way for all hyperbol-  

ic manifolds V of  finite volume. For  example,  let dist v(t) denote the distance from a 

fixed point in V of  the point achieved after traveling a time t along the geodesic with 

initial direction v. Along the random geodesic the function dist v(t) has a well defined 

limit superior (the logarithm law) analogous to the law of  the iterated logarithm for a 

randorr I path on the line (another  result of  Khintchine).  (See Figure 2.) 

THEOREM 2 (logarithm law for geodesics). I f  V=Hd+I/F where F is a cofinite 

volume discrete subgroup o f  hyperbolic isometries which is not cocompact,  then for  

ahnost all starting directions v o f  geodesics 

lim sup dist v(t) _ l/d. 
t -~ log t 

(~) The manifold Vd is hyperbolic 3-space modulo the Bianchi group F d consisting of 2• matrices with 
entries in O(X / - d  )and determinant 1. 



DISJOINT SPHERES 

Figure 2. 
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This theorem is proved in a more precise form in w 9. In each of these two theorems 

there is also a quantitative assertion that the number of times the desired approximation 

or the lim sup is achieved is infinitely often as large as the corresponding diverging 

integral (w 2). 

Finally, in w 10 we discuss briefly an application of this disjoint sphere method to 

the Hausdorff geometry of limit sets of geometrically finite Kleinian groups the 

original motivation for this work. 

Acknowledgement. The connection between geodesic excursion on 1-12/PSI(2, Z) 

and Khintchine's metric theory was pointed out to me by David Kahzdan when 1 

conjectured Theorem 2 to him. He also explained how most of the generalization of 

Khintchine's proof would go. Two other ideas in the proof, w167 2 and 3, were derived 

during discussions with Jon Aaronson and Dan Rudolph. 

I also benefited from discussions about rational approximation with Wolfgang 

Schmidt whose quantitative result (1960) in the real case is presently beyond the 

discussion here of Khintchine's results, 

Finally, a literature search beginning with A. L. Schmidt's paper (Acta Math., 

1975) on continued fractions of Gaussian integers [ASc] led to the paper of W. J. 

LeVeque (1952) where he proves the Khintchine metrical theorem (a variant of our 

Theorem 1) for the gaussian field Q ( ~ / - 1  ). LeVeque also makes use of the disjoint 

spheres, a suggestion of K. Mahler, but in a different part of his paper. 

15-822908 Acta Mathematica 149. Imprim6 le 25 Avril 1983 
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w 1. Abstract BoreI-Cantelli 

If  AI,A2 .... is a sequence of subsets of a probability space X and A~={x:xEAi for 

infinitely many i} we want to compare the conditions 

(i) ~g IAel = ~,  [Ail= measure Ai 

and 

(ii) Ia~l>0. 

The first proposition is very standard. We recall the proof to establish notation. 

PROPOSITION 1. / f l a i l > 0 ,  then SilAi[ = ~ .  

Proof. Let  f~N(X)= sum of the characteristic functions of Ai for i<-N. Then by 

definition Aoo = {x: limN__,o t/~(x) = oo }. Since the tpN are monotone increasing 

limfq~= f l im~ 

by the Lebesgue monotone convergence theorem. One side is Ei[Ai[ and the other is 

infinity if lAst>0. 

Example. For e>0 we place an interval of size q-2-~ around each reduced rational 

p/q in the interval [0, 1] and let Aq denote the union of these. Then [Aql<~q �9 q-2-~=q-l-e 

SO ~q [Aqt<Oo. Thus [A~t=0 by the proposition, and this means Ix-p/ql<q-2-'has only 

finitely many solutions for almost all x. 

More generally, we see the direct half of Khintchine's theorem: if E q a(q)< ~ ,  then 

lx-p@<a(q)/q has finitely many solutions for almost all x. 

Remark. It is worth noting that the q-2-, result is also true for algebraic numbers 

(the celebrated Roth theorem) and the proof is very difficult. It is unknown whether 

algebraic numbers also behave like random numbers for the a(q)/q result or for the 

positive results descr ibedbelow.  

Now we turn to the less trivial converse of Proposition 1, It is easy to give 

examples where Ei[Ai[=oo, but IA~[=0. For  example let A i be the intervals [0, I/i]. 
Ironically, we need to control the overlapping to insure [A~[>0. The standard Borel- 

Cantelli lemma is Proposition 1 and the statement that the converse is true if the A/are  

independent in the sense of probability. Independence implies [AjlNAj~fl...flAjn[= 
[AjI['[Aj2[... [Ajn[. Actually, much less is needed, and this seems to be less well known. 
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PROPOSITION 2 (quasi-independent Borel-Cantelli). Suppose EilAil =~ and there 

is a constant  c ~  l so that f o r  i<j, IaenAil<.clael.lAj[. Then [a~l>0, in fac t  there is a set 

o f  positive measure fi~ so that for  x Efit, 

card { i : x C A  i, i<~N} 
lim sup > 0. 

N [ad+...+laN[ 

Proof. Consider q0N as in Proposition 1. Let  [~0N]2, [q0N[ I denote (f~2)1/2 and f(PN 

respectively. By Schwarz [q~[l<~[q~[2. Conversely,  using our hypothesis,  

f ~= ~ IAi n Ajl 
i~j<~N 

= E ]Ai[+ E ]A, n Ajl 
i<~N i<j<.N 

<~ E tai [+c E [aillAj[ (by quasi-independence) 
i<~N i<j<~N 

< c ~ Iail IAjl 
i<~j<~N 

c(f 4 
Thus I~h<~?-l~l,. 

Now consider ~ON(x)=q~(x)/IqONI I and choose a weak limit ~ in the ball of radius 

X/--b--c of  square integrable funcitons. Since (%v, 1)---~(~, 1) we have [~[l= I. 

Similarly, ~ is non-negative, so ~0 is positive on a set of positive measure. If  

A--support % then for all x E A ,  limN~N(X)=~, because limN[q~V[l~oo. Thus A ~ A  

has positive measure. 

Now we show there is a set A, of positive measure in Ao~ so that if x E / i  

lim sup c/~v(x) > 0. 
N I~l ,  

If  for subset of positive measure in A the lim sup is zero, then for a further subset of 

positive measure the ratios are ~< 1 for N sufficiently large. By dominated convergence 

.f ~p=0 on this subset. This is a contradiction. Thus A may be taken to have full measure 

in A. 



220  D. SULLIVAN 

Remark.  In an earlier paper with Jon Aaronson [AS] we made use of an inequality 

[AiflAi+jl<.clAil [Aj[ for all i,j>O to obtain a similar proof that [A~[>0 if E~ IAi] =oo. 

w 2. Disjoint circles and quasi-independence 

Now we develop a geometric condition which implies the inequality [A i nAjl<clAil.lAjl 

needed in Proposition 2. For  simplicity we first treat the case when the probability 

space is a unit interval I on the bundary of the upper half plane H +. 

Figure  3. 

The geometric device is a countable collection C of  (interior disjoint) circles in H + 

resting on points x~,x2 . . . .  o f / .  Fix some number Q<I and say two real numbers have 

the same p-size if they belong to one of the intervals (pn+~, 0n]. Group the circles into 

collections whose diameters have the same p-size. 

Because the circles are interior disjoint there can be no more than M 1/s circles of a 

given size s.(~) Say that a size s is good for the collection of circles C if there are at 

least M l/s circles of size s. (f(s)rNg(s) means the log of the ratio is bounded.) 

Now consider 0<a(x)<~ 1 where a(x) only varies in a bounded ratio for the numbers 

of a certain size, s. For  each size s let As denote the union of intervals of length a(ri) ri 

centered at {xi} where {xi} is the set of the resting points of circles of size s and {ri} are 

the corresponding radii. We will write a(s)s for a(ri)ri. 

P R O P O S I T I O N  3. There is a constant c so that if  s2<s~ are two sizes and s2 is good 

then Iasl nas21<clasl I Ias21. 

Proof. We ignore fixed constants. Then we estimate the number of intervals of A~: 

contained in one of the larger intervals Of As.  This estimate is the maximum of 1 and 

a(sl) sl/s 2 because the smaller intervals are s2 apart, and the larger interval has size 

a(s l )s l .  We will see below that a(sOsl/sz~l(in fact a(sl)2Si/S2>-l).Thus 

(i) ~ ,  ~>, X' mean respectively: the ratio Of the tWO related quantities is bounded above, below or both 
by fixed constants. 
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IAs, n A,2I~<//a(sO sl \1 (a(s 2) s 2) (number of intervals in A,)  
\ s2 / 

--IAs,I a(s2). 

Because s2 is a good size [asJ=a(s2).Thus for some c, [a,t nAsJ<Clast Ilaszl. 

To finish the proof consider the figure 

~-d -~ T 

Figure 4. 

We have t<.(1/r) d 2. In our case if an interval of As2 intersects one of A,I we will have 

d<<-a(sl) sl, r=s~ and t=s2. Thus 

s z <<. (1/s 0 (a(sO s0 2 

or 1 <-a(s 1)2 sis2 which implies 1 <~a (s l) s]s 2. 

Remark. The disjoint circles enter our discussion in two ways: 

(i) the disjoint circles of one size s keep the corresponding intervals of size a(s)s, a 
distance s apart; 

(ii) the disjoint circles of different sizes keep intervals disjoint while the crucial 

inequality a(sOs~/sz~l is not satisfied. Essentially only this point was missing from 

the discussion with Kahzdan. 

w 3. Khintchine's metric approximation (a new proof) 

For the rational approximation of almost all reals we use the collection of circles 

(Figure 5) resting on the real axis consisting of circles of diameter 1/q 2 resting at p/q 

where p, q are relatively prime. 

Figure 5. 
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Using the continued fraction construction, translating, inverting etc., which pre- 

serves circles, it is easy to derive the above figure: disjointness, position (p/q), and 

sizes (l/q2). We offer another proof using discrete groups (in this case PSI(2, Z)) in w 7. 

The number of p<<-q relatively prime to q is on the average ~>constant.q (an easy 

estimate with the Euler cp-function). The number of circles over the unit interval of a 

given size (w 1) s=(Q € Qn), is the number of pairs (p, q) with p<<.q, p relatively prime to 

q, and 1/q 2 6 s. 

Thus q varies between a number N and a (constant > l )  times N. So for q large we 

are integrating a quantity on the average as big as q over an interval of size q. We 

obtain r~q 2 circles of size I /q  2 for every size. (The discrete group proof is in w 6.) 

For the collection of disjoint circles in the figure then every size is good. This 

geometric information about the rationals is the only arithmetic structure used in our 

proof of Khintchine's theorem. 

Now let 0<a(x)~<l be a function of x r [1 ,  o0) which up to a bounded ratio only 

depends on the size of x (e.g. a(x) is smooth and la'xl<constant.a(x)). 

THEOREM 3. For almost all reals x there are infinitely many solutions 

a(q) 
]x-p/q] <~ q2 

iff S~ (a(x)/x) dx diverges. 

Remark. This seems to be a new variant of Khintchine's theorem. It is known 

some condition on the a(x) is required (besides a divergence condition). In the usual 

statement one assumes a(q)/q is monotone decreasing. We have merely assumed that 

the size of the desired approximation only depends on the size of the denominator q. 

The proof is new, with the arithmetical and geometrical parts separated. 

Proof. Consider sets As defined by placing intervals of the desired approximation 

size a(q)/q z about those p/q with 1/q 2 of size s. 

Since all sizes are good (by the above discussion) we have by Proposition 3 

]As, fl As2 ] <<. cla~,l]as21. 

Thus by Proposition 2, A~ has positive measure if 2 [As]= oo. 

If q2 varies in a bounded ratio so does q and therefore also a(q). Thus 2 ]As[= 

means Zia(xi)= oo where x;-I ranges over the sizes Q;. By the regularity property of a(x) 

this is equivalent to J'o a(Ot)dt=~. If x=o' ,  this is equivalent to J'7 (a(x)/x)dx=~. 
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Since approximation propert ies  are invariant under rational translations the set of  

positive measure must be of  full measure.  Q.E.D.  

Quantitative form. Let  n(x, N, a) denote the number  of  p/q with qE<~N so that 

]x-p/ql~a(q)/q2. 

THEOREM 4. There exists c>0  so that for almost all x, 

n(x, N, a) 
lim sup N = c. 

Proof. By Proposit ion 2 there is a set x of  positive measure so that 

card (s F x E a,, i <~ k} 
lim sup > 0, 

k IA,,I+IAs2I+...+IA,~I 

But this function of  x is constant  on orbits of rational translations. So it must be 

constant a.e. 

Applying the definition gives the result. Q.E.D.  

Remark. W. Schmidt (1960) proves a bet ter  quantitative result: the l imsup is 

replaced by a limit and the error  is estimated. Schmidt 's  proof  uses more of  the 

arithmetic structure of  the situation than the simple propert ies of  Figure 5 used here. 

Our quantitive result can be added as is to the generalized Khintchine,  w 7, and to the 

logarithm law for geodesics,  w 9, because only the simple properties of  Figure 5 are 

needed.  

w 4. Disjoint spheres and Borel-Cantelli with respect to Lebesgue measure 

If we have a collection of  disjoint spheres resting on a bounded set of  the plane and we 

form sets As in the plane which are a union of  disks of radius size a(1/s).s centered on 

the resting points of  spheres of  size s we have an exactly analogous discussion to w 1. 

Using Lebesgue measure and assuming there are ~ 1/s 2 spheres o f  size s the result 

is that A~ has positive real measure iff  f~ (a2(x)/x)dx=~ (a(x) as in w 3). 

The proof  goes as before,  The  Figure 4 argument showing a(1/Sl)SE/Sl>~l if two 

disks of  different sizes intersect has the same force.  

t~<~.  d 2 @ r 
* t 

in T 
d 



224 D. SULLIVAN 

The spacing argument to show (the number of disks of As2 

(a(1/Sl) sl/s2) 2 now becomes an area argument, 

a( l /s2) ' s  2 

Figure 6. 

in a disk of As,)~< 

The-boundary effect is treated using ttfe fact that  the Lebesgue area is only 

increased by a factor if the large disk is increased by a factor. 

Similarly; we can consider disjoint spheres in R d+j resting on a bounded set o f R  a. 

We form sets A s c R  a which are d-balls o f  radius size a(1/s). (size of sphere) centered at 

resting points,  and assuming there are Nl / s  a spheres o f  size s f ind  that Lebesgue 

measure A=>0 i f f  S~ (a(x) a/x) dx= oo. 

w 5. Disjoint spheres arising from cusps 

Let F denote any discrete groups of hyperbolic isometries of the upper half space 

model of H d+l with boundary Ra0 ~. A cusp is a conjugacy class of infinite maximal 

parabolic subgroups and it corresponds to a thin region R in HJ+~/F with a simple 

fundamental group generated by short loops. See IT, 5.55]. 

The inverse image of R in H a+l (viewed as the upper half space above R a) con- 

sists of a disjoint union of (d+l)  balls in H a+~ resting on R a plus everything above a 

plane parallel to R a in case oo is fixed by a representative subgroup of the cusp. (See 

Figure 7.) 

In the latter case, which can always be arranged, the configuration of disjoint 

spheres will be invariant by a discrete group of translations of R having rank k<~d. This 

group has finite index in the parabolic group fixing infinity and its rank k is called the 

rank of cusp. 
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Figure 7. 

Figure 8. 
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If Hd+l/[ ' has finite volume all cusps have rank d and each determines an exponen- 

tially thinning end homeomorphic to (d-torus)• [0, ~), assuming the parabolic group is 

torsion free. (See Figure 8.) 

w 6. Disjoint spheres and the mixing property of the geodesic flow 

If F is a discrete group of hyperbolic isometries and Hd+I/F has finite volume, one 

knows that relative to smooth measure the geodesic flow onthe unit tangent is ergodic, 

preserves a finite invariant measure, and is mixing. If Z denotes the characteristic 

function of a small ball B in Hd+l/F lifted to the tangent bundle, then by mixing 

f (z-gt)-~)--~constant>O as t---,oo. 

The picture in the universal cover is: 

lift of B 

spherical 

angle e -a t  

Figure 9. 

The integral counts e -d r "  (number of F orbit balls approximately t away from a 

fixed lift of B). Thus the number of orbit points in fixed width spherical shells is caught 

between two constants times e tit, t the radius. 

N o t e .  This mixing was used over l0 years ago by Margulis to derive this kind of 

estimate. 

On the other hand the orbit of B falls into groups uniformly distributed on the 

horospheres (spheres in Hd+l/[" tangent to R d) along the F orbit of one cusp: 

Figure 10. 
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The sum of e -a(x'~x) over one horosphere is commensurable to the largest term ((x, y)= 

hyperbolic distance) each being comparable to the solid angle of the horosphere viewed 

from the fixed lift of B (with center Xo, say). Thus we are close to the proof of 

PROPOSITION 4. There is a Q<I, so that the number o f  spheres resting on a 

compact set o f  R a in a horospherical family o f  a f ixed spherical size s E (Q,+l, On] is 

comparable to (1/s) d. 

Proof. (1) If a horosphere has Euclidean size s in the unit ball model the closest 

point to the center is at hyperbolic distance d where s ~ e  -a. 

(2) For a compact set of R a, sizes of horospheres resting there are comparable to 

the corresponding sizes of horospheres in the unit ball which are the image by 

stereographic projection. Thus we may work in either model. 

(3) We refer to the term e -a(xo'yx~ as the solid angle of (a unit object at) yx0 as 

viewed from x0. 

Now the total solid angle of the part of the orbit inside a ball of radius T about x0 is 

at most ce  ~. By  the mixing argument above the solid angle in a spherical shell of unit 

width is at least c'e r, for T sufficiently large. 

If we recollect the solid angle on each horosphere and move it to the orbit point 

closest to Xo, 

/ @ ~  becomes 

we only increase this solid angle by a definite factor. 

~ ~ horospheres 
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Thus the recollecting process'only loses from the shell an amount of solid angle at 

most ce r. By considering shells of width k thick enough we can be sure that at least 

c"e r remains in each such thick shell. 

This will mean there are c"e r (at least) horospheres with their tops in the 

successive shells [T, T+k]. Q.E.D. 

w 7. Disjoint spheres and imaginary quadratic fields 

Let F a denote the Bianchi group consisting of 2x2 matrices of determinant one with 

entries in the ring of integers 0=0(d) o f Q ( ~ / - d  ), where d is a positive integer which is 

not a perfect square. 

Suppose p, q EO(d) are relatively prime in the sense that pr+qs=l for r, s E O. 

Equivalently, ideal (p ,q)=O. Then 

belongs to Fd and ~(oo)=p/q since ~(z)=(pz-s)/(qz+r). The image of a horizontal plane 

at height one will be a sphere resting on p/q of some diameter d(p, q). 

PROPOSITION 5. d(p, q)= 1/Iq[ 2. 

Proof. If the element 7 -~ is the composition of an inversion about a sphere with 

center p/q and radius R followed by a Euclidean reflection, then R is the radius of the 

circle ]I/(qz+r)12=l, i.e. R=l/lq I. Thus V-~ takes a sphere resting at p/q of diameter 

l/]q I to a horizontal plane at height 1/]q I. It follows a plane at height 1 is carried by ~ to a 

sphere of diameter 1/Iql 2 resting at p/q. 

T 

I 1/iql 

Figure 12. 
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COROLLARY. The Fd orbit o f  the horosphere at ~ consists o f  disjoint spheres 

resting on these p/q where ideal (p, q)=v ~ and having diameters a constant times 1/]ql 2. 

Since H3/Fa has finite volume the proposition of w 6 implies the number of spheres 

a certain size s is at least constant . (1/s)  z. So we are in a position to generalize 

Khintchine metric approximation theory to imaginary quadratic fields. Let 0<a(x)~< 1 

be a function so that the size of a(x) up to bounded ratio only depends on the size of x 

up to bounded ratio. 

THEOREM 5. Fix an imaginary quadratic f ield Q ( ~ / - d  ) with ring o f  integers O. 

For almost  all complex numbers z there are infinitely many pairs p, q E 0 • v a satisfying 

Iz-p/ql <<- a(lql) ideal (p, q) = v ~ 
iq2r ' 

iff 

f ~ a(x)2 dx = 00. 

1 X 

Remark.  For a(Iql)---1, this was proved by Swan for all but a certain countable set 

of z. 

Proof .  We follow the proof of Khintchine's theorem in w 3. We have calculated the 

positions and sizes of the disjoint spheres in the proposition above. They are disjoint by 

the discussion of w 5 and there are enough of them by the discussion of w 6. 

We construct disks around the bases o f p / q  of size a(s)s where sE 1/]q] 2 and we 

apply the Borel-Cantelli of w 4 to prove the result. 

w 8. Disjoint spheres and geodesic excursions 

Consider the Figure 13(a), in which a geodesic of I-Id+llF=V viewed in lid+! heads 

toward a definite point at infinity entering and leaving a sequence of disjoint horo- 

spheres which are those of a cuspidal orbit. 

In the quotient V these horospheres project to the cuspidal end and Ihe geodesic of 

Figure 13 (b) enters the end at time t, reaches a maximum penetration at time t' and 

leaves the cusp at time t". (See Figure 14.) 

The distance penetrated is comparable to the log of the ratio of diameters d/d'. 

Also up to an additive constant the time t at which a geodesic reaches a point y away 

from the boundary satisfies y=e  -t.  
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geodesic 

\ 
t ( 
t" 

(b) 

(a) 

Figure 13. 

Thus a geodesic has a sequence of  maximal penetrations of  distance dl, d 2 . . . .  at 

times t 1, t 2 . . . .  iff the endpoint  ~ of  the geodesic has a certain sequence of  approxima- 

tions by base points b; of  a sequence of  horospheres  of radii ri. Namely up to fixed 

constants 

I~-bil < riai 

- d  i - ( t i - d  i) where ai=e and ri=e . 

Thus the excursion pattern of  a random geodesic into a cuspidal end is equivalent 

to the approximation of  the random point on the boundary of  H d+l by the bases o f  

horospheres in that cuspidal orbit. 

t '  
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w 9. The logarithm law for geodesics 

Let  F be a discrete group of hyperbolic  isometries of H d+! so that V= I-Id+I/F has finite 

volume. Le t  dist v(t) denote  the maximum of  1 and the distance from a fixed point in V 

to the point achieved after traveling time t along the geodesic starting in direction v. 

THEOREM 6. For almost all starting directions v, 

lira sup dist v(t______)) _ 1/d. 
t---~ ~ log t 

Proof. The volume of the part  of V where  dist>~T is r~e  -dT. Thus volume 

{v:dist v(ti)>-T,.}~e -drl because the geodesic flow is volume preserving (in the unit 

tangent bundle whose  volume fibres over  the volume of V with the volume of each fibre 

constant).  

Thus for any (e>0) if we restrict  to integral times t l, t2... ( tn=n)for  almost all v the 

inequalities 

distv(tn) >- ( d + e )  logt~ 

are true for only finitely many tn (because Zn exp - (d (1 /d+e) logn )<~ ,  Proposit ion 1). 

So lira supt dist v(t)/log t<~ 1/d. 

The non trivial direction uses the approximation theory by the bases of  disjoint 

horospheres  developed above in w167 2, 4, 5, 6 and 8. 

We want to show for almost all v the inequality 

dist v(t) >I d log t 

is satisfied for a sequence t~, t2, ... tending to ~ (depending on v). By w 8 such a 

sequence corresponds  to approximations of  the endpoint  ~=~(v) by bases bi of  the 

horospheres  in a cuspidal orbit (there are only finitely cusps in the quotient) of radii r;, 

where 

I ~ - b i [  ~ airi 

a i = e = e x p -  log t i 

r i = e = e x p "  t i+ l o g  t i = ti-l/de-t~. 
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NOW take a(x )=(2 .1ogx)  -va  in the discussion of w167 and 4 for xE [e, ~). Since 

f ~  (a(x)a/x) dx = ~ we have by w167 4 and 6 for almost all ~ infinitely many approximations 

by bases b of horospheres of size s of the form 

t as-bl <~ a(1/s)  s = (2log 1/s)-l/d s. 

For almost any ~ and this sequence r i E s i define t i by ri=t]/ae -t'. Then 

(2 log 1/si)- l/a = (2 log t~- '/a et9 - ,/a = (2 log t~- l/a + 2ti)-  1/a. 

which is eventually <-tT, l/a. 

Thus we have found arbitrarily large solutions to the inequality 

v(t) >t I log t, dist 
a 

and the theorem is proved. 

R e m a r k .  (1) Actually the proof shows we can find for many cp(t) arbitrarily large 

solutions of dist v( t )~q)( t )  iff a certain integral diverges. (We leave the formulation to the 

reader.) 

(2) Also the quantitative part of w 2 shows the number of integral times < N  that the 

inequality is satisfied is infinitely often as large as the diverging integral. (Again we 

leave the formulation to the reader.) 

w 10, Disjoint spheres and the spatial distribution of the canonical geometric measure 

Let F be a discrete group of hyperbolic isometrics (in 3-space say) which has a 

fundamental domain with finitely many sides. On the limit set of F (the set of cluster 

points in a H 3 = a B 3 = S  2 of any orbit of U in H 3) there is a canonical geometric measure 

/z characterized by 

Here D is the Hausdorff dimension of A and lY'l is the linear distortion of y in the 

Euclidean metric 0 on the ball model of H 3. (Theorem 1, [$2]). 

In this section we study the density function of p,/~(~, r)=the # mass of an r-disk 

on the sphere centered at ~ (in the 0-metric). 
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In w167 and 6 of [82]  the estimate 

/~(~, r) ~ rD" exp ((k(v(t))-D). dist v(t)) (1) 

was derived, where v points toward ~CA, r=e-t,v(t) and distv(t) are as in w and 

k(v(t)) is the rank of the cuspidal end where v(t) is--assuming dist v(t) is larger than a 

convenient constant. 

(For such geometrical finite groups we work in the convex hull of A which after 

dividing by F is compact with cuspidal ends, see [T, w167 5 and 8] and [$2, w 2].) 

rank one c u s p ~  " ''-~' ' 

two cusp 

~ . . . . ~ . ~  (convex hull of A)/F -- 

Figure 15. 

The measure/~ defermines a finite invariant measure dm~ for the geodesic flow 

which is ergodic [$2, w 5] and even mixing, see Dan Rudolph [R] and/or note below. 

Thus by (1) and the ergodicity of the geodesic flow we can expect the ratio 

p(~, r)/r ~ for/~ almost all ~ to be arbitrarily large as r--.0 if the maximal rank k+ of a 

cusp is greater than D and to be arbitrarily small as r--*0 if the minimal rank k_ of a 

cusp is less than D. (For F operating in H 3, k can be 1 or 2.) 

Now the mixing property of the geodesic flow implies, just as in w 6, that the 

number of disjoint horospheres ((w 5) in a cuspidal orbit) of size s is comparable to 

(1/s) ~ (The calculation makes use of Proposition 3, w 2 of [S~].) 

Also (1) implies the/~ mass of a disk of size a(1/s)s centered at the base of a 

horosphere of size s in a rank k cuspidal orbit is comparable to a(l/s)~ D (using the 

dictionary of w 8 where o=2D-k) .  

16-822908 Acta Mathematica 149. Imprim6 le 25 Avril 1983 
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Then if we form sets As, as in w167 2 and 4, of such disks, the Borel-Cantelli lemma 

will hold relative to the measure /u. Namely for nice functions a(x),/u(A~)>O iff 

f~(a(x)~  where 2D-or is the rank of the cusp. (Note the inequality 

a(I/sO2s2sl>-I of Figure 4 is still valid. Thus a(1/sO2~ which implies 

a(1/sO~176 Note o>0 since D>k/2, [Sz, w 2]. Thus using the obvious/u-measure 

estimate w167 2 and 4 carries through--again the boundary effect is taken care of because 

expanding a disk by a factor only increases its/u mass by at most a factor.) 

So for each cusp and/u-almost all ~ there are approximations by bases b; of 

cuspidal horospheres of size si of the form I~-bil<.(1/si)si, for a(x) as in w167 2 and 4, iff 

f~ (a(x)~ ~.  (The ergodicity of F with respect to/u is used to go from positive/u- 

measure to full/u-measure.) 

Now assume r(s)=a(1/s).s is strictly monotone and write s(r) for the inverse 

function. Then using the dictionary of w 8 and (1) we have shown 

THEOREM 7 (Oscillation of the density function around r~ 

(i) I f  k+>D, for  ~u-almost all 

lira sup/u(~, r)/r~ a(r) > 0 
r---~0 

where a(r)=a(1/s(r)) o-k+ iff 

f = a(x)O+ 
X 

- - d x =  oo, a+ = 2D-k+.  

(ii) I f  k_<D,  for  ~u-almost all 

lim inf/u(~, r)/r~ fi(r) < 
r---->0 

where fl(r)=a(1/s(r)) D-k- iff 

fl ~ a(x) ~ X 
- - d x =  oo, a_ = 2D-k_ .  

Example: Take a(x)=(logx)-~/~ or o_). Then r(s)=(log I/s)-l/~ s(r) is be- 

tween r and r 1-' for every e>0 eventually, and a(1/s(r)) eventually lies between 

(log 1/r) -)/~ and ( l - e )  (log 1/r) -1/~ for every e>0. So we have the 
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COROLLARY. (i) I f  k+>D, for p-almost all 

lim sup#(~, r)/r ~ (log l/r) ~§ > 0, 6+ = (k+-D)/(2O-k+)> O. 
r--~0 

(ii) I f  k_ <D, for p-almost all 

lim infp(~, r)/r ~ (log l/r) 6- < ~,  d_ = (k_-D) / ( 2 D - k )  < 0. 
r--~0 

Note. If we had further assumed that a(x) is monotone decreasing as in the 

example, then the integral So a(O t) dt over a set of t of positive density still diverges. A 

slight modification of the Borel-Cantelli discussion, w167 2 and 4, where only As for good 

sizes are considered (the other As=| gives the same result only assuming the good 

sizes form a set of positive density on the log (or t) scale. 

In the discussion of this section (and w 9) only weak-mixing of the geodesic flow 

implies the good sizes have full density. Now weak mixing is easier to prove (Dan 

Rudolph). (Not weak-mixing implies there is a uniformly continuous function so that 

the limit of Birkhoff sums of the time to map of geodesic flow is not constant. On the 

other hand the limit (lifted to the tangent bundle to hyperbolic space) is constant on 

equivalence classes generated by expanding and contracting horospheres. A picture 

shows such a continuous function is constant.) 

Closing remark. If k+>D, the function q~(v(t))=exp dist v(t), by the above example, 

is infinitely often ~ t  a some a. Using p { v: dist v(t)> T} ~< e-~r some/3>0 (deducible from 

[$2]) yields q~(t) is for ,u-almost all v' eventually ~<t a' some a' .  It is now an abstract 

ergodic theory fact that for any function q3(t) satisfying ~(et)<.d(e) ~(t) where d(e)--~0 as 

e----~ 0, 
lira sup q~(v(t)) 

t.__, o ~ " ~  

is either zero of infinity for almost all v. (This is a fairly direct application of the ergodic 

theorem told to me by Aaronson and due to Tanny in a branching process discussion.) 

Now write ~p(r)=~ (log 1/r) r ~ 

COROLLARY. For all these ~p(r) the canonical geometric measure p is not (k+>D) 

equivalent to Hausdorf f  measure relative to ~(r). 

Proof. Using (1) and above we see for p-almost all ~, lim supra,0 p(~, r)/~p(r) is 

either zero or infinity. But if/~ is equivalent to the (covering) Hausdorff ~p-measure the 

lim sup is the Radon ratio, see [$2] for example. 
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Note. We have shown in [$2] however  that if all cuspidal ranks are ~>D, the 

canonical measure can be described as the Hausdorf f  r ~ measure defined by packings 

rather than coverings. 

An example is provided by the set suggested by the accompanying figure. The 

infinite array of  circles are inverted into the triangular interstice, these are translated, 

the inversion is repeated,  etc. to construct  a limit set of  a group F with the above 

Hausdorf f  geometry.  (This F is a subgroup of  the Bianchi group, Fd, where d=3,  w 7.) 

Namely,  for  all of  the above reasonable gauge functions the canonical geometrical  

measure on this set is not the Hausdorf f  (covering) measure.  However ,  the canonical 

geometrical  measure can be described as the HausdorffpD-packing measure of  [$2]. 

circle o f  lnvers 

les 

Figure 16. 
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