
ON THE HOMOLOGY OF ATTRACTORS 

DENNIS SULLIVAN and R. F. WILLIAMS 
(Received 1 December 1975) 

AN ATTRACTOR of a diffeomorphism f is a compact invariant set X which has an invariant 

neighborhood U satisfying X = f~ f”U. We will study the real homology of hyperbolic 
n=0 

expanding attractors (defined below in the appendix) using the branched manifolds of [S] and 
dynamical properties of [l] and [71. 

One can assume that X is connected and in an appropriate sense oriented (expanding 
attractors are locally homeomorphic to Euclidean space Cartesian product the Cantor set). We 
will replace f by a suitable power and then we have the 

THEOREM. The real C&h homology of an oriented expanding attractor X in its top dimension is 
non-trivial and finite dimensional. In an appropriate basis the homology transformation induced 
by f: X+X is a matrix with positive entries. The log of the maximum eigenvalue of this 
transformation is the topological entropy off: X+X. 

Description of proof (see remark on smoothness assumption below). 
We are assuming that X is a hyperbolic set for the diffeomorphism f, i.e. the tangent bundle 

along X splits into two df invariant subbundles, the stable bundle E, which is contracted by df 
and the unstable bundle E, which is expanded by df (relative to an appropriate metric). Under 
this hypothesis the attractor falls into finitely many connected components where some power of 
f is topologically transitive on each component [ 11. We assume that E, and E. are oriented on one 
of the components X. If not, we could work in some covering of a neighborhood of X. Since X is 
connected the orientation must be preserved (or reversed) by f. 

The stable bundle ES is tangent to a foliation of some neighborhood of X by the stable 
manifolds 

W,‘(X) = {y E nghdX: d(j”x, fr)+O asn-+m}. 
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The unstable bundle E. is tangent to a “partial foliation” of X by the unstable manifolds 

W,“(X) = {y E X: dCf-“x, f-“y)+O as n +m}. 

We also assume that X is an expanding attractor, namely dim X = dim W,“(X) for any 
x E X. This implies each stable manifold intersects X in a Cantor set and that one can 
reasonably treat the quotient of some neighborhood of X by the stable foliation. The quotient 
space of suitable closed neighborhoods of X, by collapsing the components of the intersections 
with the stable leaves, are compact branched manifolds, triangulable spaces, with continuous 
tangent spaces, and a specific singularity structure[S]. 

The homological arguments for the theorem fall into two parts. For the first part, consider a 
standard closed differential form wx on some fixed neighborhood U of X. The form w, is 
supported in a small tubular neighborhood of the stable manifold through x and restricts to the 
unit volume form (with the correct sign) on each small normal disk to W,“. 

PROPOSITION 1. Any finite positive linear combination of the forms ox, x E X is not exact in any 
nghd of X. 
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Proof of proposition 1. Take the case of one form w,. By Lemma 2 below ox restricted to the 
unstable manifold of a fixed point W = W,” is commensurable with the unit Riemann volume of 
W. If o, were exact in a neighborhood of X this would contradict, using the proof of Lemma 3, 
the polynomial growth of W provided by Lemma 4. The same argument works for positive linear 
combinations. 

We assume a fixed Riemannian metric on a fixed neighborhood lJ of X. Here we use W& to 
denote a neighborhood in W,” chosen so as to contain the connected component of W,’ n U 
about y. On a Riemann manifold let B(p, R) = {x: d(p, x) s R}. 

LEMMA 2. There is a number R such that each B(p, R) in W = W,” intersects each W;,,, for 
any unstable manifold W,” of X. 

Proof. This follows from the dynamical property that the closure of any unstable manifold is 
all of X [la]. For suppose a sequence (pi, Ri) exists with Ri -+a~ and B(pi, RI) II W& = 0. Let p 
be an accumulation point of the pi. Since W,” is dense in X, W,” must come close to and hence 
intersect WY”, as they are uniformly tranverse. So B(p, R) in W,” intersects WY’ for some R. But 
then for pi near p, B(pi, R ‘) intersects WY” for R’ near R, a contradiction. 

LEMMA 3. If W is a complete Riemannian manifold whose volume form is exact by a bounded 
form, then for any p E W the function volume B(p, r) grows as fast as an exponential in r. 

Proof of Lemma 3. Suppose w = dq where o is the unit volume form and 7 is a bounded 
form. Let V, = volume B(p, r) and A, = area of aB(p, r). Then for some constant c we have 
V, = J8(p,rj o = &ecp,r, 7 5 CA,. The lemma is proved by integrating the differential inequality 
(d V,/dr) = A, 2 (l/c) V,. See [3] for more details. This proof does involve checking to see that the 
sets B(p, r) are not too pathological; see for example Plante[31. 

The next lemma applies to the unstable manifolds which fill up X. 

LEMMA 4. Let W be a complete Riemannian manifold which admits a uniformly expanding 
self-diffeomorphism.t Then for some p, the growth of volume B(p, r) is dominated by a 
polynomial. Also W is diffeomorphic to Euclidean space. 

Proof of Lemma 4. Let p be the unique fixed point of the contracting map f-‘. If D is a small 
ball about p of radius p and volume V, then D, = f”D is an increasing union of balls which 
exhaust W. Thus W is difFeomorphic to R”.[21. 

Then clearly B(p, a”p) C D, and vol D” 5 bd” where d = dim W, The lemma follows. 

This completes the first part of the homological argument of the theorem, namely Proposition 
1. For the second part, we use the branched manifold theory of [81, which we summarize here, for 
completeness. 

For an appropriate closed neighborhood U, by collapsing the components of W,’ n U to 
points, one obtains a quotient space and quotient map 9 : U -j B. B is a branched manifold, of 
class C’ (as we have assumed that the stable foliation is C’ ) and fits into a commutative diagram 

f 
UklJ xfx 

4 1 I 4 or 4 I I 4 

B-B B-B 
8 

Branched manifolds have good tangent spaces, which relate nicely to smooth maps. In particular 
the map g: B + B is an immersion, in that its differential dg is 1-l on each tangent space T,B, 
x E B. In addition, g inherits certain properties from f, which we list as 

AXIOM 1. The non-wandering set a(g) = B. 

AXIOM 2. (Flattening) each point of B has a neighborhood V such that g’(v) is a d-disk for 
some i. 

AXIOM 3’. g is an expanding map. 

tFor all points the eigenvalues of df 0 df* lie in an interval [a, b] with a > 1 and b < 30, 
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A basic result of [8] is that (x,f(x)) is recoverable from g: B +B, as 

X =lim(B -I? t-- . *) 
8 8 

fix = li,m g. 

In detail, there is a homeomorphism h : X + li,m (B, g) defined by h(x) = (4x, &Ix, @x, . . .) 

and 

x-x 

hl f I h 

limB-1imB 
lim 

commutes. 
The geometric structure of B can be summarized as follows: 
Each point x E B has neighborhood V where 

(a) V = D U . . . U Dt, each D, a closed, smooth d-dimensional disk. 
(b) x is in the interior (as a disk) of each D,. 
(c) Di n II, is a closed d-cell. 

Note that part (c) implies that Di and Di are mutually tangent along a (0, fl D,), which is part of 
the “branch set.” Also the neighborhood V mentioned in Axiom 2 can be taken as in (a, b, c), and 
one can assume that g’ maps each Di (of part a) diffeomorphically onto the same disk, say 
D c B. 

Let B * B be the expanding endomorphism of the branched manifold constructed in [8]. 

Then B is triangulable, there is the commuting diagram 

x-x 
f 

I I 
B+B 

B 

and we can make the identifications X = lim B and f = lim g. The tangent spaces of B are 

continuously oriented. Let t be a sufficiently small triangulation of B. Then from Proposition 1 
we deduce that any positive d-cochain of B (d = dim B = dim X) is not a coboundary. Now let V 
denote the real vector space of d-chains. Define a chain map on V, 8, by 

k+(u) = 2 volume(g(a) n 7) 
‘7 

I volume 7 

where u and T are the d simplices provided with convenient volumes. It is geometrically clear 
that 2 preserves the subspaces of cycles 2. In the simplex basis g is a positive matrix and by the 
remark above about positive cochains the subspace of cycles intersects the positive quadrant of 
V. 

Now g 12 can be identified with the homology map induced by g on HJ?. and we can pass to f 
and &X by taking inverse limits. Thus there is an invariant subspace ZO of 2 such that g (2, can 
be identified with the homology map induced by f in I&(X). 

Proof. Let Z,= n g”(Z). As Z is finite dimensional this is g”“(Z) for some no, and 
"20 

li,m g )Z = SlZO. 

If A is the maximum eigenvalue of S on V with positive eigenvector u, then (@)“/A” 
approaches projection onto the linear subspace generated by 2). Thus u is a cycle since gZ C Z. 

Also (g)” squeezes the positive quadrant of V closer and closer to the ray generated by u as n 
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increases. It follows that a positive simplicial cone in Z containing v is kept invariant by (d)“. 

This means there is a basis in which HdX f” - &X has positive entries for large enough n. 
(We can take this basis over Q if we wish here.) 

To see that A is the topological entropy of XL X, let A (“) = area chain map of g” 

relative to this Markov measure which is uniformly expanded by g. The log of expansion constant 
v is the exponential growth rate (egr) of each column sum and thus also the egr of the sum of the 
matrix elements of A’“‘. But this latter quantity is also the log of the maximum eigenvalue for 
A’“‘. Thus A = v and we are done. 

Remark on smoothness. There are two kinds of smoothness assumptions. The first is the 
smoothness of the diffeomorphism f and the second is the smoothness of the stable foliation of 
the neighborhood of the attractor. If f is CL then each stable or unstable manifold is CL. The first 
part of our argument works if the unstable manifolds are C’ or probably even C’. 

The second part of the argument requires the stable foliation to be C’ SO that the branched 
manifold can be formed. In general the stable foliation only has Hiilder continuous tangent planes 
even if f is Cm. 
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