
Epkyy Vol. II, pp. 319-327. Pergamon Press 1975. Printed in Great Britmn 

CURRENTS, FLOWS AND DIFFEOMORPHISMS 

DAVID RUELLE and DENNIS SULLIVAN 
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HERE we describe a geometrical object in a manifold which determines by integration of 
differential forms a closed current in the sense of de Rham. In certain examples from dynamical 
systems, for example Anosov diffeomorphisms, these geometrical objects will lead to non-trivial 
real homology classes. 

Our ‘geometrical currents’ share some of the features of incompressible flows in the manifold. 
A geometrical currentt is made up of three things-a partial foliation in the manifold which is 
oriented and provided with a transversal measure. 

To go into more detail, to give a partial foliation (the streamlines of the current) we give a 
closed subset S of our smooth manifold W divided into connected subsets L,. There is a 
collection of closed disks of the form 

D k x D “-’ = (horizontal disk x vertical disk) 

called ‘flow boxes’ whose interiors cover W and which meet the L, nicely. Namely, each L, 
intersects one of the flow boxes Dk x Dnek in a collection of ‘horizontal disks’ {D” x y}. We 
assume each horizontal disk is smoothly embedded in W with tangent planes varying 
continuously over the entire flow box. 

Now we describe the transversal measure on our streamlines {L,} which is the analogue of 
incompressibility. By a transversal T we mean a smooth (n - k) dimensional submanifold which 
is transversal to each L,. T is small if it can be surrounded by a single flow box. Now the part of a 
small transversal in the support S of the current can be slid horizontally to one of the standard 
transversals x x D”-“. Maps between parts of small transversals constructed by iterations of this 
operation and its inverse are called canonical isomorphisms. 

A transversal measure p for our geometric current provides each small transversal with a 
measure of finite mass. We assume each such measure is supported on the part of the transversal 
intersecting the support of the current and that the canonical isomorphisms are measure 
preserving. 

Finally, to complete our notion of geometric current we need the analogue of direction of flow. 
This is the orientation u which continuously assigns to each point x of the support S of the 
current, an orientation of the manifold L, passing through x. 

The three objects (L,, p, V) define a geometric current with support S. 

Remark. In what follows it will be clear that we can dispense with introducing those horizontal 
disks {D” x y} of the flow box Dk x D”-’ which are not contained in the support S of our 
geometric current. Therefore it suffices to define partial frow boxes {D k x K”-‘} where K “-’ is a 
closed subset of D”-’ such that S f~ D”-’ C Knek (transversal measures and orientation 
remain defined as above). This fact will prove useful in the study of Axiom A diffeomorphisms 
below, where partial flow boxes are available but it is not known if they can be completed to flow 
boxes Dk x D”-‘. For simplicity we shall, however, continue to consider the flow boxes 
D Ir x D n-k, and leave to the reader the obvious extension of the results to partial flow boxes. 

We can speak of two geometric currents (Lp, CL, V) and (Lh, /.L’, v’) intersecting transversally 
in a third current (Ll, CL”, v”) if W is oriented. For this we assume the layers L, and Lh intersect 
transversally in the layers LZ. We assume there is one system of flow boxes working 
simultaneously for all three currents, 

(D’ x DC); = (Dk’ x DC’), = (Dk”x Dc”)i 

‘This terminologv is not meant to exclude other geometrical objects defining currents. The examples we discuss have a 
marked laminar quaiity related to the incompressibility needed to obtain a closed current. 
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where c, c', and c” are the codimensions. Then Dk”= Dk II D” and DC”= DC x DC’ and we 
have the usual relation 

codimension (L,, p, V) + codimension (L h, p’, v’) = codimension (L Z, CL”, Y”). 

The orientations of these currents combine with the orientation of W to orient the 
transversals D’, DC’, and DC”. We assume 

for these transversal orientations. Finally we assume the relation 

,J,“=,JXP’ on D”‘=D’ xD” 

holds for the transversal measures. 

The de Rham current associated to a geometric current 

Fix a geometric current (JL, II, u) of dimension k and support S contained in W. We assume 
W is covered by a locally finite system of flow boxes (D“ x D”-” ), provided with a partition of 
unity. Then each compactly supported k-form w on W becomes decomposed into a finite sum 
w = Z wi where wi is supported in the ith flow box. 

Now we can integrate wi over each horizontal (D’ x y ), and obtain a continuous function fi on 
(D”-k)i. We can then average this function using the transversal measure CL to obtain a real 
number ci. Note that ci only depends on the horizontal integrals over the layers of 
(Dk x D”-“), fl S because the support of p is contained in (D”-k)i n S. There is also a sign 
question which is fixed using the orientation v in case the flow box really intersects S. So we can 
define a current in the sense of de Rham from the geometric current (L,, CL, V) by the formula 

where w = Z wi. 

In the special case where the support of w is contained in the flow box i, one checks that 

From this follows that (in the general case) the de Rham current defined above does not depend 
on the choice of the partition of unity used. It also does not depend on the choice of the system of 
flow boxes (to see this use a common refinement of any two systems). 

A second remark is that our de Rham current is closed. That is, if w = dq where Q also has 
compact support then ((L, CL, v), dQ) = 0. This follows by writing a finite sum Q = F (pi and 
observing the inside integrals in the definition, JCD~ryj, dQi, vanish. 

We also note that if the support of w does not meet S then ((La, p, v), w) = 0. 

So if c is the codimension of our geometric current (L,, p, v) and U C W is the open 
complement of its support S then we have the 

PROPOSITION 1. A geometrical current defines a canonical cohomology class 

if W is oriented. 

[L, CL, VI E H’(K w, 

Now we prove a precise geometrical form of the cohomological formula 

[La, /4 Yl u [L&p’, v’] = [LE, p”, Y”] 

when (L,, p, v) and (Lh, p’, Y’) intersect transversally in 
First, recall that any n - k form v on W determines a (k 

after fixing an orientation of W. 

(LZ, p”, v”). 
dimensional) current by the formula 
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Such currents can be multiplied using the wedge products of forms, 

(V, *) A (u’, -) = (V A v’, .). 
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One can try to extend this multiplication to more general currents by continuity since these form 

(or smooth) currents are dense in all currents. 

Currents can be smoothed by convolution15j. 

This approximation (or regularization) procedure for currents is linear, commutes with the 

boundary operator, approximately preserves the support, and (can) proceed by smoothing the 

current in one coordinate patch at a time[5]. 

In the case of two currents defined by integration along two submanifolds intersecting 

transversally the multiplication procedure works in the limit and there is the formula[5] 

I6i_moR*(M) A Rs(M’) = 
I 

(*) 
Ml7M’ 

where C -+ RsC is the regularization which depends on choices and a degree of approximation 

parameter 8. This convergence is uniform for evaluation on uniformly bounded forms supported 

in a given compact set of W. 
In these terms we can state the 

PROPOSITION 2. If two geometrical currents (Lp, II, Y) and (L;, CL’, v’) intersect transversally in 

(LZ, p”, v”), then for each compactly supported form w we have 

Isi_mo(&(L,, I*, Y) A Ra(Lh, CL’, V’))(W) = ((LL, CL”, u”), w). 

Proof. It suffices to discuss forms supported in a single fiow box ’ 

D =Dk xD= =Dk’xDc~=Dk’xDc” 

where D’“= Dk fl Dk’ and DC”= DC x DC’. 
We can write 

RsG, II, v) = j-D= p(dyWi(Dk x Y)), 

expressing the basic linearity property of regularizing. We can also write 

Rs(Lh, CL’, v’) = 
I 

Dc, p’(dy)(Ra(Dk’x Y’)). 

If we approximate these integrals by finite sums 

Rs(L,,p,v)-&Rs(D’xyi) 

Rs(Lb,p’,v’)-&diRs(D”xy:) 

we see that 

As 6 + 0, Rs (D’ x yi ) A Rs (D *’ x y :) approaches the current defined by Dk n D k’ X (yi, y :) 
i.e. Dk’ x y:‘j where y’$ = (yi, y:) in D’” = DC x D”[5]. Since this convergence is uniform in y:‘j, 

and p’= p x IL’ on DC” f~ S”, 

Ra(L,, p, v) A Rs(Lb, CL’, v’)-+ 
I D=‘nS” 

AW)( fDk.., (9) 

as currents. This completes the proof of Proposition 2. 

As a corollary we can write the equation of currents 

(L,, /.L, v) A (LA, I*‘, v’) = (L:, FL!‘, v”) 

in an oriented manifold. We also obtain the cohomological equation 

[Lo, /.L, VI u [Lh, p’, u’l = [LE, CL”, u”1 
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[LL, p’, u’] E H”( w, U’) 

[LI, p”, Y”] E H”‘( w, U”), 

C” = c + c’ are the codimensions, and U” = U U U’ are the open sets complementary to the 
respective supports of the currents. 

Examples of geometric currents 

(i) We have already seen that a single oriented submanifold of W defines a geometric current. 
The. existence of flow boxes is clear and the transverse measure is the point mass along the 
submanifold. 

(ii) Consider a linear foliation of the plane by parallel lines. We have a measure on 
transversals defined by projecting onto orthogonals and we can choose an orientation. If we pass 
to the standard quotient torus we obtain a geometric current representing the real homology class 
X cos 8 + Y sin 0 where 8 is the angle between the linear foliation and the x-axis and X and Y 
are the standard generators of H, (torus, R). 

(iii) Let S denote the standard solid torus S’ x D* in R’. Consider a diffeomorphism 

S + interior S which squeezes in and stretches around twice. Then ur?l, f”S is the dyadic solenoid 

which is locally homeomorphic to C x R where C is the Cantor set of bi-infinite sequences of O’s 
and 1’s. The transversal Cantor sets are canonically endowed with the (i, t) measure because the 
ambiguity in the identification involves the interchange of zero and one. Choosing an orientation 
yields a geometric current supported on the solenoid and representing the generator of H, (solid 
torus). The theoretical discussion behind this example is given below for general Axiom A 
diffeomorphisms. 

(iv) Let (o, be any volume preserving flow on W. Suppose w is an invariant volume form and X 
is the vector field generating the flow. If X is never zero, then we obtain a geometric current using 
the flow lines of cp,, oriented by X, and the transversal measure defined by the (n - 1) form 
“rl(*, . . ., *) = w (X, ‘) . . .) .). The de Rham current associated to this geometric current, described 
above by two integrations, is also given by the formula 

C,.,(u) = j-W u(X) A w. 

This formula defines a current for any pair (w, X) but it only yields a closed current when w is 
invariant along the flow determined by X. 

Using the ergodic theorem when W is compact and the pair (Q, w) is ergodict, one can show 
that the homology class of this current can be approximated as follows-start at (w-almost) any 
point x and travel along the tlow for a long time T until a point x’ near x is reached. The l/T 
times the cycle made up of the traveled path plus a small path connecting x and x’ gives the 
homological approximation, see [6]. 

These incompressible flow examples include the torus example above, as well as any 
Hamiltonian dynamical system. However, if the zeroes of the vector field X are not ‘laminar in 
nature’ one finds new ‘geometrical currents’ outside the class discussed above. 

(v) Another way to generalize the torus example is to consider higher dimensional foliations. 
If {L,} is a k-dimensional foliation of W which can be oriented by u and provided with a 
transversal measure I*, then of course we have a geometric current (I,,, p, v). 

In general, a non-trivial transversal measure may not exist for a foliation, and if it exists it is only 
unique in certain cases. If the manifold is compact such a measure generalizes the notion of a 
compact leaf. For each compact leaf determines the transversal measure which is just the point 
mass along this leaf and zero elsewhere. In the Reeb foliation of S” the compact leaf determines the 
only transversal measure. 

In another example, the manifold W is the unit tangent bundle of an oriented negatively 
curved compact surface M* of higher genus. The geodesic flow of W, which defines a geometric 

tThat is, 9, leaves no set invariant whose w measure is positive and less than the total mass of W. 
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current, is the transversal intersection of two codimension one foliations. These foliations are 
transversal to the foliation of W defined by circles of unit tangent vectors. This latter foliation 
also defines a geometric current by pulling up the volume form of the surface to give a transverse 
measure. 

Since the Euler characteristic of MZ is non-zero this current of circles defines the zero 
homology class. It follows that neither of the transversal codimension one foliations admit 
transverse measures. If one did, the intersection with the current of circles would be non-zero 
homologically, which is a contradiction. 

Axiom A diffeomorphisms 

Now we turn to the discussion for which the introduction was intended. 
Let f be a diffeomorphism of the compact manifold M. Recall x E M is called wandering if x 

has a neighbourhood U which moves away under f, i.e. f”U n lJ = 0 for n 2 1, and 
non -wandering if it is not wandering. The set of non-wandering points form a closed invariant set 
n = n(j). Axiom A assumes the density of periodic points in fi and the existence of a df 
invariant splitting of the tangent bundle of M along a, T = E” @ E”, where E” is exponentially 
expanded by (df)” and E” similarly contracted (relative to some Riemannian metric). 

Our constructions here are based on assembling several of the striking geometrical 
consequences of this axiom established by several workers. 

Let A be a closed invariant subset of R which is open in a and contains a dense orbit (basic 
set). The Axiom A splitting has a constant dimension, (n - k, k) along A and we assume that the 
bundles E” and E” admit orientations. Let 

WAS ={x E M:f”x+h as n ++m} 

W,,” ={x E M:f-“x+Aas n-++m}. 

Now WnS can be filled up by k-dimensional submanifolds of M, the ‘stable manifolds’ of A. 
Similarly WA” can be filled up by the ‘unstable manifolds of A’. These two systems of 
submanifolds are oriented, laminar (they admit partial flow boxes) and can be transversely 
measured. Thus we can obtain two geometric currents of dimensions k and n - k respectively, 
supported by WAS and WA”, which intersect transversally in A. 

To begin the construction we choose an adapted Riemann metric on M and for sufficiently 
small E > 0 and x E A define the local stable and unstable manifolds 

W,‘(e)={y E M:dCf”x,f”y)<e forall n rO} 

W,“(e) = {y E M: dCf-“x, f-“y) c e for all n 2 0). 

Thus fW,‘(e) C W;,(E) and f-‘Wx”(e) C Wfu-lCx,(e). 
By stable manifold theory[4], if x E A, there are partial flow boxes 

Dk x K”+ 

where Knek is a closed subset of W,“(E) so that, for x’ near x, W:,(E) intersects Dk x Knek in 
exactly one vertical factor. There are also partial flow boxes 

Kk x D”-k 

xxx 
Fig. 1. 

TOP Vol. 14, No 4-C 
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where K* is a closed subset of W,‘(E) so that, for x’ near x, W:,(E) intersects Kk x Dnek in 
exactly one horizontal factor. Furthermore, near x, A agrees with the Cartesian product 
Kk x K”-“ (Fig. 1). 

This picture has many consequences, for example if 

W,“(e)= u {W,‘(e):x E A}, W*“(e)= u {W,“(E):X E A} 

then W‘\‘(e) n W.,“(a) = A. Also, there are canonical homeomorphisms between parts of 
Wx’(e) and W:(e) and also W,“(E) and W:.(E), denoted pt.,, and pL,, defined by projection 
along the appropriate factor. The projections are denoted px’ and p*“. We suppose a is chosen so 
that, for x, x’ in A and d(x, x’) < a, pxs is defined on W:(a) II A and imbeds this set in 
Wx’(e) fl A. Similarly, for pxu. 

Writing B,(P) = {y E M: d(x, y) < p} we can choose /3 < a such that, if x E A, 

&(p) n W,“(E) C u {WY”(E): y E W,“(e) (-I A} 

and 

p33,(p) n W.,“(E)) c w,“(fd 

and similarly when s and u are interchanged. 

1. THEOREM. Let log A be the topological entropy off]A. For each x E A there is a measure 
ux3 r0 on W,‘(E) and a measure ux” 20 on W,“(E) such that: 

(a) SUPP~; c W,‘(E) n A, supp pxu c W:(E) n A 
(b) If d(x, x’) < a, the image by p:.,. of the restriction ofu:, to W:(a) n A is the restriction 

of uxs to p:.x(W:(a) n A): 

pXuZ~IWXa) n A) = uxs(p~.,(W~(a) fl A). 

Similarly 

pXu,U2JWXa) n A)=~~“]p&(W5(a) n A) 

(c) cf-‘&s - h-‘/.L;-l,)( W;-‘,(E) = 0 
cfpx” - A -‘/L;(x)/ W;(,(E) = 0 

(d) Let [., .I: (W,“(E) n A) x (W:(E) n A)+ A be defined by {[y, zl} = W,“Gk) n W/(28). 
Then 

1.9 .lbx” x /.~~)iBx(/3) n A=pIBx(P) n A 

where p is Bowen’s measure on A, i.e., the unique f-invariant probability measure on A such that 
its measure-theoretical entropy is log A. 

This theorem is proved by Sinai[7, Theorem 5.11 for Anosov diffeomorphisms. The general 
case follows simply by using Bowen’s construction of Markov partitions for basic setsill. For 
completeness we give the argument in the Appendix. 

As a corollary we see that the stable manifolds near A form a geometric current C.“. The 
stable bundle Es is assumed oriented so we have a continuous orientation of the W,” (E ). The p ,“.,s 
generate the canonical isomorphisms among the standard transversals W:(E) n (D* X K”-‘) of 
the partial flow box Dk X K”-“. The theorem, parts (a) and (b), then provides us with a 
transversal measure p” generated by canonical isomorphism from Pi”. 

To go further we must make an orientation assumption about f. Namely that f preserves (or 
reverses) the orientation of E”. 

Then by part (c) of the theorem, f maps the geometric current C.” to *h-‘C.’ (when 
restricted to a small neighbourhood of A). Using this fact we can construct an extension C’ of C.’ 
to the complement in M of the set 

X~S = n clos. (w,s\f-W&s(e)). 
“Z-O 

It is known[4] that x,,’ n W,,’ = 0. Therefore every x E X,,” belongs to WL for a basic set 
A’ # A. Furthermore if the Axiom-A diffeomorphism f satisfies the No-Cycle condition, then 
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(X,’ n wf.%. # 0) j (A’ > A) (*) 

where A’ > A means that there is a sequence A’ = A,, AZ,. . ., A,,+, = A such that 

WXi f-l w;,,, = 0 

for i = 1,. . ., n. How to prove (*), using [4], was shown to us by J. Palis. Altogether we see that if 
f satisfies Axiom-A and the No-Cycle condition, C’ is defined on 

M\ U Wi. (Figure 2). 
K:h’>* 

Fig. 2. 

Similarly we construct a geometric current C” using f, the W,“(e), the measures pi, and the 
orientation of E” which we suppose is preserved or reversed by f. 

We also denote by C” and C” the de Rham currents determined by these geometric currents. 
We summarize all this in the following theorem which makes use of the further fact[4], [2] 

that 
W,” II W,,” = A. 

THEOREM 2. There are naturally defined geometric currents C” of dimension k on M\ U WzL 
I\‘:A’>,% 

and C” of dimension n - k on M\ U WZ. C” is supported by the stable manifolds of A and C” 
h’:*\‘<* 

by the unstable manifolds of A. C’ and C’ intersect transversally in A which becomes a O-current 
via the Bowen measure p. On the level of de Rham currents we can say 

(a) Cs and C” are closed and thus define cohomology classes [C’] and [C”] in 
H’(M\ u Was, M\ U WI,) and H”-‘(M\ U Wt., M\ U WX,) respectively. 

X:N>* N:NZA KA’<A i\‘:l\‘r* 
(b) C” A C” is defined as a current and coincides with the O-dimensional current (A, Bowen 

measure). It follows that 

[Cl U [C”] = (A, Bowen measure)d”“’ 

in H”(M, M\A). 
(c) Finally fC’ = ?l/hC’ and fC” = ?hC” on the level of currents where log A is the 

topological entropy of flA. 

Remark. The orientation assumption on f cannot always be satisfied for example in the 
horseshoe example where A is totally disconnected. 

The orientation assumption is fulfilled when A is connected for example when A is an 
attractor and flA_ is topologically mixing. In fact, Theorem 2 was in part motivated by the 
homological study of expanding attractors in [8] where the classes [C”] and [C”] are studied in 
this special case. (See for example the solenoid case (iii) above.) 

Finally, we note a consequence of Theorem 2 and Proposition 2. Let f be an Anosov 
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diffeomorphism of a smooth manifold M. In our terms this means the non-wandering set is all of 
M and f satisfies Axiom A. The classification of these diffeomorphisms whose study has inspired 
much of the work on Axiom A diffeomorphisms can hopefully be reduced to a study of the 
algebraic topology of M. As a small step in this direction we have the following 

COROLLARY. Zf f: M + M is an Anosov diffeomorphism with orientable stable and unstable 
foliations then there are canonical homology classes (defined by these foliations) S E H,(M. R) 
and U E Hmer,(M,R) so that S n U= 1 in Ho(M,R) and fU=+hU and fS =+l/AS where 
log A is the topological entropy off. 

Appendix: proof of Theorem 1 

Let V be a Markov partition of A (see [l]) and, if E, F E 92, write 

Define 

and ?r:C+Aby 

t 
1 

EF = 1 

iff(intE) 17 intF#g 
0 otherwise 

Z = {(Et) E %“: tEIE,_, = 1 for all i E Z} 

{~@i)} = & f-‘Ei. 

Then it is known that r is a continuous surjective map and f 0 T = T 0 u where (T is the shift on 
2. Let v be the unique o-invariant probability measure on C. such that its entropy h,(r) is 
maximum (Parry), then p = PV is the unique f-invariant probability measure on A such that its 
entropy is maximum and the abstract dynamical systems (u, v) and Cf, p) are isomorphic. 

Let t be the matrix indexed by V x V with elements tEF. From the Perron-Frobenius 
theorem [3] it follows that t and its adjoint t * have eigenvectors a, b with components aE > 0, 
b, > 0 corresponding to the same eigenvalue A > 0, and we may assume that EE E ‘g bEaE = 1. If 
k I 1, the measure u satisfies 

v{(Ei) E Z: El, = R,. . ., El = E} = h-(L-k)b&~F~+l . . . tF,_,F,aF, 

which expresses that (u, v) is a Markov chain. We also have log A = h,(r) = h&). 
Let 2’ resp. X- be defined like Z with 2 replaced by Z’ = {n E Z: n 2 0) resp. 

Z-={n EZ:n~O}.Wedefineu:C’+Z’anda-‘: Z- + Z- in the obvious manner. There are 
measures v* 2 0 on X* such that, for k 2 0, 

V+{(Ei) E 2’: Eo = Fo, . . ., E, = Fk} = h-&F, * * * tFk_-IFkaFk 

v-{(Ei) E x-: E-k = F-t, . . ., Eo = Fo} = h -kb&F_~F_~+, . * * tF-,Fo. 

We may assume that the sets in the Markov partition V have diameter less then E /3. If y = n(Fi ), 
let ry.Fo: {(Ei) E 2’: E. = IT,}-, WY”(e) fl F. be detined by 

a&&E,) = T(. . ., F-z, F-i, Fo, El, Ez, . . .I 

so that 

{T&,(R)} = W;(E) ni,z+ f-‘Ei. 

The image of v’l{(Ei) E Z’: E. = Fo} by ?T&, is a measure CL &, on W,“(e) n Fo. The measure 
s ky.Fo is defined similarly. We have 

f~:.&i) = ~:~w,kdEi)) 

for any y*(E,) E E, n f(WxU(e) n I%). The image of v+l{(Ei) E C’: Eo = FO and EI = FJ by c 
is A-‘v’I{(Ei) E C’: Eo= F,}. Therefore 

fP J.F” = A-’ 2 tFoF,/.L:*w,LF,. (*) F,EW 

If x E A we define the measure pI” on W,“(E) as follows. For each E E % such that 
W,“(E) n Ef 0, choose y E WX”(6) n E. Let supp ~1~” C W,“(E) n ,I and wX” restricted to E 
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be CL y,E restricted to W,“(E) n E. We define CL,’ similarly. For the definition of bX” to make sense 
we have to check that if W,“(E) n E’ # 0 the definition of bxu on E agrees with that on E’. We 
also want to verify that FL%“, CL:, correspond by p:,,, as asserted in (b). To prove both facts it 
suffices to show that ~Y,.E. and ~Y,E correspond by the projection p F, along stable manifolds. 
More precisely we want to show that the image of P:.~ by p:, agrees with P;.,~. on 
(W;.(E) E E’) n p;.( W,“(E) n E). If E = E’ this is the case because of 

lr:,.,. = p:m;, 

and the definition of F:,~, P;..~.. If E Z E’ we use (*) repeatedly to compare flip:.E and fl’~;..~‘. 
Let Y’ be the set of points (Ei) E 2’ such that E. = E and there exists (E’J E 2’ such that 

(i) El, = E’ 

(ii) p F..E.~y.E(Ei) = T,,.~.(E’J 

(iii) EiZ EI for all i E Z’ 

We have to prove that v’(Y’) = 0. 
Let Y be the set of points (Ei) E 2 such that E. = E and there exists (E’J E Z’ such that 

(i) El, = E’ 
(ii) ~r;,.~,r(E~) = T:.&E:) 

(iii) Ei # El for all i E P’ 

The claim that v’(Y’) = 0 will follow from v(Y) = 0. If z E PY, then for all k E Z’ there exist 
Ek, EL distinct such that f“z E R and , 

;i_m_ dcf”z, EL) = 0 

uniformly in z. The p-measure of the boundary of each set in the Markov partition % vanishes. 
Therefore 

v(Y) = I = lim pcf’7rY) = 0. 
r-X= 

We have thus verified (a) and (b); (c) follows from (*). Consider now the map 

{(Ei) E X+:Eo=E}x{(Ei) E X-:Eo=E}+{(Ei) E Z:Eo=E} 

such that 

(Eo, E,, . . .) x (. . ., E-,, Eo)+ (. . ., E-,, Eo, E,, . . .). 

The image of 

(o+l{(Ei) E Z’: Eo = E}) x (cr-I{(Ei) E C-: Eo = E}) 

by this map is (+I{(Ei) E 2: E. = E}, and (d) follows readily. 
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