A REMARK ON THE LEFSCHETZ FIXED POINT FORMULA
FOR DIFFERENTIABLE MAPS

M. SHUB and D. SULLIVAN

(Received 10 September 1973)

If 0 is an isolated fixed point for the continuous map \(f: U \to \mathbb{R}^m \), where \(U \) is an open subset of \(\mathbb{R}^m \), then the index of \(f \) at 0, \(\sigma_f(0) \), is the local degree of the mapping \(\text{Id}_f \) restricted to an appropriately small open set about 0. If 0 is an isolated fixed point of \(f^n \), then \(\sigma_{f^n}(0) \) is defined for all \(n > 0 \), where \(f^n \) means \(f \) composed with itself \(n \) times restricted to a small neighborhood of 0. We will use a little elementary calculus to show:

Proposition. Suppose that \(f: U \to \mathbb{R}^m \) is \(C^1 \) and that 0 is an isolated fixed point of \(f^n \) for all \(n \). Then \(\sigma_{f^n}(0) \) is bounded as a function of \(n \).

The proposition is not true for continuous functions as the mapping of the complex plane \(f(z) = 2z^2/\|z\| \) shows. In fact, for this \(f \), \(\sigma_{f^n}(0) = 2^n \). Our interest in the proposition arose from the Lefschetz fixed point formula as applied to a smooth endomorphism \(f \) of a compact differentiable manifold \(M \). The Lefschetz formula says that the Lefschetz numbers

\[
L(f^n) = \sum (-1)^i \text{tr} \; f_{*i}^n : H_i M \to H_i M
\]

can be computed locally by these fixed point indices,

\[
L(f^n) = \sum_{P \in \text{Fix}(f^n)} \sigma_{f^n}(P),
\]

provided that the fixed points of \(f^n \) are isolated.

Corollary. If \(f: M \to M \) is \(C^1 \), and the Lefschetz numbers \(L(f^n) \) are not bounded then the set of periodic points of \(f \) is infinite.

In particular, any \(C^1 \) degree two map of the two sphere, \(S^2 \), has an infinite number of periodic points and hence an infinite non-wandering set [see 1].† The corollary suggests the possibility of getting sharper estimates on the asymptotic growth rate of \(N_n(f) \), the number of fixed points of \(f^n \).

Problem. If \(f: M \to M \) is smooth, is

\[
\lim sup \frac{1}{n} \log |L(f^n)| \leq \lim sup \frac{1}{n} \log N_n(f)?
\]

† Note that the one-point compactification of \(f(z) = 2z^2/\|z\| \) is a **continuous** degree two map of \(S^2 \) with only two periodic points.
As remarked in [1] this inequality is rather obviously true for the set of C^r endomorphisms f of M which have the property that all periodic points of f are transversal. Then, of course, $|L(f^n)| \leq N_\omega(f)$.

We now proceed with the proof of the proposition. In all that follows below f is C^1 and 0 is an isolated fixed point of f^n for all n. The idea is to try to approximate $I - f^n$ by $(I + f + f^2 + \cdots + f^{n-1})(I - f)$ so that if $I + f + f^2 + \cdots + f^{n-1}$ is a local diffeomorphism then degree $(I - f^n) = \pm$ degree $(I - f)$. To make this precise and to do the estimates we work with the derivatives of f^n at 0 which we denote by Df^n.

Lemma 1. If $\sum_{j=0}^{n-1} Df^j$ is non-singular then $\sigma_f(0) = \pm \sigma_f(0)$.

Before we prove Lemma 1 we will show how it proves the proposition. $\sum_{j=0}^{n-1} Df^j$ is singular precisely when $n = mk$, $k > 1$, and Df has a primitive kth root of unity as an eigenvalue. For each integer n, let λ be the least common multiple of these orders k. Then we may apply the proposition to see that $\sigma_f(0) = \pm \sigma_f(0)$. (If (k_1, k_2, \ldots) are the orders of roots of unity in the spectrum of Df, then $(k_1, \gcd(k_1, \lambda), \ldots)$ are the orders for Df^1. But now n/λ is not a multiple of any of these orders greater than 1.)

Since we only need finitely l.c.m.'s λ to take care of all the integers n, this argument proves the proposition.

A standard fact that we shall use in proving Lemma 1 is:

Lemma 2. If $h, k : U \rightarrow \mathbb{R}^n$ are continuous, have 0 as an isolated 0 and $\|h(x) - k(x)\| < \|h(x)\|$ then degree $(h) = \text{degree} (k)$.

Proof of Lemma 1. Let $f = Df + \theta_1$ and $f^n = Df^n + \theta_n$.

Then $I - f^n = I - Df^n - \theta_n$,

$$= (I + Df + \cdots + Df^{n-1})(I - Df) - \theta_n$$

$$= (I + Df + \cdots + Df^{n-1})(I - f) + (I + Df + \cdots + Df^{n-1})\theta_1 - \theta_n.$$

We will show by induction that given (n, ϵ) there is a neighborhood $U_{n, \epsilon}$ of 0 such that

$$\left\| \left(\sum_{j=0}^{n-1} Df^j \theta_1 - \theta_n \right)(x) \right\| < \epsilon \| (I - f)(x) \| \text{ for all } x \in U_{n, \epsilon}.$$

So that if $\sum_{j=0}^{n-1} Df^j$ is non-singular then by Lemma 2,

degree $(I - f^n) = \text{degree} \left(\sum_{j=0}^{n-1} Df^j \right)(I - f) = \pm$ degree $(I - f)$.

To estimate $\sum_{j=0}^{n-1} Df^j \theta_1 - \theta_n$ first observe that $\theta_n = \sum_{j=0}^{n-1} Df^{n-j} \theta_1 f^j$ as can easily be seen by induction. So

$$\sum_{j=0}^{n-1} Df^j \theta_1 - \theta_n = \sum_{j=0}^{n-1} Df^{n-j} \theta_1 - \sum_{j=0}^{n-1} Df^{n-j} \theta_1 f^j$$

$$= \sum_{j=1}^{n-1} Df^{n-j} (\theta_1 - \theta_1 f^j).$$

By the mean value theorem

$$\left\| \left(\sum_{j=0}^{n-1} Df^j \theta_1 - \theta_n \right)(x) \right\| \leq \sum_{j=1}^{n-1} \| Df^{n-j} \| \| D\theta_1 \|_{U_{n, \epsilon}} \| (I - f^j)(x) \|.$$
where \(\|D\theta_1\|_{U_{n,\epsilon}} = \sup_{x \in U_{n,\epsilon}} \|D_x \theta_1\|\). Since \(D_0 \theta_1 = 0\) it clearly suffices to prove inductively that given \(j < n\) there is a neighborhood \(V_j\) of 0 and a \(0 \leq k_j < \infty\) such that
\[
\|(I - f^j)(x)\| \leq k_j \|(I - f)(x)\| \quad \text{for all} \quad x \in V_j.
\]
Since
\[
I - f^j = \left(\sum_{i=0}^{j-1} Df^i \right) (I - f) + \sum_{i=0}^{j-1} Df^i \theta_i - \theta_j,
\]
we can inductively choose \(U_{j,\epsilon}\) so that
\[
\|(I - f^j)(x)\| \leq \sum_{i=0}^{j-1} \|Df^i\| \|(I - f)(x)\| + \epsilon \|(I - f)(x)\|,
\]
and we are done.

REFERENCE

Queen's College, New York
Massachusetts Institute of Technology