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IF 0 IS an isolated fixed point for the continuous map f: U + R”, where U is an open subset 

of Rm, then the index off at 0; a,-(O), is the local degree of the mapping Id-f restricted to 

an appropriately small open set about 0. If 0 is an isolated fixed point off”, then a,,(O) is 

defined for all IZ > 0, wheref” means f composed with itself n times restricted to a small 

neighborhood of 0. We will use a little elementary calculus to show: 

PROPOSITION, Suppose that f:U + R” is C’ and that 0 is an isolated fixed point off 

for all n. Then ~~“(0) is bounded as a function of n. 

The proposition is not true for continuous functions as the mapping of the complex 

plane f(z) = 2z2/11z11 shows. In fact, for this f, a,-,(O) = 2”. Our interest in the proposition 

arose from the Lefschetz fixed point formula as applied to a smooth endomorphism f of a 

compact differentiable manifold M. The Lefschetz formula says that the Lefschetz numbers 

L(f”)~1(-1)~ trace f,F:HiM-+HiM 

can be computed locally by these fixed point indices, 

provided that the fixed points off” are isolated. 

COROLLARY. If f:M + M is C’, and the Lefschetz numbers L(f”) are not bounded then 

the set of periodic points off is infinite. 

In particular, any C’ degree two map of the two sphere, S2, has an infinite number of 

periodic points and hence an infinite non-wandering set [see I].? The corollary suggests 
the possibility of getting sharper estimates on the asymptotic growth rate of N,(f), the 

number of fixed points off”. 

Problem. If f:M + M is smooth, is 

lim sup i log 1 L(f”) I < lim SUP i 1% ND3 ? 

t Note that the one-point compactification off(z) = 2z2/~~2~~ is a continuous degree two map of .S* with 
only two periodic points. 
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As remarked in [l] this inequality is rather obviously true for the set of C’ endomor- 

phisms f of M which have the property that all periodic points off are transversal. Then, 

of course, ]L(f”) 1 < N,(f). 

We now proceed with the proof of the proposition. In all that follows below f is C’ 

and 0 is an isolated fixed point off” for all n. The idea is to try to approximate I -f” by 

(Iff +f2 +**. +f”-‘)(I -f) so that if I + f + f 2 + . . . +f”-’ is a local diffeomorphism 

then degree (I -f”) = + degree (I -f). To make this precise and to do the estimates we 

work with the derivatives off” at 0 which we denote by Of”. 

LEMMA 1. If c;; h Dfj is non-singular then or(O) = + ~~“(0). 

Before we prove Lemma 1 we will show how it proves the proposition. c;:iDfj is 

singular precisely when n = mk, k > 1, and Df has a primitive kth root of unity as an eigen- 

value. For each integer IZ, let ,? be the least common multiple of these orders k. Then we 

may apply the proposition to see that ~~“(0) = + af,(0). (If (k,, k, , . . .) are the orders of 

roots of unity in the spectrum of DA then (k,/g.c.d.(k,, A), . . . ) are the orders for Df I. But 

now n/A is not a multiple of any of these orders greater than 1.) 

Since we only need finitely l.c.m.‘s A to take care of all the integers IZ, this argument 

proves the proposition. 

A standard fact that we shall use in proving Lemma 1 is: 

LEMMA 2. If h, k:U --f R” are continuous, have 0 as an isolated 0 and /h(x) - k(x)11 < 

Ilh(x) jj then degree (h) = degree (k). 

Proof of Lemma 1. Let f = Dj-+ 8, andf” = Df” + 8.. 

ThenZ-f”=I- Of”-0, 

=(Z+Df+...+Dj-“-1)(I-Df)-8, 

= (Z-t Df + *... + Df”-‘)(1-f) +(I+ Df + ... + Of‘-‘)O, - 8,. 

We will show by induction that given (n, E) there is a neighborhood U”, E of 0 such that 

IK 

n- 1 
c Dfje, - 0, 

1 II 
(4 <~ll(Z-f)(x)11 forallxE U,,,. 

j=O 

So that if C;lADfj is non-singular then by Lemma 2, 

degree (Z-f”) = degree (C;:ADfj)(l- f) = + degree (Z-f). 

To estimate ~;:~Df%, - 8, first observe that 8, = ~~;~Df”-j-‘e,fj as can easily be 

seen by induction. So 

n-1 n-1 n-l 

c ofje, - en=j~Df-l-jel -jz;04f"j-1elfj 
j=O 

n-l 

= & of”-lye, - e,fq. 

By the mean value theorem 
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where II Del IL,,, ~ = sup 11 D, 8, II. Since D, 0, = 0 it clearly suffices to prove inductively 
xEUn,E 

that given j < n there is a neighborhood Vj of 0 and a 0 I kj < co such that 

Il(Z-f’)(x)11 G kjll(Z-f)(x)11 for all XE vi. 

Since 

j-l 

( 1 

j-l 

Z-f’= 1 Dfi (Z-f)+ c Df’8, -0,, 
i=O i=O 

we can inductively choose Vi, E so that 

j-l 

IU-fj>@>II d i~oIIDfill IU-f>WII + W-ff)WII> 

and we are done. 
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