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 On the Kervaire obstruction

 By C. P. ROURKE and D. P. SULLIVAN

 The classical "Browder-Novikov" surgery problem may be stated as fol-

 lows: Suppose f: M1 - M is a normal map between n-manifolds, that is, f

 has degree 1 and is covered by a bundle map f: V3M1 $, where vM1 is the nor-

 mal bundle of M1 and ? some bundle over M. Then, when is f cobordant to a

 homotopy equivalence, where a cobordism of normal maps means a normal

 map onto M x I? In the case when M is simply connected and n > 5 the

 problem has a simple solution: If n is odd f is always cobordant to a homotopy

 equivalence; if n _ 0(4) then this is true if and only if Index (M1) = Index (M);

 and, if it 2(4), if and only if an obstruction K(f, f) E Z2 vanishes.

 The purpose of this paper is to give a geometrical definition, based on

 immersion theory, of this obstruction, the Kervaire obstruction, and to prove

 a product formula which gives the obstruction for f x g in terms of invariants

 of f and g. The definition and formula apply when M is non-simply connected

 and n is any even integer but in this case the obstruction is just part of the

 surgery obstruction (Wall [16]). We also interpret the product formula in

 terms of the classifying space G/PL for PL normal maps. It implies the ex-

 istence of primitive "Kervaire" classes in the Z2-cohomology of G/PL which

 induce the obstruction. We give formulae due to Brumfiel and Wall relating

 the various classes.

 We are very grateful to both Brumfiel and Wall for allowing us to use

 their results and to Wall for criticism of an early version of this paper.

 We work for convenience in the PL category; our results can be inter-

 preted in either smooth or topological categories using triangulation theorems

 of Whitehead [17] and Kirby and Siebenmann [6].

 CONTENTS

 ? 1 Definition of the Kervaire obstruction.

 ? 2 The product formula.

 ? 3 The classifying space for normal maps.

 ? 4 Construction of the Kervaire classes.

 ? 5 The relations between the Kervaire classes.
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 398 ROURKE AND SULLIVAN

 1. Definition of the Kervaire obstruction

 Let

 il 1

 be the given normal map, where dim (M) = 2m. Write

 Hm(Mi) = Hm(M) ED Km

 where all groups have Z2-coefficients and

 Km = kerf*: Hm(Ml) + Hm(M)

 see e.g. Wall [14; 1. 3]. We will define a quadratic form Q on Km associated to

 intersection pairing and then K(f, f) will be the Arf invariant of this form.

 (A definition and basic properties of the Arf invariant are to be found in a

 short appendix to the paper.)

 The idea is this. Represent x e Km by a singular manifold a: Wm Ml1

 such that fo a is bordant to zero and use general position to shift fo a: W- M

 to an immersion. Then use the bundle map f to pull back this immersion

 to an immersion of W in M1 homotopic to a. Finally define Q(x) to be the sum

 of the self-intersection numbers of the two immersions counted mod 2. The

 details are in the next three lemmas.

 To represent homology classes we use the PL analogue of the Thom the-

 orem as formulated in Conner and Floyd [3; 26]. Let T(, ) denote PL un-

 oriented bordism, then:

 LEMMA 1.1. For any CW pair (X, A)

 T*(X, A) = H*(X, A) 0 T*(pt).

 Proof. A spectral sequence can be set up as in [3], and it collapses for

 the same reason: any class is represented by a PL manifold by triangulating

 Thom's representative.

 Now we can identify Km with Hml(Mf, M1) where Mf = M U f M1 x I

 and so any class in Km is representable by a singular manifold (W, a) (i.e.

 a: W ) M1) bordant to zero in Mf or equivalently such that (W, f a a) is

 bordant to zero in M.

 The next step was to homotope f o a to an immersion q: W EM by

 general position (see e.g. [18; chapter 5]).

 LEMMA 1.2. q and a determine a regular homotopy class of immersions

 of W in M1 homotopic to J.
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 ON THE KERVAIRE OBSTRUCTION 399

 Proof. Let na: W _- BPL be the classifying map for the stable normal

 (block) bundle of a, i.e. the stable bundle a*(zTMl) - Th (cf. [7, 8J for notion of

 block bundle). According to Haefliger [41, regular homotopy classes of immer-

 sions of X in M, homotopic to a correspond bijectively with liftings of na in

 BPLm. Using the fact that the square (BG; BGm, BPL; BPLm) has vanishing

 homotopy for m > 2 (see [9; 1.10]), they also correspond bijectively with

 liftings of i o na in BGm (where i: BPL BG is the natural map) (also Haefliger

 [4]).

 We now use the fact that f has degree 1 which implies that e has re-

 ducible Thom space and hence is fibre-homotopy equivalent with the Spivak

 normal bundle of M [12]. Therefore f is a map of Spivak normal bundles and

 so f is covered by a map of Spivak tangent bundles (the associated fibre spaces

 to zM, and TM) Therefore (f o a)*(z,) is fibre-homotopy equivalent to a*(zM1).

 Moreover the reduction of e determines a fibre-homotopy equivalence e -M

 up to fibre homotopy, see Wall [151, and hence the equivalence of (f o a)*(Z.)

 with a*(zM1) is also determined up to fibre-homotopy; it follows that the lifting

 of io nfa in BG. determined by the immersion q, determines a lifting of io na

 in BGm, as required. For the case m < 2 one can check directly that the ob-

 structions to immersing W in M1 and M are the same.

 Let t: W-e M1 be an immersion in the class given by Lemma 1.2 and let

 #(q) and #(t) denote the number of self-intersections of q and t counted mod 2,

 which are invariants of regular homotopy.

 LEMMA 1.3. #(q) + #(t) e Z2 is an invariant of the homology class of x.

 Proof. We first observe that introducing one new double point in q leaves

 #(q) + #(t) unchanged. This is because we can assume that f, having degree

 1, is a homeomorphism on the inverse image of a disc in M, and we can intro-

 duce the new double point inside this disc. Then since Lemma 1.2 relativises

 in a natural way we can assume t is obtained by pulling back the immersion

 in the disc and then in the complement. Therefore the new double point in-

 duces one new double point in t.

 Next it is easy to prove that homotopic immersions in the middle dimen-

 sion differ by a sequence of regular homotopies and introductions or deletions

 of double points. (This follows from the obstruction theory for immersions

 and an interpretation of the obstructions in terms of double points (cf. Wall

 [14, 161); a more geometrical proof can be given as follows: Put the homotopy

 in general position then it becomes a regular homotopy except at a finite

 number of singular points each of which has the form of a cone on an im-

 mersed sphere and can be interpreted as introducing and deleting double
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 400 ROURKE AND SULLIVAN

 points.) So our first observation shows invariance under the choice of immer-

 sion q homotopic to f o a.

 Finally we have to check invariance under our initial choice a of repre-

 sentative for x. Let (W', a') be another representative (with f o a' bordant

 to zero). Then b = a U a' represents zero and f o b is bordant to zero by

 bordism (V, c) say. Now consider the normal map f x 1: M1 x I M x L

 By surgery (below middle dimension) on the interior we can replace this, rel

 boundary, by a normal map s: M1 - M x I which is (m - 1)-connected (see

 Wall [16; ? 1]) and so by Lemma 1.1 Tmi(MO, Mi) Hmi+(Mo, M1), (where Mo is

 the mapping cylinder of v). Now consider the relative bordism element a E

 Tm+i(M0, M1) defined by (W U W', b) and (V, c). We claim a represents zero

 in Hm+i(M,, M1); this is because, as remarked earlier, Km(0) = Hm+i(M,, M1)

 and the isomorphism is realised by the boundary map (by an easy duality

 argument, see e.g. Wall [14]); but (W U W', b) does represent zero in Km(0)

 by choice. Hence a is zero in Tm+,(Mo, M1), or equivalently c is bordant to

 f o b1 say, where b1: V1 - M1 extends b. Now immerse V1 properly in M x I

 homotopic to f o b1 (the existence of such an immersion follows easily from

 obstruction theory, or more geometrically, use general position to get an im-

 mersion except at a finite number of singular points and then pipe these into

 a collar on the boundaries which is then deleted, cf. [18; ch. 6]). Let this

 immersion be q1. Then by Lemma 1.2, applied twice, (the second time in its

 relative version) q1 pulls back to a proper immersion t1 - b, of V1 in M1. Finally

 denote t = tj I W, t' = tj I W', etc. Then #(t) + #(t') = 0 since t U t' bounds an

 immersion in M1 (by general position the singularities can be taken to be

 double lines and circles, each double line ends in two double points of t U t')

 and similarly #(q) + #(q') = 0. Therefore #(q) + #(t) = #(q') + #(t') as required.

 By Lemma 1.3 we can define Q(x) =-#(t) + #(q) for x C K.

 THEOREM 1.4. (i)

 Q(x + y) =Q(x) + Q(y) + x.y (mod 2)

 where x y denotes Z2-intersection number.

 (ii) Arf (Q) vanishes if (f, f) bounds. That is if it extends to a normal

 map

 E(>lN1) - E* '

 1.f 1.

 (N1, M1) - (N. M)

 where aN1 = M1, aN-M, and'I M =.

 Theorem 1.4 (i) says that Q(x) is a quadratic form, associated to the inter-
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 ON THE KERVAIRE OBSTRUCTION 401

 section pairing, and enables us to define its Arf invariant. Notice that it im-

 plies x *x = 0 for x C Km. Part (ii) implies that Arf (Q) depends only on the

 normal cobordism class of (f, f) and hence is a surgery obstruction.

 Proof of (i). Let (W1, q,, t,) represent x and (TW2, q2, t2) represent y. (qj

 and tj are the immersions used in defining Q.) Then (TWV U W2, q, U q2, tl U t2)

 represents x + y. But

 0(tl U t2) = #(tl) + #(t2) + Xby

 and

 #(q1 U q2) = #(ql) + #(q2)

 (since q, and q2 represent the zero homology class, there is no cross term in

 the second formula). The result is now clear.

 Proof of (ii). We show that there is a subspace U c Km of half the di-

 mension which is self-orthogonal (x my = 0 for all x, y e U) and such that

 Q(x) = 0 for all x c U. The result then follows easily (see appendix).

 Define U to be image of a in the exact sequence of kernels (cf. Wall [14]).

 Km. 1(Ni, Ml) . K(Ml) K. (Ni)

 Then U has dimension half the dimension of Km(Mi) since a and i are dual

 maps. x *y = 0 for all x, y C U since they bound in N1, and it remains to prove

 that Q(x) = 0 for x C U.

 By Lemma 1.1 choose a representative (W, a) for x, which is bordant to

 zero in N1, and with f o a bordant to zero in M. Let the first bordism be (V, b).

 Then, following the proof of Lemma 1.3, shift (V, f o b) to a proper immersion

 q1 and pull back to a proper immersion tj of V in N1. Then #(q) = #(t) = 0

 where q = q, I W, t = tV I W and hence Q(x) = 0, as required.

 Remark. We can extend our definition to the case when M is a Poincare

 complex, e its Spivak normal bundle and f a fibre map. Note that the only

 property of f we have used (in the proof of Lemma 1.2) is that it is a map of

 Spivak normal bundles, so the last two extensions require no comment. We

 need to define an "immersion" of one Poincare complex in another:

 Definition. If X and Y are Poincare complexes of nominal dimensions n

 and p respectively, then an immersion of Y in X is a map f: Y e X together

 with a lifting in BGnp of the classifying map nf: Y BG for the stable nor-

 mal bundle of f.

 One then has a similar obstruction theory for the existence of immersions

 as in the PL or smooth cases. Indeed, by Haefliger [4], if X and Y are PL

 manifolds and n -p > 2 then immersions as Poincare complexes correspond
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 402 ROURKE AND SULLIVAN

 to immersions as PL manifolds.

 Using this definition of immersion one can do the constructions for defi-

 ning Q but one needs to define the "self-intersection" number of an immersion

 of one Poincare complex in another in the middle dimension. Without a suit-

 able embedding theorem this seems difficult in general; however, in our case

 we can insist that q has "zero self-intersection number" by arranging that it

 bounds an immersion in M x I. One then defines Q(x) = #(t) and the properties

 are proved as before.

 2. The product formula

 Let (g, g): P1 P be a second normal map of even dimensional closed

 manifolds. Then (f x g, f x g): P, x M, - P x M is a normal map, and we

 have:

 THEOREM 2.1.

 K(f x g, f x ) K(f, f)x(P) + K(g, )X(M)

 where X( ) denotes mod 2 Euler characteristic.

 Remark. The Kervaire obstruction of a normal map which is the product

 of odd dimensional normal maps is zero (see ? 4 for a proof), thus we can com-

 pute K(f x g, f x ^) in all cases.

 Proof. Let p be dimension of P and write p = 2q. By surgery below the

 middle dimension we may assume that Km and Kq (= ker (g*)q) are the only

 non-zero kernels of f, and g,. Denote by Kq-rn the middle-dimensional kernel

 of (f x g)* and one then has an orthogonal splitting:

 Kq_+- Kq , Km l Kq K & H.m(M) QD Hq(P) K K

 ("orthogonal" refers to the intersection pairing) and one can compute

 K(f x g) = Arf (Q I Kq+rn) by adding contributions from each of the summands.

 The first observation is that we can extend the definition of Q to all of

 Hm(Mi) and Hq(P1), in a non-unique way, by choosing any representatives for

 homology and using Lemma 1.2, which still applies. Then for x 0 y C Kq m

 we have

 (1) Q(x 9y) = Q(x)(yy) + Q(y)(x x)

 (2) (x y) * (x'? y') = (x * x') (y * y')

 The second formula is of course true in general. To check the first for-

 mula, we can use a representative for x 0 y which is the product of represen-

 tatives used for x and y (since one of x or y is in Km or Kq its representative is

 bordant to zero in N or M and hence the product is bordant to zero in M x N).
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 ON THE KERVAIRE OBSTRUCTION 403

 Then we can use the products q, x q2, t1 x t2 of the immersions used in defi-

 ning Q(x) and Q(y) and assume #(q1) = #(q2) = 0 by the observation at the start

 of proof of Lemma 1.3. The formula then follows from the observation that

 #(tl x t2) = #(tl)(y*Y) + #(t2)(x*x)

 which is seen by shifting one sheet of each of the double manifolds of t, x t2

 into general position with respect to the other. (More precisely let a be a

 double point of t, then we have the double manifold a x t2(W2) in im t1 x t2

 whose neighbourhood can be identified with X x t2(W2) where X is a pair of

 q-planes in R2q intersecting transversally at one point. Now consider a general

 position shift of t2(W2) and apply its product with the identity to one of the

 q-planes x t2( W2). Then this reduces the intersection to to points where , = the

 number of intersections of t2(W2) with itself in general position, which is of

 course equal to y-y mod 2.)

 We now proceed to the computation of the Arf invariant:

 Part A Arf (QlKq OKm) = 0.

 Recall from the appendix that each of Kq and Km may be split into a direct

 sum of copies of H'?' and H'(1 and that the Arf invariant is the number of H'1 's

 in the summation (mod 2). (The H't are particular 2-dimensional spaces with

 quadratic forms, which are defined in the appendix.)

 Using the fact that x-x = 0 and yMy = 0 for x c K,,,, Y Kq respectively

 (remark below Theorem 1.4), it follows easily from formula (1) that Kq ? Km

 is a direct sum of copies of H1(0 only and so has zero Arf invariant.

 Part B Arf (Q I Kq ? Hm(M)) = x(M) Arf (Q I Kq) X

 Forget the value of Q on Hm(M) c Hm(Mi) and write this summand as a

 direct sum of copies of H and U, where H is the 2-dimensional vector space

 with pairing given by the matrix in the appendix and U is the 1-dimensional

 space, basis vector x and x-x = 1.

 Using formulae (1) and (2) the reader may readily check the following

 identities (observe that Q(x) is irrelevant for x ? Hm(M) since y-y = 0 for

 Y ? Kq):

 H'0) 0 H _ H'1) ? H - H'0) Q H (0,

 H0?' 0 U = H(0

 and H(1' ? U= H")

 It follows that Arf (Q I Kq 0 Hm(M)) = a Arf (Q I Kq), where a = number

 of summands U in Hm(M) (mod 2). But a equals the dimension of Hm(M)
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 404 ROURKE AND SULLIVAN

 (mod 2), since dim H = 2, which in turn is equal to x(M) (mod 2) by duality.

 Part C Arf (Q I Km ? Hq(P)) = X(P) Arf (Q I K.).

 The proof is identical to that of Part B.

 3. The classifying space for normal maps

 We will define a bundle theory with Whitney sums and appeal to results

 of [10] to find a countable CW-complex G/PL (with H-space structure) which

 classifies it.

 The bundle theory. A Gq/PLq-bundle over a PL cell complex K is a pair

 W 9 t) where Eq is a PL block bundle with base K and t: E(dq) - K x IX is a

 block homotopy trivialisation, cf. [11; ? 2], Casson [2].

 Two such ( 7r, t) (sy s) are stably equivalent if there is a stable isomorphism

 h: E( dq E(yr Q Eq+u) such that t QD id. is block homotopic to s QD id.

 Whitney sum is defined (on stable equivalence classes) as (d & I, t Q s)

 and induced bundles are defined as (f *d, t o f) where f: E(f*e) E(e) is the

 natural bundle map.

 Let G/PL[K] denote the set of stable equivalence classes. It is an abelian

 group under Whitney sum and becomes a contravariant functor on the cate-

 gory of polyhedra via the induced bundle (see [10, 11] for details and also for

 extension to the category of arbitrary CW-complexes).

 THEOREM 3.1. There is a countable CW-complex with H-space structure,

 G/PL, such that [ , G/PL] and G/PL [ are naturally equivalent functors.

 Proof. The A-set Gq/PLq classifies Gq/PLq-bundles (see [10; ? 31); stabili-

 zing, G/?h classifies G/PL-bundles. For the usual reasons we may replace

 G/PL by a countable CW-complex G/PL (cf. [7; 2.6 et seq.]). Now G/PL has

 a multiplication as a A-set, which endows G/PL with an H-space structure

 corresponding to Whitney sum.

 This multiplication is defined as follows. Let hi: Ak X InD be two equi-

 valences i = 1, 2. Define their product h, . h2: Ak X Iql+q2 to be the composition

 Ak x Iql+q2 diag (hk)2 x Iq x xq2 hi X h2

 (k)2 x Iql+(q2 r x id A)k x Iql + q2

 where r: (Ak)2 Ak is a retraction on the diagonal.

 Connection with normal maps. Suppose (f, f ): M1 M is a normal map

 where M is any manifold (possibly with boundary). Then as remarked earlier,

 T(e) is reducible, indeed the canonical reduction of T(vM1) composed with T(f)

 determines a reduction, say g: Dn?N - T($). Then the uniqueness theorem of
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 ON THE KERVAIRE OBSTRUCTION 405

 Spivak [12] implies that e is block homotopy equivalent to OM (as stable bundles)

 or equivalently that e - vM is block homotopy trivial. In fact, the proof of

 Spivak's Theorem given in Wall [15; 3.5] shows that there is a block homotopy

 equivalence q: e - determined up to block homotopy by the criterion that

 T(q) commutes up to homotopy with g and the canonical reduction p of T(vM):

 D)n+N

 /g \\

 T(~) ~T(vm)

 T(q)

 This means that there is a well-defined block homotopy trivialisation t of

 v- M. The pair (dm-LM, t) is the G/PL-bundle (base M) associated to the

 normal map (f, I).

 Conversely a G/PL-bundle (a, t) with base Mdetermines a block homotopy

 equivalence q between e = r + vm and OME and hence, on composing p with

 T(q-'), a reduction g: Dn?+N - T(e). By [8] we can assume that g is transverse

 regular to M c T($) and this gives us a manifold M1 c D"?N, a degree 1 map

 dIl: M1 M covered by a bundle map g 1: vM, d. In other words, a normal

 map. It is readily verified that these two constructions are inverse on cobor-

 dism and equivalence classes respectively and we have proved:

 THEOREM 3.2. There is a bijection between normal cobordism classes oj

 r normal maps onto M and the set of homotopy classes [M, G/PL].

 4. Construction of the Kervaire classes

 Let f: M2m G/PL be a map, where M is closed, then by Theorem 3.2 it

 makes sense to talk of the Kervaire obstruction K(f). Next let Z( ) be a

 genus, that is Z(M) = 1 + Z1 + Z2 + ... e H*(M) is a Z2-cohomology class

 defined for each closed manifold with two properties

 (1) Z(M x N) - Z(M) 0& Z(N)

 (2) <Z(M), [M> = X(M) X

 Examples of genera are W( ) the total Stiefel-Whitney class and V2( ) the

 square of the Wu class (see next section).

 THEOREM 4.1. (The Kervaire class for unoriented manifolds.)

 There is a unique primitive Z2-cohomology class

 k z=2 + kz + kz + H*(G/PL)

 such that for any map f: M-a G/PL, where M is closed and even dimensional,

 we have

 K(f) = <f *kZ Z(M), [MI>.
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 406 ROURKE AND SULLIVAN

 Proof. Construction of kz. kZ is constructed by induction. Suppose that

 k(2r) = kz + kz + * + kz has been constructed and that K(f) is given by the

 above formula, for m < r where dim M = 2m, with k(r) replacing kz. We have

 to construct k2r+2. Now by the proof of Lemma 1.1 T2r+2(G/PL) H2r+2(G/PL)

 is onto with kernel generated by decomposable elements, where a singular

 manifold (W, f) is decomposable if W = M x N where dim N > 0 and f =

 g oa i where g: M e X (see [3]). So it suffices to define a homomorphism

 X T2r+2(G/PL) Z2 which vanishes on decomposable elements. Let f: M2l+2

 G/PL be any singular manifold. Define

 X(f) = K(f) + <f *k(2r) - Z(M), [MI>.

 It is clear that X is a homomorphism and it remains to check

 (1) X vanishes on decomposables

 (2) k(2r+2) = k(2r) + k2z+2 has the inductive property.

 (2) is immediate from the definition of X and the fact that

 <f *k2z+2Z(M), [M> = <f*kZ+2 [MI>

 <k2z+2 , f [MI>

 = \(f) by definition.

 To prove (1) we need

 LEMMA 4.2. Suppose f: Me G/PL corresponds (via 3.2) to the normal

 map (f1, fi): M1 M, then f o w1: M x N-o G/PL corresponds to the normal

 map (f1, f) x id: M1 x No M x N.

 The proof is entirely straightforward and will be left to the reader.

 Proof of (1). Case A. dim M and dim N are both even, dim N> 0,

 (dim M + dim N = 2r + 2).

 <(f o wr) *k(2r) - Z(M x N) , [M x N]>

 = <f *k(2 r)0 1 ~- Z(M) 0& Z(N), [M] 0 [N]>

 = K(f) K<Z(N), [N]> by induction

 = K(f)X(N)

 = K((f1, f1) x id) by the product formula

 = K(fo Acl) by Lemma 4.2.

 Case B. dim M and dim N are both odd. A similar computation as above

 shows that

 <(f o ATE) *k(2r) - Z(M x N) , [M x N]>

 = <f*k(2r) - Z(M), [MI> X(NV)

 =0
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 ON THE KERVAIRE OBSTRUCTION 407

 since dim Nis odd. The result then follows from Lemma 4.2 and the following

 LEMMA 4.3. The Kervaire obstruction of a normal map, which is the

 product of two normal maps of odd dimensional manifolds, is zero.

 Proof. In the odd dimensional case one can perform surgery to kill all

 of K*,(f) (we are using Z2-coefficients!). This follows by similar methods to

 the easy part of the proof Kervaire and Milnor [5] (killing the free part of the

 middle-dimensional kernel): First kill the below-middle-dimensional kernels

 with integer coefficients. Then apply the diagram on p. 515 of [5] with Z2-

 coefficients. To kill a class we need: (1) to represent by an imbedded sphere

 with trivial normal bundle; (2) primitivity. (2) is automatic with Z2-coefficients

 while (1) follows from the relative Hurewicz theorem.

 Unipqueness and primitivity. This completes the construction of kz.

 Uniqueness is proved by induction. For the induction step, observe that the

 definition of X, and hence of k1 ,, was forced on us, if the formula was to

 work. To prove primitivity, let m: G/PL x G/PL G/PL be the multipli-

 cation and suppose that m*(kz) = 1 0 kZ + kZ 0 1 + a. We have to show

 a = 0. This will follow from the product formula. We need an extension of

 Lemma 4.2, again straightforward:

 LEMMA 4.4. Suppose (f1, f1): M1- M and (g1, g^): N1 N are normal maps

 and f, g the corresponding maps to G/PL. Then mo (f x g): M x N-o G/PL

 corresponds to the normal map (f1, fl) x (g1, gi): M1 x N1 M x N.

 We can now compute K(f x g) in two ways. First using the product

 formula and second using the class kz. We have:

 (1) K(f x g) = X(M)K(g) + X(N)K(f)

 and

 K(f x g) = <(mo (f X g)) *k Z(M x N), [M x N]>

 (2) = <(f x g)*(l (D kz + kz 0 1 + a) -Z(M x N), [M x N]>

 = <(f x g)*a - Z(M x N), [M x N]> + K(f x g)

 by the usual computation. It follows that the first term is zero. Since this

 is true for all manifolds M and N and all maps f, g, it follows easily that

 a = 0, as required.

 Remark. This is the first time we have used the full two term product

 formula. Previously we have only used it when one of the terms was zero.

 COROLLARY 4.5. K: [M, G/PL] - Z2 is a homomorphism.

 This follows from the primitivity of kz.
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 408 ROURKE AND SULLIVAN

 We now define a Z2-manifold to be a manifold M in which W1(M) is the

 reduction of an integral class or, equivalently, W,2 = 0.

 THEOREM 4.6. (The Kervaire class for Z2-manifolds.) There is a unique

 primitive Z2-cohomology class

 kZ kz + kZ + kZ + H*(G/PL)

 such that for any map f: M-oG/PL, where Mis a closed Z2-manifold of dimen-

 sion --2(4), we have

 K(f) = <f *kZ Z(M) , [M]>.

 Proof. The proof is very similar to that of Theorem 4.1. First let T*( ; Z2)

 denote bordism of Z2-manifolds then we again have T*(G/PL; Z2) - H*(G/PL)

 onto with kernel generated by decomposables. (The proof of this is the same,

 except that one uses the fact that any homology class is represented by a Z2-

 manifold, essentially due to Thom.)

 Remark. The notation T* ( ; Z2) is intended to suggest "oriented bordism

 with Z2-coefficients". This is justified by the fact that a Z2-manifold Mcontains

 a codimension 1 submanifold W such that M - W is orientable and orientation

 changes at W. This is seen as follows: Since W1 is the reduction of an integral

 class it is represented by a map w: M - S'. Shift w transverse regular to

 {1} e SI and then W = w-'({1}) is a suitable submanifold.

 The construction of kz now proceeds exactly as that of kZ. The proof of

 (1) case B is as before; that of case A falls into two subcases (a) dim M_ 2(4),

 which is exactly like the old case A, and (b) dim M -0(4); in this case both

 parts of X are zero by the product formula and the following lemma:

 LEMMA 4.7. If N is a Z2-manifold of dimension 2(4) then X(N) is zero

 (mod 2).

 The lemma is proved by a simple computation with the Stiefel-Whitney

 classes using the fact that W, = 0 (see Stong [13]). It also follows from a

 consideration of the "orientation submanifold" of the remark.

 This completes the construction of kz. It is again easy to prove that kz is

 unique, and primitivity follows by an argument similar to that used earlier.

 5. Relations between the Kervaire classes

 Let M be a closed manifold and denote by W(M) the total Stiefel-Whitney

 class of M and by V(M) the Wu class of M. We shall regard V(M) = 1 +

 V1(M) + V2(M) + ... as defined by the formula
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 ON THE KERVAIRE OBSTRUCTION 409

 where x e Hn-i(M) and n = dim M.

 LEMMA 5.2. W( ) and V2( ) are genera.

 Proof. The case of W( ) is well-known. For V2( ), the multiplicative

 property follows from the equivalent definition of V (cf. [11):

 (5.3) Sq(V)= W.

 Now by (5.1) we have Vj(M) = 0 for j > n/2 and hence

 W2m(M) = V2m + Sq1(V2m.-) + * + Sq-(Vm) = V2

 when it = 2m. So that <V2(M), [M]> = X(M), as required.

 Now by Lemma 5.2 we can define the Kervaire classes corresponding to

 W( ) and V2( ) and we have:

 THEOREM 5.4. (Brumfiel and Wall.)

 (1) kT'2 = k2

 (2) k'2 = X(Sq)2-kv

 (3) k=-2 =(Sq)4k"l

 (4) k" = (1 + Sq2 + Sq2Sq2)kil

 where X is the canonical anti-automorphism of the Steenrod algebra.

 The proof of Theorem 5.4 which we give is due to Brumfiel and Madsen.

 First note:

 LEMMA 5.5. V2(M) = 1 + V12(M) + V22(M) + *. has terms in even di-

 mensions only, and, if M is a Z2-manifold, in dimensions _0(4) only.

 Proof. The first part is obvious. For the second part it suffices to show

 that V2-l l = 0 for Z2-manifolds. But V2,+1 = 0 for oriented manifolds since

 Sq21 1(x) = Sq'Sq21(x)

 = V, -- Sq21(x) = J1- Sq2 (x) by (5.1) and (5.3)

 where x e Hn-21-1(M).

 Consequently the universal Wu class V2,+, e H21 +(BPL) maps to zero in

 BSPL and is therefore in the ideal generated by W1. (Note BPL = BSPL x RP-

 and W1 generates H*(RP-).) Hence W12 = 0 implies V 0., = 0, as required.

 Proof of Theorem 5.4 (1). We will deduce from Lemma 5.5 that k '2 has

 terms in dimensions = 2(4) only. It then follows that k '2 has the same prop-

 erties as kj2 and so they are equal by the uniqueness part of Theorem 4.6.

 Suppose inductively that we have shown that k j2 = 0 for j < r, and that

 ki,2 ? 0. Choose x e H4r(G/PL) so that <x, ko'2> = 1 and represent x by a singular

 Z2-manifold f: M4r G/PL, then

This content downloaded from 146.96.147.130 on Thu, 10 Mar 2016 17:45:51 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


 410 ROURKE AND SULLIVAN

 K(f) = <f *kV2-V2(M)I [M]>

 = <f*kv , [M]> by Lemma 5.5 and induction

 = 1 by choice of f .

 This contradicts Lemma 5.6, below, which we prove at the end of the section:

 LEMMA 5.6. The Kervaire obstruction of any normal map onto a Z2-

 manifold of dimension _ 0(4) is zero.

 Proof of Theorem 5.4 (2). Let f: M e G/PL be any map with M closed

 and even dimensional. Then we have

 <f *kw W(M) , [MI>

 = <f*kW SqV(M), [MI> by (5.3)

 = <SqX(Sq)f *kw Sq V(M) , [MI>

 = <Sq(f *(X(Sq)kw) V(M)), [MI>

 = <V(M) f*(X(Sq)kw)-V(M), [Ml> by (5.1)

 = <fb * (X(Sq)kw) --V'(M) ,[Ml>

 = <f*(X(Sq)kw)2* V2(M), [MI> by Lemma 5.5

 = <if *(X(Sq)2*kw) V2(M) , [M]>.

 Consequently X(Sq)2*kv has the same properties as kV2 and they are equal by

 the uniqueness part of Theorem 4.1.

 Proof of (3). The proof is formally identical to part (2). M is a closed

 Z2-manifold of dimension _2(4), and we use the uniqueness part of Theorern

 4.6.

 Proof of (4). Combining (1), (2), and (3) we have

 X(Sq)2.kw = X(Sq)4.kw

 and the result follows from the identity

 X(Sg,)4* = X(Sq)24(1 + Sq2 + Sq2Sq2)

 which is a consequence of the Adem relations.

 Proof of Lemma 5.6. Let (f, f): M1 - M be the given normal map

 where dim M=2m, and let W c M be an orientation submanifold in the

 sense described in the remark in Theorem 4.6. By transversality assume

 f-l(W) = W1 is a codimension 1 submanifold of M1 and then (f, I) 1:W1 )W

 is a normal map. Now W is orientable and so we can kill ir(W) by 1-dimen-

 sional surgeries. Then by simultaneously surgering the transverse pull backs

 in W1 we see that this surgery extends to a cobordism of normal maps, where

 the definition is enlarged to include a normal map onto a cobordism. Then

 since we are now in the simply-connected odd dimensional case, f I W1: W1 -W
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 ON THE KERVAIRE OBSTRUCTION 411

 is normal cobordant to a homotopy equivalence. This cobordism extends to a

 cobordism of the original normal map f: M1 -_ M in the obvious way. So we

 can assume f I W1 is a homotopy equivalence, and, by below-middle-dimensional

 surgery, that Km(M - W; Z) is the only non-zero kernel of f I (M1 - W1). Now

 from the Mayer-Vietoris sequence of kernels we have Km(M; Z) = Km(M- W; Z)

 and we can define an even symmetric bilinear form B on Km(M; Z) by inter-

 secting in M1 - W1 which is orientable. It is easy to check that Q(x) =

 (1/2)B(x, x) mod 2 and hence Q is the "Z2-reduction" of B. The result then

 follows since the Arf invariant of such a reduction is always zero. The sim-

 plest proof of this fact is to check by direct computation on a canonical form

 (e.g. the standard 8 x 8 matrix used by Milnor et al.).

 Appendix. Notes on the Arf invariant

 Let V be a finite dimensional Z2-vector space. A quadratic form Q on V

 consists of

 (1) a non-singular bilinear pairing b: V x V -f Z2 (we write x - y for b(x, y))

 (2) a function Q: V -Z

 which satisfy the relation

 (3) Q(x + y) = Q(x) + Q(y) + x.y.

 (Alternatively one can regard x-y as defined by (3).)

 Observe that (3) implies Q(O) = 0 and x-x = 0 for all x. Notice also that

 (3) shows how to compute Q given the pairing and the values of Q on a basis

 for V. This observation enables us to define the direct sum V1 (e V2 of

 spaces with quadratic forms by letting the pairing matrix for V1 E) V2 be

 (Al ? )

 with respect to basis (b, I b2), where bi is a basis for V;, and Ai the matrix of

 the pairing for Vi, and defining Q I Vi = Qi where V. c V1 e V2 is the canonical

 embedding.

 Now let H'0? (resp. HW'I) be the 2-dimensional space with basis {x, y} form

 (0 1)

 and Q(x) = Q(y) = 0 (resp. Q(x) = Q(y) = 1) .

 LEMMA. (a) Let V be a space with form then

 either V H'?' E V'

 or V H~'l ED V'.
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 412 ROURKE AND SULLIVAN

 (b) HI(0) H ( HI (11 0 (1)

 (C) n H(M) 3 H(1) E Ezn-1 HMO)

 Proofs. (a) Let x e V, x # 0 and choose y e V with xmy = 1 by non-sin-

 gularity. Let H be the subspace generated by x and y and V' the orthogonal

 complement. Then if Q(x) = Q(y) the result is proved, otherwise we have

 (without loss of generality) Q(x) = 0 and Q(y) = 1. Then let y' = x + y and

 then Q(x) = Q(y') = 0.

 (b) Let {xl, y1} {x2, Y2} be bases for the H(0)'s and let a, = xl+yl + x2, b, =

 x1 + Y1 + Y2, a2 = x1 + x2 + Y2, b2 = Y1 + x2 + Y2. Then check that a-bjl=

 if i = j and 0 if i # j, and that Q(ai) = Q(bi) = 1.

 (c) Let V be a space with form and define n(V) to be the number of

 elements of V on which Q takes the value 0. Then by induction and formula

 (3) one sees that:

 n(@3,1H'= ) = 22i-1 + 2X-1

 n(H~'' 0 @ H?') = 22i-1 -2-1

 (I first saw this elegant proof in a lecture given by Wall).

 Using the lemma we can completely classify spaces with forms since, by

 part (a), any space V ,Dj H ED (Di H I0) and by part (b) we can change all but

 possibly one of the H'~l's into (0) 's. Therefore

 V = either H(')E Edo H?0)

 or At M0O)

 and these possibilities are distinct by part (c).

 Define the Arf invariant Arf(V) e Z2 to be 1 in the first case and 0 in the

 second case then we see from part (b) that Arf(V) can be computed as the

 number of H(1) summands in any decomposition of V into H(0)'s and HI'l's

 (counted mod 2) and consequently that Arf( ) is additive (i.e. Arf(V1 (e V2) =

 Arf(V1) + Arf(V2)) .

 We also used the following property of the Arf invariant:

 LEMMA. Suppose U c V is a self-orthogonal subspace (i.e. x-y = 0 for all

 x, y e U) of dimension 1/2 dim(V) and that Q(x) = 0 for each x e U. Then

 Arf(V) = 0.

 Proof. By induction on dimension. Let x e U, x # 0 and y e V with

 xmy = 1. Let H be the space generated by x and y and V' the orthogonal

 complement. Then U' = U n V' has dimension 1/2 dim( V) and H _- HPI since
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 ON THE KERVAIRE OBSTRUCTION 413

 Q(x) = 0 (see proof of (a) above). By induction Arf(V') = 0 and hence

 Arf(V) = 0.
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