
GEOMETRIC PERIODICITY AND THE INVARIANTS OF MANIFOLDS 

Dennis Sullivan 

There is a surprisingly rich structure in the theory of manifolds within a 

given homotovy type, 

We begin with a geometric procedure for constructing an isomorphism between 

two manifolds - either smooth, combinatorial, or topological - in the homotopy 

class of a given hcmlotopy equivalence between them. 

This method which combines transversality and surgery inside these manifolds leads 

to three natural obstruction theories for the three situations. The obstructions up 

to codimension two are stable in a certain sense and much of our discuss}nn 

concerns them. The unstable eodimenslon two obstruction has not been analyzed. 

The interesting structure in these theories ariseson the one hand from the 

natural invariants which can be associated to a homotopy equiyalence M --f-f> L . 

These enable us to obtain a-priorl information about the obstructions encountered 

in constructing an isomorphism between ~ and L . 

By transversality the "varieties in L" can be pulled back to "varieties in 

M" . This correspondence is a rather deep geometric invariant of f . By a charac- 

teristic invariant of f we mean any invariant defined using the induced diagram 

f 
M >L 

l l 
f_iv fV -> V 

V + L is a variety in L . 

For example when V is a manifold fV has a well defined surgery obstruction 

like 

I/8 (signature f-IV - signature V) ~ Z or Z/n , dim V = 4i 

~(f, V) ] 
Arf invariant (kernel fJ , Z/2)~ Z/2, dim V = 4i + ~ . 

Consider the homotopy equivalence M f > L where M and L are simply 

connected and have dimension at least five. Then one of the main ob,~ectives is 

the 
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Characteristic Variety Theorem! ) In the topological or combinatorial context 

we can construct an isomorphism between M and L in the homotopy class of f 

if and only if a certain 2) finite collection of characteristic invariants 

{~f, v) } of the signature and Arf invariant type vanish. 

I) The fundamental group hypotheses can be replaced by a restriction on 
handles. 

2) Slightly different for the two contexts. 

(n - 2)- 
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We outline some of the geometrical aspects of the proof. These arise naturally 

from the "picture" of the obstruction theory.. The most interesting step concerns 

the indeterminancy in the obstructions. 

To describe the "total indeterminancy subgroups" we introduce a class of 

geometric cycles,manifolds with singularities which have a stratified structure 

like t~at of a finite join of closed manifolds. 

A "periodicity operation" in the theory of cycles with these special singular- 

ities (k-varieties) 

(v ~ L) x ~p2 > (~p2 × v > L) 

combines with the "periodicity relation" among the characteristic invariants 

~(~p2 × v, f) = ~(v, f) 

to pattern the indeterminancy. What finally emerges is the statement that the 

value of an obstruction on a homolo~T class x is "determinant" (or meaningful 

for the problem at hand) iff x is represented by a k-variety in L . 

The periodicity relation is a special case of a product formula for the 

invariants 

~(~ x V,f) = i(C) • ~(V,f) 

where i(@) is computed from the signature 'or Euler character- 
istic of @ or the difference between the real and mod 2 Euler 
semi-characteristics of ~ or that of a submanifold of 
representing the first Stiefel-Whitney class. 

This generalized periodicity relation and the cobordism relation generate all 

relations among these determining characteristic invariants for all possible 

M and f (given L) . 

The "periodicity relation" enters again to simplify the generating set for 

the invariants. 

Thus we need only consider the invariants for 'hanifolds in L" in the character- 

istic variety theorem (even though the obstructions are computed on k-varieties) 

because any k-variety in L is k-homologous to a manifold after applying the 

"periodicity operation" enough times. 
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We discuss the difference between the pl and topological invariants and 

the light shed upon the situation by certain theories of generalized manifolds 

and the triangulation theory of Kirby and Siebenmann (which allows the topological 

case to be included). 

Turning to the theory for constructing diffeomorphlsms we refer briefly to 

the global or normal invariant viewpoint to the obstructions. There are two real 

K-theory invariants defined by f and its "hc~otopy theoretical derivative" 

~M df~>~L ' 

One is ~f = ~M - f~°J~L ' the difference of stable tangent bundles. 

The other is 8f a unit of K-rlng measuring the deviation of f from "degree 

oneness" in KO-theory. 

Finally, there is an invariant uf in the units of the stable cohomotopy ring 

of L . The definition of mf depends on the choice of a "generating element" 

of the galois group G of Q over Q , Q the algebraic closure of the 

rationals, ef measures the extent to which df comes from the action of the 

galols group in the homotopy theory of the finite grassmannians. 

Finally we have the 

Theorem. The stable obstructions for constructing a diffeomorphism between M 

and L in the class of f "vanish" iff 

7f = 0 in 

ef  = 1 in KO*(M) 

mf = I in ~m(M) . 

The relations between ~f, Of , 

invariants are the natural ones. af 

natural subgroup 

m(M) c ~,M . 

and the odd part of the characteristic 

(for all possible f) varies freely in a 

In fact the stable part of the smooth obstruction theory factors completely 

into two theories - one infinite and one finite. The infinite theory. K is 

isomorphic over Q and at every prime to real K-theory. The finite theory is 

the natural subtheory of stable cohomotopy, ~ c ~ . The natural quotients 
o 

/~ form a theory which may be identified with "the rational K-theory". 

We end by discussing certain structure and speculation in the topological 

theory evolving from the "form of the invariants". 
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of 

When the characteristic invariants are defined in terms of absolute invariants 

M and L 

~2 r'{  ~(~' f ) }  = f-~M, 

the 
then~invariants UM and UL naturally reside in the real K-theory of M and L . 

the 
Their connection to Laplacian when M and L are Riemannian suggests these 

invariants may figure in some natural thermodynamic discussion on topological 

manfiolds. 

The galois symmetry in the invariants and thus in a formal K-theory model 

of manifold theory (which ignores ~I and the prime 2 ) sugges~there is a natural 

profinite form of geometric topology which exhibits this symmetry geometrically. 

Finally I happily dedicate this paper to its precursors 
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The Obstruction Theory 

Let M f > L be a map between two compact [) manifolds (preserving the 

boundaries). Our beginning and inductive assumption is that f induces an 

isomorphisms between certain regions interior to M and L and a homotopy 

equivalence between their complements. 

Denote the isomorphic regions in M and L by Q' and Q . We will asst, ne 

that L can be obtained by adding handles to SQ and so on2~ The idea of the 

obstruction theory is to enlarge the "isomorphic region" of f by pulling back 

the handle structure of L mod Q to a handle structure for M mod Q' . 

somor~hic 

Deform f slightly on the complement so that it is transversal to the core 

disks of the first layer of handles not included in the region of isomorphism for 

f . 

Consider one of these (say D in figure I) and the inverse image D' . 

Then we have 

i) 8D' is a sphere 

ii) D' is normally framed in M 

iii) the inclusion D'~--~M is naturally null-homotooic. 

So from D' we can construct a closed manifold whose stable tangent bundle 

is parallelized in the complement of a point. Denote the group of cobordism classes 

of such manifolds by T i , i = dimension D' . 

I) There is nothing to prevent one from making progress in the non compact case by 
considering proper maps. 

2] This is only a restriction in the topological case in dimension four or five. 
We will in fact suppress the low dimensional topological difficulties when they 
eau be avoided by some manoeuvre, e.g. four dimensional topological transversality. 
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From the above we see that this transversal approximation to f determines 

a cochain on L relative to Q with values in the group T i . 

It is a pleasant task to show using transversality, that this cochain is a 

well-defined cocyle. 

We obtain an obstruction class 

Of ~ Hi(L, Q; Ti) . 

Theorem A. If i + 2 < dimension L , then Of vanishes iff the region of 

isomorphism for f may be enlarged to include the i-handles without changing f 

on the (i - 2) and lower handles. 

Sketch of proof: The idea of the proof is simple. Suppose in fact that D' 

in figure I determines the zero element in T i . Then from surgery theory we know 

D' is framed cobordant to the disk in a very special way. The cobordlsm can be 

obtained by adding to D' × I handles of dimension no larger than i/2 + ] . 

We embed this cobordism in M × I and construct a homotopy of f to another 

transversal approximation so that D' + D is an isomorphism. 

In our codimension at least three situations, f will be a homotopy equivalence 

between the complements (respecting the boundary). 

The normal framing then insures that we have enlarged the region of isomorphism 

to include this handle. 

More generally if Of is only cohomologous to zero, we do some preliminary 

deformation of f on the (i - 1)-handles to get into the situation above. 

From theorem A we know we can define a sequence of obstructions for deforming 

f to an isomorphism up to but not ineluding the codimension 2 handles of L 

mod Q . This is the stable obstruction theory. 

The Coefficient Groups and the Codimens!.on Two Obstruction 

Theorem A leaves out the cases when the handles have dimension n - 2 , 

n - I , or n where n = dimension L . 

Some further progress can be made if we assume that n is greater than four 

(or greater than five if SL # @) . 

If w1(L - Q) = {0} , the obstruction defined above is adequate for the 

(n - 2) handles. 

The cases (n - I) and n are treated below and we have a complete obstruction 

theory in the simply connected case. 
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In general, the n - 2 obstruction presents a real difficulty. An adequate 

class 

On_ 2 e ~ -2 (L ,  q; ~) 

has not been defined. The nature of ~ - whether twisted or not even locally 

constant - has not been analyzed. To be sure we have to measure the position and 

knotting of D' in M . 

(n - 2) is the only difficult dimension however. For if we asst~ne that the 

region of isomorphism contains the (n - 2) handles then in the closed case we are 

done. 

On the complements f is a homotopy equivalence between regular neighborhoods of 

1 - complexes which is an isomorphism on the boundary. Once can now show using 

codimension one surgery techniques that f may be deformed to an isomorphism on 

the neighborhoods of (n - I) handles. 

In the topological or combinatorial case the n-handles present no difficulty. 

In the smooth case we have a final obstruction in 

where G n is the group of exotic n-sheres. 

In the non-closed ease we have to deal with the part of the Whitehead Torsion 

of f which has not been absorbed by the (n - 2) obstruction. This can be analyzed. 

A lot is known about the lower or "stable" coefficient groups. In the topologi- 

cal or combinatorial theories the coefficient groups are denoted {Pi} , the periodic 

sequence (the Arf-Kervaire invariant and the signature) 

0 z/2 0 z 0 z/2 0 z 0 z/2 0 z ... 

However, the natural map between the topological and pl coefficients is an 

isomorphism except in dimension four where we have multiplication by two. 

In the C" 

say, they are 

i I 1 2 

obstruction theory the groups are denoted {Ai} . For i ~ 19 

3 h 5 6 7 8 9 10 

0 Z 0 Z/2 0 Z@Z/2 (Z/2)2 Z/6 

11 12 13 th 15 

0 Z Z/3 (Z/2)2 z l  2 

17 18 

(z/2)3 z/8~z/2 

16 

z®z/2 

19 

Z12"". 
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Note that up to this point {Ai} is the sum of the coefficients for oriented real 

K-theory and those of a finite theory 

{Ai} = 

0 Z/2 0 Z 0 0 0 Z Z/2 Z/2 0 Z 0 

@ 

o o o o o z/2 o z/2 z/2 z/B o o 

o o z z/2 z/2 o 

Z/3 (Z/2)2 Z/2 Z/2 (Z/2)2 

Z/8 Z/2 ... 

In stmLmary then for the general obstruction theory in closed n-manifolds we 

have the table of coefficients 

topological I I 2 ... i ... n - 2 n - I n 
or pieeewise I linear theory 0 Z/2 "'" Pi ''' ~I = ? 0 0 

smooth I I 2 ... i ... n - 2 n - I n 
theory l 0 Z/2 "'" Ai "'" ~2 = ? 0 e n 

The Indeterminancy Subgroups 

Trying to deform M f > L to an isomorphism with only an obstruction theory 

such as the above is rather like being in a complicated labyrinth with only a weak 

torch. The obstructions per se only tell if our progress can be extended a little 

farther while allowing only small corrections. 

We want to understand when we can get completely through the maze and obtain 

an isomorphism between the two manifolds M and L . In particular we want to 

know when a given obstruction is "indeterminate" - it can be changed by deforming 

f on the lower handles to a new partial isomorphism. 

To pursue this question we define the "total indeterminancy subgroup" 

I) 
I k _C Hk(L, T k) 

I k is the subgroup of all cohomology classes occuring as obstructions classes for 

same deformation of the identity map L + L to a partial isomorphism. 

For a general homotopy equivalence M f > L the set of all possible k-dimension- 

al obstructio~swill either be vacuous or a coset of this subgroup. 

I) Suppose Q is vacuous for simplicity. 
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In fact the sequence of possibilities will look like 

SO~ 

non-trivial , ~, ~, ~ .... 
II' I2" "''" Ik-1' coset 

of I k 

if no paths through the obstruction labyrinth go beyond level k - I . 

We will analyze these indeterminancy groups in the combinatorial and topologi- 

cal obstructions where they are naturally isomorphic. By looking at the geometry 

of f near subvarieties of L and M we will show I k is an odd torsion group. 

~hus the Arf invariant obstructions are completely determinant. In fact we will 

see how to give an a-priori calculation of these. 

Only the signature obstructions in H4k(L, Z) can by indeterminant. WC will 

see that the indeterminancy subgroup in this case is determined by Pontryagin 

duality in terms of the classes in 

llm H4k(L , Z/j) 

J 
which have a nice geometrical representation. 

Geometric Computation of the Obstructions 

We will concentrate on the piecewise linear and topological theory where the 

signatures and Arf invariants play a decisive role. 

Consider the "signature obstructions" 

0 
Of ~ Hhi(L, Z) 

Recall that an integral cohomology class in L is determined by its evaluations 

on all mod n homology classes 

<Of, X > ~ Z/n , x g Hhi(L , Z/n) n = O, I, ... . 

Suppose that x is represented by a "Z/n-manifold" V ~ L . That is, a mod n 

cycle obtained by identifying n isomorphic collections of boundary components of 

some compact manifold (everything oriented compatibly). 

Suppose that all of V outside a 4i-disk lies in the region of isomorphism for f . 

Assume the 4i-disk is the core disk of one of the handles used to compute Of . 

I) We take Q = ~ for simplicity. 
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• " x) ; 

f i sm 

M L 

Figure 2. 

Let V' be the inverse image of V under the transversal approximation to 

f used to compute the obstruction. 

An examination of figure 2 shows that (calculating modulo n) 

<Of, x> = value of D' in Phi 

I 
= ~ (signature D' ) 

i i) 
= ~ (signature V' - signature V) 

where the signature of a Z/n-manifold is computed by intersecting even dimensional 

cycles in the interior to obtain an integral signature and then reducing mod n . 

Now 

a(f, V) = ~ (signature V' - signature V ) 6 Z/n 

is a characteristic invariant of f . This is clear when n is odd. For then 8 

is a unit and only the quantity signature V - signature V' need be determined. 
f 

But this difference is a cobordism invariant defined for any ma~ M > L . 

When n is even the definition of a(f, V) uses the fact that f is a homotopy 
fv 

equivalence. For example, one can cobord the map V' > V so that the homologi- 

ca& situation of figure 2 is realized. Then define 

a(f, V) = ~ signature (ker f, ; q) . 

I I 
I) Actually ~ is replaced by I-~ in the pl case for i = I . 
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If V is any (hi + 2) manifold in L representing 

a similar argument shows the "Arf invariant obstruction" 

Of~ Hhi+2(L, Z/2) 

satisfies 

x e Hhi+2(L , Z/2) , 

<Of, x> =Arf invariant (V' fV > V) 

= Arf invariant (ker f~ ; Z/2) . 

But again the right hand side is a characteristic invariant of f , 

~(f, v)~ z/2 , dim V = 4i + 2 

defined for any homotopy equivalence M f~ L . 

A slight modification of the above argument (using graphs) shows that the 

condition that V is embedded in L is unnecessary. 

From the work of Tham we know that any homology class in Hi(L , Z/2 r) is 

represented by some Z/ -manifold mapping into L . 
2 r 

Thus we obtain a calculation of the "Arf invariant obstructions" and a partial 

calculation of the "signature obstructionS" in terms of the a-priori geometrical 

behaviour of f near manifolds in L . 

Example of an indeterminant Obstruction 

Let L be a manifold with boundary of large dimension having four handles 

in dimensions 0, 3, 7, and 8. 

Suppose the integral homology of L is 

i I0 I 2 3 h 5 6 7 

. . . . . . . . . . .  I H i Z 0 0 Z 0 0 0 Z/3 

and the seven handle is attached along a generator of ~6(S 3) % Z/12 • 

Now consider the obstruction theory for some homotopy equivalence 

There is only one possible obstruction 

Of ~ H8(L, Z) = Z/3 • 

Because the seven handle is attached so vigorously there is no 

in L representing a non-zero element of 

H8(L, ZI 3) = ZI 3 • 

M f - L . 

Z/3-manifold 
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Au contraire, it is possible to find a "singular Z/3-manlfold" embedded in 

representing a generating 8 dimensional class. The "singularity stratum" I) of 

this V~ L lies in the interior of V and has a neighborhood isomorphic to 

L 

S 3 × cone ~p2 , 

the singular points generating the third homology of L . 

Now we can construct a homotopy of the identity map of L to a new partial 

isomorphism on the 0, 3, and 7 handles of L so that the transversal inverse 

image of "singularity V" = S 3 by the homotopy is a cobordism from S 3 to S 3 

with signature prime to 3 (for example 16). 

The transversal inverse image of V by the new map L I' > L now has a 

new signature in its interior - the signature appearing during the S ~ deformation 

is multiplied by ~p2 and appears in the interior of V' . (Figure 3). 

..... ;] ............. 1 
/f" j" 

. , Mw 

% 

extra signature 

cone ~ limension 8 /  

/ "sing~arity i 
of V" 

L × I dimension 4 

Figure 3. 

We then find a non zero obstruction on the eight handle created by a deformation 

near the three handle. These considerations show that all the obstructions for L 

are indetermlnant, and 

18 -~ H8(L, Z) . 

I) We are not including the Boekstein of V , where the sheets come together, in 
the "singul~rity stratum". The Bockstein is there for homological reasons and 
is not a serious singularity in its untwisted form. 
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Thus any homotopy equivalence M ÷ L is homotopic to a homeomorphism. 

Balancin5 the Indeterminancy and Determinancy - k - varieties 

So far we have seen that a certain part of our "stable obstructions admit 

an a-priori calculation in terms of f and a certain part can be created or 

destroyed by global deformations of f . If we could push our understanding of these 

two phenomena far enough we might exhaust all possibilities and have a complete 

analysis. 

We will proceed on this course by studying the singularities in geometric 

cycles representing the various homology classes in L . If the singularities are 

"signature free" an a-priori calculation of the obstruction is possible. If not, the 

bad singularity can be used to create an indeterminancy in the value of the obstruct- 

ion. 

Consider stratified spaces (in the sense of Thom) whose stratification schema 

join I) C ® is isomorphic to that of a finite of manifolds from a given list 

~I' ~2' ~3' .... 
We can form cycles and homologies from this geometric material and construct geometric 

homology theories. 

There are two sequences of interest for studying these obstructions. 

First, if the sequence of closed manifolds gives an irredundant set of generators 

for the oriented cobordism ring of Thom, then we obtain a generating set of cycles 

and homologies for ordinary homology theory (H~, H ~ ) .2~ 

Second if the sequence of manifolds gives an irredundant sequence of generators 

for the ideal of cobordlsm classes with vanishing signature, we obtain the cycles 

and homologies of a generalized homology theory (k~, k ) . The non-zero groups of 

a point are infinite cyclic in every fourth non-negative dimension. 

One set of generators is given by the cartesian powers of the complex projective 

plane. 

Let us refer to these manifolds with singularities as H-varieties and k- 

varieties respectively. 

There is a natural exact sequence relating these two theories (for any space) 

natural ,,¢p2 

ki " x ~p2,, map singularity.(" 
"'" > ki+h > Hi+h ~i-I > "'" 

I) The join of two spaces is the space of all segments joining their points. 

2) We calculate modulo finite 2-groups in this section. 
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The natural map is obtained by adding ~p2 to the list of singularities 

defining k to obtain a list of singularities for H . 

,, × ~p2,, is just the "periodicity operation" in k, induced by replacing 

a k-variety by its cartesian product with the complex projective plane. 

The ,,~p2 " " map - singularlty is defined by looking at those points of an 

H-variety whose link has the form ~p2 ~ L (~ = "join") for some L . 

This set has the structure of a k-variety. 

The exactness is easy to prove geometrically. In fact such a sequence relating 

any pair of such theories differing by one singularity is the only proposition 

needed to prove the assertions above about H~ and k o 

We can define k-varieties (mod n) , and state the theorem for which they were 

defined. Recall the homotopy equivalence L f > M and the obstruction {Of} to 

constructing a homeomorphism or pl homeomornhism in the homoto~y class of f . 
i 

Theorem B. The value of an obstruction Of on a homology class x ~ Hhi(L , Z/j) 

is "determinant" iff x is represented by a k-variety in L , V + L . 

More precisely, there is a characteristic invariant c(f, V) so that 

G(f, V) = <Of, x> , 

and the "total indeterminancy subgroup" 

I4i£ Hhi(L, Z) 

is dual under Pontryagin duality to the quotient of 

lim Hhi(L , z/j) 
j odd 

by the subgroup of classes represented by k-varieties. 

Corollary: f m~y be deformed to a homeomorohism on some region containing 

the I, 2, ..., k handles (k < n - 2 or ~I = 0) iff all characteristic invariants 

of the signature and Arf invariant type vanish for k-varieties in L up to dimension 

k . 

Proof: From theorem B an obstruction Of lies in the indeterminancy subgroup 

iff Of vanishes on any homology class represented by a k-variety. But these values 

are given by characteristic invariants. So if enough invariants o(f, V) vanish 

we can work our way through the maze and construct an isomorphism between the 

desired regions. 
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We note that there are certain interesting problems associated to the task 

of giving a fairly elementary geometrical discussion and proof of theorem B . 

First, one would like to define 

e(f, V) = ~ (signature V ~ - signature V) ~ Z/j 

as we did above when V was a Z/j-manifold in L . It seems reasonable to conject- 

ure that there is a 5ood signature for varieties of thi____sssingularity type - 

which is a cobordism invariant (for these singularities) and which is calculated 

intrinsically in V by intersecting cycles in the interior, say. This is all that 

is required for the simple geometrical proof above that 

<Of, x> = ~(f, V) . 

In fact, a k-variety has a natural formal signature I) which agrees with the 

intrinsic signature in the non-singular case. 

The naive argument goes th~o~jauslng this formal signature if L and M are 

s~ooth. In general, however V' will have nice join-like singularities but the 

strata will not be smooth so the naive argument breaks down. 

A second problem to a purely geometrical discussion is encountered in establish- 

ing the Pontryagin duality between determinancy in the obstructions and the represent- 

ation of homology by k-varieties. The natural argument here is to use intersection 

theory for k-varieties to show that there is an intersection duality between 

k-homology in complementary dimensions for a regular neighborhood of L in euclidean 

space (at least after making the periodicity operation into an isomorphism). 

To develop this intersection theory one has to analyze the theory where iterated 

joins of the same manifold appear in the singularities. (the cartesian product of 

two k-varieties has this property.) 

If the intrinsic signature and the intersection theory are worked out for 

k-varietles then a pleasant time can be had using the exact sequence above to bash 

about in the obstruction labyrinth and see how it works. 

There is a more formal discussion using the interpretation of k-varieties below, 

(See $I, $2). 

Resolvin ~ the Singularities of k-varietiesand the_Characteristic Variety Theorem 

It is possible to formulate all the characteristic invariants in acessible 

geometric termsby using the periodicity operation on k-varietles. 

2 ~ 
I) A k-variety is k-homologous to ~(EP ) . The coefficient c is the formal 

signature. 
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Proposition. For any k-variety in L , V i > L there is an integer ~ so that 

(~p2) × V > L 

is k-homologous to a non-singular manifold in L . 

Now ~p2 × V ~ L has the same characteristic invariant as V + L . 

Thus we can compute the characteristic invariant on k-varietles by computing them 

on the associated manifolds after desingularization. 

Further, the characteristic invariants for manifolds V in L 

~(signature - signature V' V) 

~(v, f) = 

v z/2) Arf invariant (ker f~, 

only depend on the cobordism class of V and satisfy the product formula 

~(V × ~, f) = (signature ~) ~(V, f) . 

Thus itis clear that all characteristic invariants of f are known if they 

are known for a certain finite collection of manifolds - we only have to choose 

gener~ors for the module of bordism classes of Z/n manifolds I) in L modulo the 

"generalized periodicity relatlon" " 

(~ × V --> L) ~ ((signature T) . V --> L) . 

Assume we can avoid the (n - 2) obstruction - eg. 71 = 0 or there are no 

(n - 2) handles. Then ~w~ have the 

Characteristic Variety Theorem. In the topological or pl context, we can construct 

an isomorphism between M and L in the homotopy class of a homotopy equivalence 

M f > L iff a certain finite collection of characteristic invarlants 

{o(V, f)} for manifolds in L vanish. 

The invariants are computed from the signatures and Arf invariants of quadratic 

forms defined by the transversal ity structure of f . All relations between the 

invariants for all possible M and f arise from the cobordism and the product 

formula 

~(¢ x v,f) = I(¢) • o(v,f) 

I) For n less than a certain bound depending on L . 
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Interpretation of k-varieties and the Beriodicity 

The following interpretation of k-varieties is useful for bringing algebraic 

methods to bear on our problems. 

The homology theory k~X determined by k-varieties in X has an associated 

dual cohomology theory k X defined so that Alexander duality holds, 

if X C S N+I, k~i(x) 5 ~_i(S N+I _ X) • 

The coh~nology theory km(X) is a connective version of real K-theory, 

k0(X) =~ K0(X) 

ki(X) = {0} i > dimension X . 

---I means isomorphic modulo finite 2 groups). 

The periodicity operation on k-varieties 

V > ~p2 × V 

corresponds to the square root of the Bott periodicity in real K-theory. 

In the normal invariant (see next section for definition) viewpoint we can 

think of the stable part of the obstruction theory as being that obstruction theory 

for deforming an associated map L > (universal space)to the point map. 
wf 

There~e universal spaces for each of the three situations 

G/0 , G/pL , and G/To p . 

Any calculation or decomposition of these universal spaces gives the correspond- 

ing information or structure to the related stable obstruction theory. 

For example, from what we have seen above for the characteristic invarlants, 

we can deduce the table 

stable 
obstruction theory 

topological 
theory 

piecewlse-linear 
theory 

at the prime 2 
is built from 

at the prime p odd 
is built from 

ordinary cohomology 
theory 

the two stage of oriented 
real K-theory 
and ordinary cohomology 

oriented real K-theory 

oriented real K-theory 
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Comparisqnof the Biecewise Linear and Topological Invariants 

The characteristic invariants and their completeness in the combinatorial 

situations were developed to study the Hauptvermutung. It was found that the 

characteristic invariants of the signature and Arf invarlant type were sufficient 

to determine the pl-structure within a homotopy type when the (n - 2)-dimensional 

difficulty could be avoided (e.g. Wl = O) or no (n - 2) handles). 

The motivation for a-priori invariants should now be clear - once one begins 

homotoping a homeomorphism M f > L to a pl-homecmorphism the hypothesis on f 

is immediately lost. Thus we must know beforehand that all obstructions can be 

avoided by a careful deformation. 

However, there was some delicacy concerning the characteristic invariants for 

four dimensional submanifolds V gZL . 

First, a more precise invarlant needed to be defined 

~(f, V 4) = ~ (signature V' - signature V) g Z/2n 

if V h is a Z/n-manifold in L and 

V' ÷ V is an isomorphism between the Bocksteins. 

Second, a special relation existed among the invariants 

e(f, V h) £ Z/2n is even "spin relation" 

whenever V+ L is a "spin component" - the composition 
S 2 

H2(L, Z/2) ----q--> Hh(L, Z/2) ÷ Hh(V, Z/2) 

is zero. (see $I). 

Now Novikov had de~eloped a toroidal method for showing c(f, V) = 0 . 

It applied whenever f was a proper homotopy equivalence between certain re~i0n s 

fn 
f-ln > n of M and L and V had dimension greater than five. 

The product formula 

e(f, V × 6) = (signature 6) ~(f, V) 

for the characteristic invariants was developed for the simple purpose of raising 

the dimension of V to the Novikov range. 

From this one could conclude 

Theorem C . IF M f > L is a proper mad between pl-manifolds with Cech 

contractible point inverses, then the characteristic invariants satisfy 
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a(f, v) -- 0 dim V # h, 

2~(f, v) = o dim V = ~ . 

For example, two simply connected pl-manifolds are isomorphic if they are 

homeomorphic or related by a "contractible" mapping whenever the cohomology group 

Hh( , Z) has no 2 torsion. 

We also have a uniqueness of pl-structure result when there are no (n - 2) 

handles and the Whitehead torsion works out. 

But what about the tantalizing question of a possible non-zero four dimensional 

obstruction of order 2? 

Let us see what was deduced from the form of the characteristic invarlants 

and then compare this to the work of Kirby and Siebenmann on triangulation. 

Perhaps this will lend some credence to the speculations given below which are 

also deduced from the "form" of the invariants. 

Our attempt at understanding this order 2 obstruction centered around certain 

related theories of manifolds where a single obstruction differentiated the theory 

in question from pl-theory. 

Let us work for a mcment in the category of polyhedra with the local homology 

or local homotopy properties of manifolds. The maps (isomorphisms) are proper pl- 

maps with acyc3/c or contractible point inverses. A little theory proceeds by study- 

ing the problem of resolving the singularities in such spaces or in the mapping 

cylinders of such maps. 

By studying the possibility of inductively replacing the dual cones by acyclic 

or contractible manifolds with boundary one obtained the following table, 

theory of 

generalized manifolds 

pl homology manifolds 
and pl maps with 
acyclic point inverses 

pl homotoDy manifolds 
and pl maps with 
contractible point inverses 

relation to the category of p!-manifolds 

obstructions to resolving 
singularities in a space 

one obstruction in 

Hh(M, ~3 ) 

one obstruction in 

Hh(M, 0 3) 

obstructions to resolving 
singularities in a map 

one obstruction 

~f ~ H 3 (range f, ~3 ) 

one obstruction 

Of £ H 3 (range f, 0 3 ) 

Here ~3 is the group of H-cobordism classes of homology three spheres, and 

@3 is the group of h-cobordism classes of homotopy three spheres. 

There is a sequence 03 ÷ ~3 r > Z/2 (exact?) where r is the Kervalre Milnor 
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Rochlin invariant. 

Many wonderful theorems can be formulated in terms of undecided statements about 

this sequence. 

Now consider a pl map of p~-manifolds M f > L with aeyclie (or contractible) 

point inverses. It is easy prove the characteristic invariants of f also satisfy 

the relations 

o(f, V) = 0 dim V # 4! 

2~(f, v) = 0 dim V = 4 . 

f 
For M > L , being pl , will be transversal to a generic V CL and 

fV 
V' > V , 

having acyclic point inverses, will be a homology isomorphism. Thus the characteristic 

invariants vanish as stated and for deformin~ f by a homotopy to a pl isomorphism 

there is one possible "non-zero" obstruction Of in the 2-torsion of Hh(L, Z) . 

The obstruction mentioned above vf , concerning the more precise construction 

of resolving the singularities in the mapping cylinder of f , is related to Of 

by the composition 

integral 
coefficient ~ocksteln 
homomorphism H3(L, Z/2) 

H3(L' ~3 ) ..... r, > 

u1 

> H4(L, Z) 

UI 

.. {of} 

r > Z/2 is onto Now the existence of the dodecahedral space implies that ~3 

and for some "~l-aeyclic" maps M f > L ,Of is non-zero. 

If a particularly bad counterexample to the three dimensional Poincar~ conjecture 

existed (0 3 # 0___.__> Z/2) then for some pl f with contractible point inverses we 

would have Of # 0 , 

From all this we can conclude that as for as our invariants (and the techniques 

of transversality, surgery, and h-cobordism) are concerned 

i) homeomorphisms are equivalent to maps with CVech contractible point inverses 

- and the four dimensional obstruction may be non-zero for these - it is for the 

related pl-acyclic maps, and it can be for pl-~ech contractible maps if the Poincar~ 

conjecture goes awry. 

ii) we must abandon trying to prove the four dimensional obstruction vanisheS 

for homeomorphism unless a entirely new idea about homeomorphism arises. (1967). 
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Now after the work of Kirby and Siebenmann the skies have cleared (assuming the 

dimension is greater than four), and we can say the following 

i) the topological category is a "one obstruction" extension of the pl- 

category like the generalized manifold categories above 

category 

topological 
manifolds and 
homeomorphisms 

existence 
of pl structure 

one obstruction in 

H4(M, Z/2) 

isotopy uniqueness 
of pl structure 

one obstruction in 

wfe H3(M, Z/2) 

(Kirby-Siebenmann :,,,,(KS)) 

ii) for a homeomorphism M f--> L of pl-manifolds the one possible non-zero 

obstruction Of in H4(L, Z) is the image of wf 

integral 

H3(L, Z/2) ~ockstein H4(L, Z) 

W 

wf ' Of 

(and can be non-zero - Siebenmann). 

iii) homeomorphisms and Cech contractible maps are equivalent for homotopy 

theoretical or approximation purposes (Siebenmann -(S) ). 

iv) the characteristic invariants which were shown to be topologically invariant 

{~(f, v) , dim v > ~} 

turn out to be a complete set of invariants for the topological manifolds within a 

simply connected homotopy type. The relations among invariants are just cobordism, 

the product formula, and compactibility with respect to reduction mod n . 

v) the triangulable manifolds among these are precisely those whose character- 

istic invariants are compatible with the "spin relation" above. 

The n - 2 Gbstruction and Characteristic Invariants 

In the topological or pl case we have a complete analysis of the obstruction 

theory for constructing homeomorphisms and pl isomorphisms whenever the (n - 2) 

obstruction is not encountered. Even after the precise form of the (n - 2) 

obstruction is determined we will have the problem of indeterminancy. 

For this question we make the following points. First the above theory, does 
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f 
apply to classify all possible deformations of M w L to partical isomorphisms 

below the (n - 2)-handles. The characteristic invariants classifying these deform- 

ations are defined by the transversality properties of f so their effect on the 

(n - 2) obstruction may be determined by geometrical reasoning. 

Second, for the purpose of studying the rigidity of the (n - 2) obstruction by 

a~prlori characteristic invariants it is refreshing to recall that each integral 

(n - 2) homology class is represented by an embedded sub~anifold. On %he other hand 

the situation is certainly more complicated for mod q homology in dimension n - 2. 

The singularities required for embedded cycles representing these classes are unknown. 

Hopefully, some form of the above indeterminancy analysis can be made for the 

(n - 2) obstruction by studying surgery on subvarieties in codlmension 2 . 

The Obstruction Theory for Constructin6 Diffeomorphlsms 

We cannot make a detailed analysis of the obstructions in the smooth theory. 

For one thing the coefficient groups are unknown. However, there are interesting 

global invariants of the homotopy equivalence M f > L which lead to a certain 

understanding of the theory. 

For example, the stable part of the smooth theory (< n - 2) can be completely 

factored as a product of two more familiar obstruction theories - one infinite and 

one finite. The infinite theory is isomorphic at each prime and over the rationals 

to oriented real K-theory. The finite theory is an identifiable sub-theory of stable 

cohomotopy theory. 

The Invariant s 

Besides the characteristic invariants {~(f, V)} defined by the transversality 

structure of f we have certain global invariants - 

~f , the t/ngent bundle of f, defined by 

~=~M@ f'vL 

where ~L the stable normal bundle of L , and ~M is the stable tangent bundi~e of M. 

df , a natural fibre hGmotopy equivalence ~L df > ~M covering f, df 

determines a fibre homotopy trlvialization 

~f df > 0 

called the normal invariant of f . 

Of , a unit of the real K ring associated to M . Of is defined by comparing 

the two natural K-theory Than isomorphisms in ~f determined by df . 
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df determines a spin structure on ~f and a homotopy equivalence of the Thom 

space of ~f to the suspension of M + . 

The "Dirac Thom class" and the suspension isomorphism determine the two Thom 

isomorphisms whose comparison defines the K-unit 8f . 

The projection of the smooth theory onto oriented real K-theory is effected by 

i) at the prime 2 observing that Of is actually an "oriented unit", the 

first 8tiefel-Whitney class of 8f is zero. So we simply take Of . 

ii) at the odd prime p by combining Of and ~f appropriately. The K-ring 

at p has a canonical splitting in terms of the e'igenspaces of completed Adams 

operations, K ~ K 1 @ K~ . We take 

(Of) 1 ~ (~ f )  

Alternatively, we could take 

{ o ( f ,  v ) }  1 • (S'f) 

after building a K-theory unit at p from the characteristic invariants. (see 

$2 chapter 6. ). 

The meaning of all this is the following - at each prime the relation between 

the various K-theoretical invariants above Of, ~f, {o(f, V)}p can be completely 

described in terms of operations in K-theory. 

The elements constructed above then are realized independently at the given 

prime. For example, at the prime 2 there is an exponential isomorphism ~ P > K ~ 

associated to an Adams operation @ (in the oriented theory). Then the relation 

o~f = ~of/of 

holds. Since p is an isc~orphism Of determines ~f . We take Of then as the 

invarlant which we prove satisfies no further relations at the prime 2 . 

The Realization of the Invariants 

When the invariants 

of, ~, {o(v, f)} 

are suitably combined into one KO-invariant Kf we are confronted with the 

realization question. From the viewpoint of normal invariants we are trying to 
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construct fibre homotopy equivalences between vector bundles over M , say, with 

given invariants. 

In effect we show Kf satisfies no relations at each prime by considering the 

universal situations of the Grassmannians. 

The universal sphere bundle over the union of Grassmannlans of n-planes in 

k-space, k + ~ , is homotopically approximated by the union of ~rassmannians of 

(n- I )-planes in k-space, k + 

These finite Grassmannians are nice algebraic varieties whose homotopy types 
v 

can be (proflnltely) approximately by the Cech-llke nerves of algebraic coverings 

of these varieties. The natural algebraic symmetry in these constructions (that of 

the Galois group of the field of all algebraic numbers over Q , G = Gal (~/Q). ) 

yield many self-homotopy equivalences of these homotopy types. (See $2). 

We use certain of these homotopy autcmorphlsms to construct enough fibre homotopy 

equivalences to see that Kf satisfies no relations - i.e. the invariants 

Of, ~f {~(f, V)}p satisfy only the natural K-theory relations. 

For example, let ~ be an element of O = Gal (~/Q) which generates the p- 

component of the Abelianization of 0 for each p . Then we use the above work to 

analyze the normal invariant 

Cr df 
> 0 . 

~f 

The considerations of Galois symmetry in the Smassmannians show that ~ determines 

an isomorphism 

~Kf b ~ 

where we work now in the profinite completion of K-theory I) on which G acts. 

is canonical and has a natural fibre homotoDy trivialization 

- T] > 0 . 

The composition 

~f ~ af : 0 --n - ~ ~0 

is a new invariant ~f , a unit in the stable cohomotopy ring associated to M . 

af measures the extent to which the normal invariant df comes from Oalois symmetry 

in the Grassmannians. 

The invariant 
f 

always lies in a certain subgroup of the cohomotooy units 

I) ~ = lira K @ Z/n 

n 

for finite complexes. 
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is classified by the "group" of the theory of sphere fibrations with a Galois 

equivariant KO-theory Them isemorphism. 

quotient ~/~ can be thought of as the "the rational points The of K-theory". 

This theory KQ , is constructed from the action of the Ggois group on K-theory, 

the image 

__~ KO m KQ 

is precisely the fixed points of the Galois group. 

If we look at these theories over the spheres we find (n ~ 19) 

¢(S n ) 

KSS°I 

1 2 3 t~ 5 6 7 8 9 1o 11 12 13 lh 15 16 %7 "f8 19 

z/e z/2 
® • z/8 z~ 2 0 0 0 0 0 z/2 0 z/2 z/2 z/3 0 0 z/3 z/2 z/2 z/2 z/2 

z/2 z/2 
z/2z/26 h z/2 Z/5ohO o o z/480z/2 z/2 z/2 z~ 2 z/2~ 0 0 0 Z/e~oZ/2 z/2 

The second line consists of blocks of lenght eight of the form 

z/2 
... Z/n Z/2 @ Z~ 2 Z/m 0 0 0 ... 

z~ 2 

This rational K-theory satisfies an "adic periodicity theorem" - the Z-indexing can 

be extended to a Z = lim Z/n indexing. 

We have tq~e table 

theory 

smooth obstruction theory 

stable cohomotopy theory (degree O) 

building blocks 

real K-theory at each prime and the 
part of stable cohomotopy at each prime 

and the "rational K-theory" , KQ . 

Now we can state a structure theorem. Recall that e is a chosen element in the 

Ga!ois group, Gal (Q/Q) @ 

Theorem D. The stable obstructions for constructing a diffeomorphism in the 

homotopy class of M f->L "vanish" iff the invariants 
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~f, Of , and af 

do . 

The relations between the invariants c~f, Of, mf, {a(f, V)}p odd for all 

possible f can be described completely. For example af varies independently 

in ~(M) , and the other invariants can be combined to give one KO-theory invariant 

which varies independently. 

The stable part of the smooth obstruction theory is isomorphic to a product of 

theories 

where ~ is the finite theory above and ~ is isomorphic over Q and at each prime 

to real K-theory. 

One point left out by Theorem D is the relation between the characteristic 

invariants at the prime 2 and the invariants Of and ef . 

It would be interesting to have a more geometric hold on these invariants. 

The most exciting possibility is the method of generic singularities. The geometric 

structure in the stratification of a generic approximation to 

f M > L 

should yield geometrical inv~riants of ~f - the most abstruse among the quantities 

above. 

For example, it is possible to give a criterion on the first order singularities 

of f equivalent to the triviality of ~f (unstably). The condition is a cobordism 

condition on the first Schubert variety regarded as a member of the class of all 

"abstract Schubert varieties in M ." 

Further Implications from the "Form' I of the Invariants 

Now we wish to discuss what further we can or might deduce from the "form" of 

the characteristic invariants. We begin with theorems and pass through heartfelt 

conjecture to speculation. 

First we might note that there are natural characteristic classes associated to 

M f > L for computing the characteristic invariants. In fact, for V a closed 

manifold in L , 

"<v2(V) . kf, V> 6 Z/2 dim V = 4i + 2 

o(v, f)= 

<'f(V) . £f, V)e Z dim V = 4i 
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where v(V) is the mod 2 Wu class of V (see RS) 

(V) is the rational Hirzebruch class of V 

kf is a total class in Hhm+2(L, Z/2) defined by 

£f is a total class in Hh~(L, Q) defined by f . 

f 

These are formulae of the Riemann-Roch type occuring for example in the 

Atiyah-Singer formula for computing the index of an elliptic operator. 

One can ask if there is a deeper connection between these two situations. 

We will establish such a connection for the signature case below. A Riemann-Roch 

type explanation for the Arf invariant formula is unknown. 

We remark in passing that a formula of the above type for ~(V, f) where V 

is a Z/2~ manifold in L leads to canonical lifting of £f and the Hirzebruch 

class ~(M) to classes with coefficients in the ~ subring of Q consisting of 

rationals with odd denominators (see MS). The reduction mod 2 of this canonical 

{(M) is the square of the Wu class. Thus the two formulae above have related 

multipliers. 

From now on we will mainly consider the characteristic invariants G(V, f) 

where V 4i is a Z/n-manifold in L , for n odd. In that case recall that 

~(V, f) £ Z/n is determined by the difference of signatures 

signature f-Iv - signature V . 

This suggests that these characteristic invariants can be determined by comparing 

i~rinsic invariants of the manifolds M and L by some corresponder2 e induced by 

f . 

This is true. From the periodicity phenomenon studied above expressed in terms 
of real K-theory tensor the dyadic rationals one finds that an oriented toDological 

manifold possesses an intrinsic Poincar~ duality in this d~ic K-theory. The 

isomorphism for a manifold M is given by caDDing with a fundamental K-homology 

class 

~M ~ Km(M) m = dim M . 

Even more is true. If one suppresses the fundamental group and the prime 2 , then 

the category of compact manifolds and homeomorphisms is equivalent to the category 

of (CW complexes endowed with the extra structure of a K-duality) and (homotopy 

equivalences preserving the duality isomorphism). 

One can think of the K-orientation ~M as a prescription for endowing the 

underlying homotopy type with a non-singular topology (or pl-structure). 

A homotopy equivalence M f~ > L preserves the canonical duality (and the "topology") 

precisely when fmUM = UL " 
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In general the deviation from "homeomornhism" is measured by the unique unit, 

Af of the K-ring of L satisfying 

~L~ Af = f~M " 

Then the characteristic invariants are calculated by the formula 

G(V, f) = <Af, V >6 Z/n , n odd. 

The Laplacian 

The K-formula above is also valid when V is closed and we calculate a 

signature in Z . If the calculation is put in terms of rational cohomology, the 

formula becomes the one above, 

~(V, f) = <~(V) . if, V> 

where ~f can now be interpreted as the character of Af . 

But the expression 

~(v) . ch %, v> 

is just the Atiyah-Singer Formula for the index of a certain elliptic operator over 

the smooth manifold V associated to Af . We represent 2kAf by a vector bundle 

over V for some k and consider differential forms on V with values in this 

bundle. If V has a Riemannian metric then will be a Laplacian operator between two 

spaces of such forms whose index is 2ka(v, f) . 

Analytical Speculation 

There is a more substantial connection with the Laplacian in case our manifold 

M is smooth. Let M be smoothly embedded in Euclidean space with tubular neighbor- 

hood N . Now the K-orientation UM determines by Alexander duality a canonical 

K-class with compact support on N (or N × R n for any n) . Denote this dual 

class by A M . Also, Singer has constructed an elliptic boundary value problem on N 

which is built from the Laplacian and whose symbol~ in real K-theory is just a M . 

How can we interpret or understand the fact that the symbol of this Laplacian 

boundary value problem only depends on the underlying pl or topological structure? 

Well, ~n the pl case one might well suppose that there is a theory of difference 

operators and combinatorial (solid) geometry - a discrete companion to the theories 

of differential operators and Riemannian geometry in the case of smooth manifolds. 
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One expecially interesting problem in this connection is to give a solid angle- 

incidenoe formula for the rational Pontryagin classes - a discrete analogue of the 

Chern-Weil formula in Riemannian geometry. 

In the topological category we might speculate even further. Firstly, one might 

ask a-prlori - what are the fine structures on topological manifolds which deserve 

study? For example on a smooth manifold we have the intricate theory of dynamical 

systems. 

One attractive topic which bears some relation to our considerations would be 

the theory of Brownian motions on the topological manifold M . 

Given certain geometrical data on M it should be possible to construct measures 

{Px : x 6 M} on the space of continuous paths in M . The measures Px should have 

associated distributions which reflect the lack of memory of a random path and the 

geometrical bias induced by the given geometrical data. 

For example in R n with the usual metric (or in a Riemannian manifold) Wiener 

constructed the measures {Px} (1923). The path increments x(t + s) - x(s) in 

R n have a symmetric normal distribution with probahillty density 

1 -lY12/2t 
p(t, y) .......... e , for example the probality that a random path starting at 

a point x in R n lies in a domain E after time t is 

Px{x(t) e E} = S p(t, y)dy . (See DY). 
E-x 

More recently it was found that the Laplacian operator and harmonic functions 

have a natural interpretation in terms of Brownlan motion. One can use the probabil~ 

ities to "diffuse" the functions on M 

f(x) ~ f(t, x) = S f(x)dPx{x(t) ~ E} . 
M 

The infinitesimal generators of this flow of functions is just the Laplacian operator 

on functions (under good hypotheses). 

One might hope then that 

i) the nature of the geometrical data required to construct a Brovnian process 

could be understood. 

ii) there is an interesting class of Brownlan motions on a given topological 

manifold. 

iii) from the connection between Brownian motion ardpotential theory a topologi- 

cal Laplacian or at least its symbol can be constructed. 

iv) one could obtain for each such process a thermodynamic definition of ~M 

and A M or at least the real Pontryagin classes of a topological manifold M . 



Galois symmetry 

Let us consider an algebraic implication of the "form" of the invariant ~M ' 

determining the K-duality in a manifold. 

If we pass to a profinite context - generalizing replacing an integer by a 

compatible system of residues modulo n for every n - we find a high degree of 

symmetry in our K-theory model of manifold theory (simply connected, away from 2). 

The Galois group Gal (S/Q) acts on K-theory, the set of all K-duality isomorphisms 

and thus on the topological manifold structures on a given homoto~y type. 

This symmetry also exists in the theories of profinlte topological bundles in 

each dimension and is compatible with the action of the Galois group on the pro- 

finite Grassmannians discussed in the smooth theory. 

Further we saw above the important role played by this Galois group in analyzing 

the smooth theory. 

What should one make of this structure? 

Algebraic Speculation 

For one thing it would be very interesting to see the symmetry in manifold 

theory geometrically. One is especially provoked in this regard by the fact that 

much of the topological information lost by passing to homotopy theory is explained 

by this Galois symmetry. (see $2). 

To explain the matter one might very well conjecture that there is a natural 

profinite form of geometric topology which 

a) is defined geometrically 

b) possesses a high degree of Galois symmetry - again defined simply and 

geometrically 

c) has all the techniques of geometric topology and the additional structure of 

geometric localization, the Galois symmetry, and a closer connection to some 

of the problems and techniques of algebraic geometry. 
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