Midterm 2

MAT 515, Fall 2019
November 13, 2019
Stony Brook University

Name: (please print)	ID \#:

	1	2	3	4	5	Total
	12pts	8pts	8pts	12pts	10pts	50pts
Grade						

No notes or books.
You must provide explanation, not just the answer. Answers without justification will get only partial credit.
Please cross out anything that is not a part of your solution e.g., some preliminary computations that you didn't need.

Instructor: Dzmitry Dudko

1. $(6+6 \mathrm{pts})$
(a) Let $A B C D$ be a convex quadrilateral, and let E be a point on $A D$ such that $B E$ bisects the angle $\angle A B C$. Suppose that

$$
\angle D C B=53^{\circ}, \angle A D C=127^{\circ}, \angle A E B=55^{\circ} .
$$

Find $\angle B A D$.
Hint: compute all angles.

Answer: $\angle B A D=70^{\circ}$.
(b) Suppose that a convex quadrilateral $A B C D$ is the intersection of $\triangle A B E$ and $\triangle A C F$ as it shown on the figure below. Compute $\angle B A C$ if

$$
\angle A E B=30^{\circ}, \quad \angle A F C=20^{\circ}, \quad \angle C D B=80^{\circ} .
$$

Answer: $\angle B A C=30^{\circ}$.
2. (3+5 pts)
(a) Let $A B C D$ be a convex quadrilateral such that $\triangle A B C$ and $\triangle D A C$ are equilateral triangles. Show that $A B C D$ is a parallelogram.
(b) The vertices of a parallelogram $A B C D$ are on a circle. Show that $A B C D$ is a rectangle. Solution.
(a) Since $A B=B C=A C=C D=D A$, the quadrilateral $A B C D$ is a rhombus. In particular, $A B C D$ is a parallelogram.
(b) Since $A B C D$ is a parallelogram, $\angle A B C=\angle C D A$. On the other hand $\angle A B C+$ $\angle C D A=180^{\circ}$ because $\angle A B C+\angle C D A$ is $\frac{1}{2}(A \widehat{B} C+C \widehat{D} A)=\frac{1}{2} 360^{\circ}=180^{\circ}$ - compare with Problem 1 of HW 10.

Therefore, $\angle A B C=\angle C D A=90^{\circ}$.
3. $(3+5 \mathrm{pts})$
(a) Using a compass and a straightedge, construct an equilateral triangle $A B C$ given the sum $A B+B C$.
(b) Using a compass and a straightedge, construct an equilateral triangle $A B C$ given the length of the altitude belonging to the vertex A.

Solution.

(a) Bisect the given segment $A B+B C$ into two equal segments and construct a required equilateral triangle.

Recall: to construct an equilateral triangle $\triangle A B C$ given its side $A B$, we draw two circles centered at A and B of radius $A B$. Then C is one of the intersection points of the circles.
(b) Since we can construct an equilateral triangle, we can construct a 60°-angle. Bisecting a 60°-angle, we obtain a 30°-angle.

Construct an altitude $A D$ of the given length. At D construct a line ℓ perpendicular to $A D$. Construct half-lines $A C^{\prime}$ and $A B^{\prime}$ that have 30°-angle with $A D$. Let B and C be the intersections of $A B^{\prime}$ and $A C^{\prime}$ with ℓ. Then $\triangle A B C$ is a required triangle.

4. $(4+5+3$ pts $)$
(a) Let $A B C D$ be a trapezoid where $B C<A D$ are its bases (i.e., $B C \| A D$ - parallel sides). Let X and Y be two points on $A D$ such that $B X \| C D$ and $C Y \| B A$. Prove that $\triangle A B X$ and $\triangle Y C D$ are congruent.

Solution. Since $A B C Y$ is a parallelogram, $A B=C Y$ and $A Y=B C$. Since $B X D C$ is a parallelogram, $B X=C D$ and $B C=X D$. Since $A Y=B C=X D$, we have $A X=Y D$. Therefore, $\triangle A B X=\triangle Y C D$ by SSS.

(b) Let $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ be two trapezoid where $B C<A D$ and $B^{\prime} C^{\prime}<A^{\prime} D^{\prime}$ are their bases. Suppose that

$$
A B=A^{\prime} B^{\prime}, B C=B^{\prime} C^{\prime}, C D=C^{\prime} D^{\prime}, D A=D^{\prime} A^{\prime}
$$

Prove that $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are congruent.
(c) Let $A B C D$ be a trapezoid where $B C<A D$ are its bases. Prove that if $A B=D C$, then $\angle B A D=\angle C D A$.

Solution.

(b) As in (a), construct $B X$ parallel and congruent to $C D$, and construct $B^{\prime} X^{\prime}$ parallel and congruent to $C^{\prime} D^{\prime}$. Then $\triangle A B X=\triangle A^{\prime} B^{\prime} X^{\prime}$ by SSS. This implies that $\angle B X D=$ $\angle B^{\prime} X^{\prime} D^{\prime}$. Then $\triangle B X D=\triangle B^{\prime} X^{\prime} D^{\prime}$ by SAS. Finally, $\triangle B C D=\triangle B^{\prime} C^{\prime} D^{\prime}$ by SSS.

(c) Using (b), the trapezoid $A B C D$ is congruent to $D C B A$. Therefore, $\angle B A D=\angle C D A$.
5. (10 pts)

Let $A B C D$ be a trapezoid where $B C<A D$ are its bases (i.e., $B C \| A D$). Let P be the intersection of the diagonals $A C$ and $B D$. Assume that X and Y are points on $A D$ such that there is a circle containing A, B, P, X and there is a circle containing D, C, P, Y.
Prove that $\angle C B X=\angle A P B=\angle B C Y$.

Solution. We have:

- $\angle C B X=\angle A X B$ because $B C \| A D$,
- $\angle A X B=\angle A P B=\frac{1}{2} \widehat{B A}$,
- $\angle A P B=\angle C P D-$ vertical angles,
- $\angle C P D=\angle D Y C=\frac{1}{2} \overparen{C D}$,
- $\angle D Y C=\angle B C Y$ because $B C \| A D$.

