Midterm 1

MAT 515, Fall 2019
October 2, 2019
Stony Brook University

Name: (please print)	ID \#:

	1 8 pt	2 10 pt	3 10 pt	4 10 pt	5 12 pt	Total 50 pts
Grade						

No notes or books.
You must provide explanation, not just the answer. Answers without justification will get only partial credit.
Please cross out anything that is not a part of your solution e.g., some preliminary computations that you didn't need.

Instructor: Dzmitry Dudko

1. $(2+2+4$ pts $)$

Recall that $1^{\circ}=60^{\prime}$ and $1^{\prime}=60^{\prime \prime}$.
(a) Is the sum of the angles $34^{\circ} 34^{\prime} 34^{\prime \prime}$ and $55^{\circ} 55^{\prime} 55^{\prime \prime}$ acute or obtuse?
(b) Is the difference of the angles $134^{\circ} 34^{\prime} 34^{\prime \prime}$ and $55^{\circ} 55^{\prime} 55^{\prime \prime}$ acute or obtuse?
(c) Three lines passing through a given point divide the plane into six angles. Two of these angles turn out to be measuring $35^{\circ} 30^{\prime}$ and $54^{\circ} 30^{\prime}$. Find the measure of the remaining four angles.

Answers:

(a) Obtuse.
(b) Acute.
(c) $35^{\circ} 30^{\prime}, 54^{\circ} 30^{\prime}, 90^{\circ}, 90^{\circ}$.
2. (10 pts)

Recall that a kite is a quadrilateral whose four sides can be grouped into two pairs of equal-length sides that are adjacent to each other.

Show that if $A B=B C$ and $A C$ is orthogonal to $B D$ in a convex quadrilateral $A B C D$, then $A B C D$ is a kite.

Solution. Denote by O the intersection of $A C$ and $B D$. Then $B O$ is an altitude of $\triangle A B C$. Since $\triangle A B C$ is isosceles $(A B=C B), B O$ is also a bisector. Therefore, $\angle A B D=\angle C B D$. By SAS-test, $A B D$ and $C B D$ are congruent triangles; we obtain $A D=C D$.

3. (10 pts)

Consider a triangle $A B C$ and let $A D$ be its median. Show that the line $A D$ is equidistant from B and C.
Solution. The distance from a point to a line is the length of the perpendicular dropped from the point to the line.

Let $B P$ and $C Q$ be the perpendiculars dropped from B and C onto the line $A D$. We need to show that $B P=C Q$.

We have:

- $B D=C D$ because $A D$ is a median;
- $\angle B D P=\angle C D Q$ as vertical angles.

Therefore, the right triangles $B P D$ and $C Q D$ are congruent; we obtain $B P=C Q$.

4. $(3+7 \mathrm{pts})$
(a) Let $A B C$ be an acute triangle and let $A D$ be its altitude. Show that $A D$ is inside $A B C$.
(b) Suppose that $A^{\prime} B^{\prime} C^{\prime}$ is another acute triangle and $A^{\prime} D^{\prime}$ is an altitude of $\triangle A^{\prime} B^{\prime} C^{\prime}$. Show that if $A B=A^{\prime} B^{\prime}, \angle C A B=\angle C^{\prime} A^{\prime} B^{\prime}$, and $A D=A^{\prime} D^{\prime}$, then $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are congruent triangles.

Solution. (a). Suppose that $A D$ is outside $\triangle A B C$. We assume that D is on the left of B at it shown on the figure below. The case when D is on the right of C is similar.

Since $\triangle A D B$ is right, we have $\angle D B A<90^{\circ}$. Thus $\angle A B C>90^{\circ}$ as a supplementary angle of $\angle D B A$. This is a contradiction to the assumption that $\triangle A B C$ is acute.

(b) Since $A B=A^{\prime} B^{\prime}$ and $A D=A^{\prime} D^{\prime}$, the right triangles $A B D$ and $A^{\prime} B^{\prime} D^{\prime}$ are congruent. As a consequence, $\angle A B C=\angle A^{\prime} B^{\prime} C^{\prime}$.

The triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are congruent by ASA-test: $\angle B A C=\angle B^{\prime} A^{\prime} C^{\prime}$, $A B=A^{\prime} B^{\prime}, \angle A B C=\angle A^{\prime} B^{\prime} C^{\prime}$.

5. $(3+3+3+3$ pts $)$

Consider a triangle ABC.
(a) Suppose D is a point on $A C$ strictly between A and C. Show that $\angle A D B>\angle A C B$.

Consider now a point E strictly inside $\triangle A B C$.
(b) Show that $\angle A E B>\angle A C B$.

Solution.

(a) Since $\angle A D B$ is an external angle of $\triangle D C B$, we have $\angle A D B>\angle A C B$.

(b) Let us extend $B E$ towards $A C$; we denote by D the intersection of the lines $B E$ and $A C$.

Consider $\triangle A B D$. By (a) we have $\angle B E A>\angle B D A$.
Now consider $\triangle A B C$. Again, by (a) we have $\angle B D A>\angle B C A$.
Therefore, $\angle B E A>\angle B C A$.

(c) Show that $A E+B E<A C+B C$.
(d) Show that $A E+B E+C E<A B+B C+C A$.

Solution.

(c) Let us first prove that $A D+B D<A C+B C$ for a point D on the side $A C$.

The inequality $A D+B D<A C+B C$ is equivalent to $B D<D C+B C-$ this is the triangle inequality.

Let us now consider E strictly inside $\triangle A B C$. Extend $B E$ towards $A C$; we denote by D the intersection of the lines $B E$ and $A C$.

Consider $\triangle A B D$. By what we just proved, $A E+B E<A D+B D$.
Now consider $\triangle A B C$. Again, we have $A D+B D<A C+B C$.
Therefore, $A E+B E<A C+B C$.

(d) It follows from (c) that

$$
\begin{aligned}
& A E+B E<A C+B C \\
& A E+C E<A B+C B \\
& B E+C E<B A+C A
\end{aligned}
$$

taking the sum we obtain:

$$
2(A E+B E+C E)<2(A B+B C+A C)
$$

or:

$$
A E+B E+C E<A B+B C+A C .
$$

