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1. (2+2+4 pts)
Recall that 1◦ = 60′ and 1′ = 60′′.
(a) Is the sum of the angles 34◦34′34′′ and 55◦55′55′′ acute or obtuse?
(b) Is the difference of the angles 134◦34′34′′ and 55◦55′55′′ acute or obtuse?
(c) Three lines passing through a given point divide the plane into six angles. Two of these

angles turn out to be measuring 35◦30′ and 54◦30′. Find the measure of the remaining
four angles.

Answers:
(a) Obtuse.
(b) Acute.
(c) 35◦30′, 54◦30′, 90◦, 90◦.

�



MAT 515, Fall 2019 Midterm 1 Page 3

2. (10 pts)
Recall that a kite is a quadrilateral whose four sides can be grouped into two pairs of
equal-length sides that are adjacent to each other.

Show that if AB = BC and AC is orthogonal to BD in a convex quadrilateral ABCD,
then ABCD is a kite.

Solution. Denote by O the intersection of AC and BD. Then BO is an altitude of 4ABC.
Since 4ABC is isosceles (AB = CB), BO is also a bisector. Therefore, ∠ABD = ∠CBD.
By SAS-test, ABD and CBD are congruent triangles; we obtain AD = CD.
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3. (10 pts)
Consider a triangle ABC and let AD be its median. Show that the line AD is equidistant

from B and C.

Solution. The distance from a point to a line is the length of the perpendicular dropped
from the point to the line.

Let BP and CQ be the perpendiculars dropped from B and C onto the line AD. We
need to show that BP = CQ.

We have:
• BD = CD because AD is a median;
• ∠BDP = ∠CDQ as vertical angles.

Therefore, the right triangles BPD and CQD are congruent; we obtain BP = CQ.
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4. (3+7 pts)
(a) Let ABC be an acute triangle and let AD be its altitude. Show that AD is inside

ABC.
(b) Suppose that A′B′C ′ is another acute triangle and A′D′ is an altitude of 4A′B′C ′.

Show that if AB = A′B′, ∠CAB = ∠C ′A′B′, and AD = A′D′, then ABC and A′B′C ′

are congruent triangles.

Solution. (a). Suppose that AD is outside 4ABC. We assume that D is on the left of B
at it shown on the figure below. The case when D is on the right of C is similar.

Since 4ADB is right, we have ∠DBA < 90◦. Thus ∠ABC > 90◦ as a supplementary
angle of ∠DBA. This is a contradiction to the assumption that 4ABC is acute.

A

CBD

> 90◦

(b) Since AB = A′B′ and AD = A′D′, the right triangles ABD and A′B′D′ are congruent.
As a consequence, ∠ABC = ∠A′B′C ′.

The triangles ABC and A′B′C ′ are congruent by ASA-test: ∠BAC = ∠B′A′C ′,
AB = A′B′, ∠ABC = ∠A′B′C ′.
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5. (3+3+3+3 pts)
Consider a triangle ABC.
(a) Suppose D is a point on AC strictly between A and C. Show that ∠ADB > ∠ACB.

Consider now a point E strictly inside 4ABC.
(b) Show that ∠AEB > ∠ACB.

Solution.
(a) Since ∠ADB is an external angle of 4DCB, we have ∠ADB > ∠ACB.
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D

(b) Let us extend BE towards AC; we denote by D the intersection of the lines BE and
AC.

Consider 4ABD. By (a) we have ∠BEA > ∠BDA.
Now consider 4ABC. Again, by (a) we have ∠BDA > ∠BCA.

Therefore, ∠BEA > ∠BCA.
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(c) Show that AE + BE < AC + BC.
(d) Show that AE + BE + CE < AB + BC + CA.

Solution.
(c) Let us first prove that AD + BD < AC + BC for a point D on the side AC.
The inequality AD + BD < AC + BC is equivalent to BD < DC + BC – this is the

triangle inequality.
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Let us now consider E strictly inside 4ABC. Extend BE towards AC; we denote by D
the intersection of the lines BE and AC.

Consider 4ABD. By what we just proved, AE + BE < AD + BD.
Now consider 4ABC. Again, we have AD + BD < AC + BC.

Therefore, AE + BE < AC + BC.

A

CB

D

E

(d) It follows from (c) that

AE + BE < AC + BC,

AE + CE < AB + CB,

BE + CE < BA + CA;

taking the sum we obtain:

2(AE + BE + CE) < 2(AB + BC + AC),

or:
AE + BE + CE < AB + BC + AC.
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