Midterm 1 MAT 515, Fall 2019 October 2, 2019 Stony Brook University

Name:

ID #:

(please print)

	1	2	3	4	5	Total
	8pt	10 pt	10 pt	10 pt	12pt	50pts
Grade						

No notes or books.

You must provide explanation, not just the answer. Answers without justification will get only partial credit.

Please cross out anything that is not a part of your solution — e.g., some preliminary computations that you didn't need.

Instructor: Dzmitry Dudko

1. (2+2+4 pts)

Recall that $1^\circ = 60'$ and 1' = 60''.

- (a) Is the sum of the angles $34^\circ 34' 34''$ and $55^\circ 55' 55''$ acute or obtuse?
- (b) Is the difference of the angles $134^{\circ}34'34''$ and $55^{\circ}55'55''$ acute or obtuse?
- (c) Three lines passing through a given point divide the plane into six angles. Two of these angles turn out to be measuring 35°30′ and 54°30′. Find the measure of the remaining four angles.

Answers:

- (a) Obtuse.
- (b) Acute.
- (c) $35^{\circ}30'$, $54^{\circ}30'$, 90° , 90° .

Recall that a **kite** is a quadrilateral whose four sides can be grouped into two pairs of equal-length sides that are adjacent to each other.

Show that if AB = BC and AC is orthogonal to BD in a convex quadrilateral ABCD, then ABCD is a kite.

Solution. Denote by O the intersection of AC and BD. Then BO is an altitude of $\triangle ABC$. Since $\triangle ABC$ is isosceles (AB = CB), BO is also a bisector. Therefore, $\angle ABD = \angle CBD$. By SAS-test, ABD and CBD are congruent triangles; we obtain AD = CD.

3. (10 pts)

Consider a triangle ABC and let AD be its median. Show that the line AD is equidistant from B and C.

Solution. The distance from a point to a line is the length of the perpendicular dropped from the point to the line.

Let BP and CQ be the perpendiculars dropped from B and C onto the line AD. We need to show that BP = CQ.

We have:

- BD = CD because AD is a median;
- $\angle BDP = \angle CDQ$ as vertical angles.

Therefore, the right triangles BPD and CQD are congruent; we obtain BP = CQ.

- **4.** (3+7 pts)
 - (a) Let ABC be an acute triangle and let AD be its altitude. Show that AD is inside ABC.
 - (b) Suppose that A'B'C' is another acute triangle and A'D' is an altitude of $\triangle A'B'C'$. Show that if AB = A'B', $\angle CAB = \angle C'A'B'$, and AD = A'D', then ABC and A'B'C' are congruent triangles.

Solution. (a). Suppose that AD is outside $\triangle ABC$. We assume that D is on the left of B at it shown on the figure below. The case when D is on the right of C is similar.

Since $\triangle ADB$ is right, we have $\angle DBA < 90^{\circ}$. Thus $\angle ABC > 90^{\circ}$ as a supplementary angle of $\angle DBA$. This is a contradiction to the assumption that $\triangle ABC$ is acute.

(b) Since AB = A'B' and AD = A'D', the right triangles ABD and A'B'D' are congruent. As a consequence, $\angle ABC = \angle A'B'C'$.

The triangles ABC and A'B'C' are congruent by ASA-test: $\angle BAC = \angle B'A'C'$, AB = A'B', $\angle ABC = \angle A'B'C'$.

Midterm 1

5. (3+3+3+3 pts)

Consider a triangle ABC.

(a) Suppose D is a point on AC strictly between A and C. Show that $\angle ADB > \angle ACB$.

Consider now a point E strictly inside $\triangle ABC$.

(b) Show that $\angle AEB > \angle ACB$.

Solution.

(a) Since $\angle ADB$ is an external angle of $\triangle DCB$, we have $\angle ADB > \angle ACB$.

(b) Let us extend BE towards AC; we denote by D the intersection of the lines BE and AC.

Consider $\triangle ABD$. By (a) we have $\angle BEA > \angle BDA$.

Now consider $\triangle ABC$. Again, by (a) we have $\angle BDA > \angle BCA$. Therefore, $\angle BEA > \angle BCA$.

Midterm 1

(c) Show that AE + BE < AC + BC.

(d) Show that AE + BE + CE < AB + BC + CA.

Solution.

(c) Let us first prove that AD + BD < AC + BC for a point D on the side AC.

The inequality AD + BD < AC + BC is equivalent to BD < DC + BC – this is the triangle inequality.

Let us now consider E strictly inside $\triangle ABC$. Extend BE towards AC; we denote by D the intersection of the lines BE and AC.

Consider $\triangle ABD$. By what we just proved, AE + BE < AD + BD. Now consider $\triangle ABC$. Again, we have AD + BD < AC + BC.

Therefore, AE + BE < AC + BC.

(d) It follows from (c) that

$$AE + BE < AC + BC,$$

$$AE + CE < AB + CB,$$

$$BE + CE < BA + CA;$$

taking the sum we obtain:

$$2(AE + BE + CE) < 2(AB + BC + AC),$$

or:

$$AE + BE + CE < AB + BC + AC.$$