Sample Final Exam
 MAT 515, Fall 2019
 December 11, 2019
 Stony Brook University

Name: (please print)	ID \#:

	1 10pts	2 10pts	3 10pts	4 10pts	5 12pts	6 12pts	7 12pts	8 12pts	9 12pts	Total 100pts

No notes or books.
You must provide explanation, not just the answer (unless otherwise is stated).
Answers without justification will get only partial credit.
Please cross out anything that is not a part of your solution e.g., some preliminary computations that you didn't need.

1. (10 pts)

Indicate whether each of the statements below is True (T) or False (F). No explanation is required.
(a) There is a triangle $A B C$ such that $A B=4, A C=6$, and $B C=9$.

True. (Because $9<6+4$ - the triangle inequality is satisfied.)
(b) In a triangle $A B C$, the external angle of A is equal to the sum of the internal angles of B and C.
True.
(c) Suppose $A B>B C$ in a triangle $A B C$. Then $\angle C>\angle A$.

True.
(d) There is a right triangle $A B C$ such that $\angle A=60^{\circ}$ and $\angle B=50^{\circ}$.

False. (Because $60^{\circ}+50^{\circ} \neq 90^{\circ}$.)
(e) Let $A B$ and $C D$ be two chords of a circle with center O. If $A B>C D$, then the distance between O and $A B$ is greater than the distance between O and $C D$.
False.
(f) The sum of opposite angles in a parallelogram is 180°.

False.
(g) There is a triangle that has 6 axes of symmetry.

False. (A triangle has at most 3 axes of symmetry.)
(h) A square is an inscribed and circumscribed quadrilateral. True.
(i) If $A B C D$ is a rectangle, then the distance between A and B is equal to the distance between $A D$ and $B C$.
True.
(j) A median always splits a triangle into two similar triangles.

False.
2. (10 pts)

On the figure below $\angle B K C=20^{\circ}, \angle A D C=50^{\circ}$ and $B K, A D$ are diameters. Compute $\angle B A D$.

Solution. We have:

$$
\widehat{B C}=40^{\circ}, \quad \widehat{A B}+\overparen{B C}=100^{\circ}, \quad \widehat{A B}+\overparen{B C}+\overparen{C D}=180^{\circ},
$$

Therefore, $\overparen{B C}+\overparen{C D}=120^{\circ}$ and $\angle B A D=60^{\circ}$.
3. (10 pts)

Let $A B C D$ be a trapezoid with parallel bases $A B$ and $C D$. Prove that the internal angle bisectors of the angles adjacent to the lateral side $B C$ are perpendicular to each other.
Solution. Suppose $B B_{1}$ is the bisector of $\angle A B C$ and $C C_{1}$ is the bisector of $\angle B C D$. Then $\angle B_{1} B C=\frac{1}{2} \angle A B C$ and $\angle B C C_{1}=\frac{1}{2} \angle B C D$. Since $\angle A B C+\angle B C D=180^{\circ}$, we have $\angle B_{1} B C+\angle B C C_{1}=90^{\circ}$. Therefore, $B B_{1}$ and $C C_{1}$ are perpendicular.
4. (10 pts)

Let $A B C D$ be a circumscribed trapezoid with perimeter 4 (i.e., $A B+B C+C D+D A=4$). What is the length of the midline of $A B C D$?
Solution. Suppose $A D \| B C$. Since $A B C D$ is circumscribed, we have $A B+C D=A D+B C$. Hence $A D+B C=2$ because $A B+B C+C D+D A=4$. The midline of $A B C D$ is $\frac{1}{2}(A D+B C)=1$.
5. (12 pts)

Consider a triangle $A B C$. Suppose that M is the intersection of the medians of $\triangle A B C$ and N is the intersection of the altitudes of $\triangle A B C$. Show that if $N=M$, then $\triangle A B C$ is equilateral.
Solution. Suppose $A A_{1}, B B_{1}, C C_{1}$ are the medians of $\triangle A B C$ and $A A_{2}, B B_{2}, C C_{2}$ are the altitudes of $\triangle A B C$. Since $M=N$, we have

$$
A A_{1}=A A_{2}, \quad B B_{1}=B B_{2}, \quad C C_{1}=C C_{2}
$$

Then $\triangle A A_{1} B=A A_{1} C$ and $\triangle B B_{1} A=B B_{1} C$ by SAS. This shows that $\triangle A B C$ is equilatera.
6. (12 pts)

Four houses A, B, C, D form vertices of a square. The residents would like to dig a well at a point W such that the sum of distances $A W+B W+C W+D W$ from all the houses to the well is the smallest possible. Where should they dig the well?
Answer: W is the intersection of the diagonals.
Solution. Let O be the intersection of $A C$ and $B D$. By the triangle inequality, $A O+$ $C O=A C \leq A W+B W$ with the equality if and only if W belongs to $A C$. Similarly, $B O+D O=B D \leq B W+D W$ with the equality if and only if W belongs to $B D$. This shows that $A W+B W+C W+D W$ is the smallest possible if and only if W is O.
7. (12 pts)

Construct a trapezoid $A B C D$ with bases $B C<A D$, given $A B, B C, C D, D A$.
Solution. Let X be a point on $A D$ such that $B X \| C D$.

Since $A X=A D-X D=A D-B C$, we can construct $A X$. We also have $B X=C D$. This allows us to construct $\triangle A B X$.

Let us next construct a parallelogram $X B C D$ so that $A B C D$ is a required trapezoid. On the line $A X$, we construct $A D$ containing X. Through B we construct a line parallel to $A D$; on this line we construct $B C$ so that C and D are on the same side of the line $A B$.
8. (12 pts)

Let $P A$ and $P B$ be two tangents from point P to a given circle such that points A and B are the points of tangency. Construct a circle tangent to the given circle and to both lines $P A$ and $P B$.

Solution. Construct the center O of the given circle. Construct the segment $O P$; let X be the intersection of $O P$ with the given circle. Construct the line passing through X and perpendicular to $O P$; this line intersects $P A$ and $P B$; we denote by A^{\prime} and B^{\prime} the intersection points.

Note that $\triangle A^{\prime} P B^{\prime}$ is isosceles $\left(A^{\prime} P=B^{\prime} P\right)$ because $P X$ is a bisector and an altitude. The inscribed circle s of $\triangle A^{\prime} P B^{\prime}$ is a required circle because s is tangent to $A^{\prime} B^{\prime}$ at X.

Construct the bisectors of $\angle B^{\prime} A^{\prime} P$ and $\angle A^{\prime} B^{\prime} P$; mark their intersection point by O^{\prime}. Then O^{\prime} is the center of s while $X O^{\prime}$ is its radius. This allows us to construct s.

Remark. There is another circle s_{2} tangent to the given circle and $P A, P B$. The center of s_{2} is also on the line $O P$ but on the left of O (assuming that P is on the right of O). The circle s_{2} can be constructed in a similar way.
9. $(6+6 \mathrm{pts})$

Consider a triangle $A B C$ and let D be a point on the side $A C$. Suppose $A B=20$, $A D=16, B D=12, D C=9$.
(a) Prove that $\triangle A B D$ is right.
(b) Compute $B C$.

Solution. Let us prove that if a triangle $L M N$ satisfies $L M^{2}+M N^{2}=L N^{2}$, then $\angle L M N$ is right. Consider a right triangle $L^{\prime} M^{\prime} N^{\prime}$ with $L^{\prime} M^{\prime}=L M$ and $M^{\prime} N^{\prime}=M N$. By the Pythagorean theorem,

$$
L^{\prime} N^{\prime 2}=L^{\prime} M^{\prime 2}+M^{\prime} N^{\prime 2}=L M^{2}+M N^{2}=L N^{2} .
$$

By the SSS-test, the triangles $L M N$ and $L^{\prime} M^{\prime} N^{\prime}$ are congruent; i.e., $\triangle L M N$ is right and $L N$ is its hypotenuse
(a) Since $20^{2}=12^{2}+16^{2}$, the triangle $B D A$ is right and $\angle D=90^{\circ}$.
(b) By (a), $\triangle C D B$ is also right. By the Pythagorean theorem:

$$
B C=\sqrt{B D^{2}+D C^{2}}=15 .
$$

