Sample Final Exam
 MAT 515, Fall 2019
 December 11, 2019
 Stony Brook University

Name: (please print)	ID \#:

	1 10pts	2 10pts	3 10pts	4 10pts	5 12pts	6 12pts	7 12pts	8 12pts	9 12pts	Total 100pts

No notes or books.
You must provide explanation, not just the answer (unless otherwise is stated).
Answers without justification will get only partial credit.
Please cross out anything that is not a part of your solution e.g., some preliminary computations that you didn't need.

1. (10 pts)

Indicate whether each of the statements below is True (T) or False (F). No explanation is required.
(a) There is a triangle $A B C$ such that $A B=4, A C=6$, and $B C=9$.
(b) In a triangle $A B C$, the external angle of A is equal to the sum of the internal angles of B and C.
(c) Suppose $A B>B C$ in a triangle $A B C$. Then $\angle C>\angle A$.
(d) There is a right triangle $A B C$ such that $\angle A=60^{\circ}$ and $\angle B=50^{\circ}$.
(e) Let $A B$ and $C D$ be two chords of a circle with center O. If $A B>C D$, then the distance between O and $A B$ is greater than the distance between O and $C D$.
(f) The sum of opposite angles in a parallelogram is 180°.
(g) There is a triangle that has 6 axes of symmetry.
(h) A square is an inscribed and circumscribed quadrilateral.
(i) If $A B C D$ is a rectangle, then the distance between A and B is equal to the distance between $A D$ and $B C$.
(j) A median always splits a triangle into two similar triangles.
2. (10 pts)

On the figure below $\angle B K C=20^{\circ}, \angle A D C=50^{\circ}$ and $B K, A D$ are diameters. Compute $\angle B A D$.

3. (10 pts)

Let $A B C D$ be a trapezoid with parallel bases $A B$ and $C D$. Prove that the internal angle bisectors of the angles adjacent to the lateral side $B C$ are perpendicular to each other.
4. (10 pts)

Let $A B C D$ be a circumscribed trapezoid with perimeter 4 (i.e., $A B+B C+C D+D A=4$). What is the length of the midline of $A B C D$?
5. (12 pts)

Consider a triangle $A B C$. Suppose that M is the intersection of the medians of $\triangle A B C$ and N is the intersection of the altitudes of $\triangle A B C$. Show that if $N=M$, then $\triangle A B C$ is equilateral.
6. (12 pts)

Four houses A, B, C, D form vertices of a square. The residents would like to dig a well at a point W such that the sum of distances $\mathrm{AW}+\mathrm{BW}+\mathrm{CW}+\mathrm{DW}$ from all the houses to the well is the smallest possible. Where should they dig the well?
7. (12 pts)

Construct a trapezoid $A B C D$ with bases $B C<A D$, given $A B, B C, C D, D A$.
8. (12 pts)

Let $P A$ and $P B$ be two tangents from point P to a given circle such that points A and B are the points of tangency. Construct a circle tangent to the given circle and to both lines $P A$ and $P B$.
9. ($6+6 \mathrm{pts}$)

Consider a triangle $A B C$ and let D be a point on the side $A C$. Suppose $A B=20$, $A D=16, B D=12, D C=9$.
(a) Prove that $\triangle A B D$ is right.
(b) Compute $B C$.

