Final Exam

MAT 515, Fall 2019
December 11, 2019
Stony Brook University

Name:
(please print)

ID \#:										
	1	2	3	4	5	6	7	8	9	Total
	10pts	12pts	11pts	11pts	11pts	11pts	11pts	12pts	11pts	100pts
Grade										

No notes or books.
You must provide explanation, not just the answer (unless otherwise is stated).
Answers without justification will get only partial credit.
Please cross out anything that is not a part of your solution e.g., some preliminary computations that you didn't need.

Time:

Instructor: Dzmitry Dudko

1. (10 pts)

Indicate whether each of the statements below is True (T) or False (F). No explanation is required.
(a) There is a triangle $A B C$ such that $A B=6, A C=8$, and $B C=15$.

False
(b) For all A, B, C, D we have $A B+B C+C D \geq A D$.

True
(c) If a triangle has an axis of symmetry, then the triangle is isosceles.

True
(d) The sum of angles of a trapezoid is 360°.

True
(e) A quadrilateral has 2 diagonals.

True
(f) A pentagon has 3 diagonals.

False
(g) A rhombus is a circumscribed quadrilateral.

True
(h) The three altitudes of a triangle intersect at one point.

True
(i) If $\angle B A C=110^{\circ}$, then $\triangle A B C$ is not isosceles.

False
(j) If $A B C D$ is a rectangle, then $A C>A B$.

True
2. ($6+6 \mathrm{pts}$)
(a) Points A, B, C, D are on a circle, $A C$ and $B D$ intersect at S as it shown on the figure below. Assume that $\angle D S C=110^{\circ}$ and $\angle D B A=45^{\circ}$. Find $\angle B D C$.

Solution. We have: $\angle D C A=\frac{1}{2} \overparen{D A}=\angle D B A=45^{\circ}$; hence

$$
\angle B D C=180^{\circ}-\angle D S C-\angle S C D=180^{\circ}-110^{\circ}-45^{\circ}=25^{\circ} .
$$

(b) Consider a triangle $A B C$ and assume that the bisectors of $\angle B$ and $\angle C$ intersect at M. Suppose $\angle B M C=2 \angle A$. Compute $\angle A$.

Solution. We have: $\angle A=180^{\circ}-\angle B-\angle C$ and
$2 \angle A=\angle B M C=180^{\circ}-\frac{1}{2} \angle B-\frac{1}{2} \angle C=90^{\circ}+\frac{1}{2}\left(180^{\circ}-\angle B-\angle C\right)=90^{\circ}+\frac{1}{2} \angle A$.
Therefore, $\frac{3}{2} \angle A=90^{\circ}$ and $\angle A=60^{\circ}$.
3. ($5+6 \mathrm{pts}$)

Let $A B C D$ be a square, and let K, L, M, N be points on the sides $A B, B C, C D, D A$ respectively such that $K L\|A C\| M N$ and $K N\|B D\| L M$. Prove that
(a) $K L M N$ is a rectangle; and
(b) $K L+L M+M N+N K=A C+B D$.

Solution. (a) $K L M N$ is a parallelogram because $K L \| M N$ and $K N \| L M$. The angle between $K N$ and $K L$ is equal to the angle between $A C$ and $B D$ which is 90°. This shows that $K L M N$ is a rectangle.
(b) Since $A C=B D$, it is sufficient to prove that $K L+L M+M N+N K=2 B D$.

Let us denote by X and Y the intersections of $B D$ with $K L$ and $M N$ respectively. Observe that
$\angle X K B=\angle K B X=\angle X L B=\angle L B X=\angle N D Y=\angle Y N D=\angle Y D M=\angle D M Y=45^{\circ}$.
We have

- $K N=X Y=L M$ because $K N Y X$ and $L M Y X$ are parallelograms;
- $K X=X B=L X$ and $N Y=Y D=Y M$ because $\triangle K X B, \triangle L X B, \triangle N Y D, \triangle M Y D$ are isosceles.
Therefore, $K L+L M+M N+N K=2 B D$.

4. $(5+6 \mathrm{pts})$

Let $A B C$ be a right triangle with $\angle A=90^{\circ}$. Suppose D is a point on $A B$ strictly between A and B.
(a) Prove that $D C<B C$.

Suppose also that E is a point on $A C$ strictly between A and C.
(b) Prove that $D E<B C$.

Solution. (a) Consider $\triangle C D B$. Since $\angle C D B>90^{\circ}>\angle A B C$, we have $D C<B C$. (In a triangle, one side is longer than another side if and only if the angle opposite the first side is larger than the angle opposite the second side.)
(b) Consider $\triangle C D E$. Since $\angle C E D>90^{\circ}>\angle E C D$, we have $E D<D C$. By (a), $E D<D C<C B$.
5. $(6+5 \mathrm{pts})$

Let $A A_{1}$ and $B B_{1}$ be medians of $\triangle A B C$. Suppose that $\angle A_{1} A B=\angle B_{1} B A$. Prove that (a) $A A_{1}=B B_{1}$; and
(b) $A C=B C$.

Solution. (a) Let O be the intersection of $A A_{1}$ and $B B_{1}$. Then $O A B$ is isosceles and we have $A O=O B$. Since $A O=\frac{2}{3} A A_{1}$ and $B O=\frac{2}{3} B B_{1}$, we obtain $A A_{1}=B B_{1}$.

(b) Using (a), $\triangle A B B_{1}=\triangle B A A_{1}$ be SAS. Therefore, $A B_{1}=B A_{1}$; this implies $A C=$ $B C$.
6. (11 pts)

Let $A B C D$ be an isosceles trapezoid, where $B C<A D$ are its bases and $A B=C D$ are its lateral sides. Let $B E$ be the perpendicular dropped from B onto $A D$. Construct $A B C D$ given segments congruent to $A D, B C$, and $B E$.

Solution 1. Construct $A D$. Find the midpoint M of $A D$. On $A D$ construct $E F$ congruent to $B C$ such that M is the midpoint of $E F$. Construct $B E$ perpendicular to $A D$ (the length of $B E$ is given) and construct $C F$ perpendicular to $A D$ such that $C F$ is congruent to $E B$ and such that B, C are on the same side of the line $A D$. Then $B E F C$ is a rectangle and $A B C D$ is a require trapezoid: $A D, B C$, and $B E$ are congruent to the required segments.

Solution 2 (sketch). Let X be a point on $A D$ such that $B X \| C D$. Then $B X=C D$ (because $B X D C$ is a parallelogram) and $B E$ is a median and an altitude of $\triangle A B X$. We first construct a required $\triangle A B X$, then we construct a parallelogram $B X D C$ - compare with Problem 7 from the Sample Final.

7. (11 pts)

Consider $\triangle A B C$. Suppose D is a point on $A B$ such that $A D=\frac{1}{3} A B$. Let E, F, G be points on $B C, C A, A B$ respectively such that $D E\|A C, E F\| B A, F G \| C B$. Prove that $A D=D G=G B$.

Solution. Note that $A D E F$ and $G B E F$ are parallelograms (opposite sides are parallel). Therefore, $A D=F E=G B=\frac{1}{3} A B$. This implies that $A D=D G=G B$.

8. $(2+6+4 \mathrm{pts})$

Let $A B C$ be a right triangle, where $\angle A=90^{\circ}$, and let $A D$ be the altitude dropped from the vertex A.

(a) Prove that $\triangle A B D$ and $\triangle C A D$ are similar.
(b) Prove that $A D^{2}=B D \cdot D C$.

Solution. (a) Since $\angle A B D=90^{\circ}-\angle D C A=\angle D A C$, the triangle $\triangle A B D$ and $\triangle C A D$ are similar by AA.
(b) Since $\triangle A B D$ and $\triangle C A D$ are similar, we have $\frac{B D}{D A}=\frac{D A}{D C}$. Therefore, $D A^{2}=B D \cdot D C$.
(c) Compute $A D, A B$, and $A C$ if $B D=16$ and $D C=9$.

Solution. Using (b), AD $=\sqrt{16 \cdot 9}=12$. By the Pythagorean theorem:

$$
\begin{aligned}
& A B=\sqrt{B D^{2}+D A^{2}}=20, \\
& A C=\sqrt{C D^{2}+D A^{2}}=15 .
\end{aligned}
$$

9. (11 pts)

Suppose $A B C D$ is a convex inscribed quadrilateral. Let M, N, and K be the midpoints of $A B, B C$, and $C D$ respectively. Prove that $\angle B M N=\angle N K C$.

Solution. We have:

- $\angle B M N=\angle B A C$ because $M N$ is the midline of $\triangle B A C$,
- $\angle B A C=\frac{1}{2} \overparen{B C}=\angle B D C$,
- $\angle B D C=\angle N K C$ because $N K$ is the midline of $\triangle B D C$.

