MAT 515: Geometry for Teachers Problem Set 9

Stony Brook University Dzmitry Dudko Fall 2019

Problem 1. (3+3 points)

- (a) Prove that the midpoints of the sides of a rectangle are vertices of a rhombus.
- (b) Prove that the midpoints of the sides of a rhombus are vertices of a rectangle.

Solution. (a) Let ABCD be a rectangle, and let K, L, M, N be the midpoints of AB, BC, CD, DA respectively. Since ABCD is a rectangle, we have AC = BD. By the midline theorem:

- $KL = \frac{1}{2}AC$ (for $\triangle ABC$);
- $LM = \frac{1}{2}BD$ (for $\triangle BCD$);
- $MN = \frac{1}{2}CA$ (for $\triangle CDA$);
- $NK = \frac{1}{2}DB$ (for $\triangle DAB$).

Therefore, KL = LM = MN = NK; i.e. KLMN is a rhombus.

(b) Let ABCD be a rhombus, and let K, L, M, N be the midpoints of AB, BC, CD, DA respectively. By the midline theorem:

- $KL||AC \text{ (for } \triangle ABC);$
- LM||BD (for $\triangle BCD$);
- $MN||CA \text{ (for } \triangle CDA);$
- $NK || DB \text{ (for } \triangle DAB \text{)}.$

Therefore, $\angle KLM$, $\angle LMN$, $\angle MNK$, $\angle NKL$ are equal to the angle between AC and BD which is a right angle because ABCD is a rhombus. This implies that KLMN is a rectangle.

Problem 2. (6 points)

Let ABCD be a trapezoid where BC < AD are its bases (i.e., BC and AD are parallel sides). Denote by M and N the midpoints of the diagonals AC and BD. Prove that MN is congruent to $\frac{1}{2}(AD - BC)$.

Hind: consider $\triangle ABD$, $\triangle ABC$ and use the midline theorem.

Solution. Let LM and LN be the midlines of $\triangle ABC$ and $\triangle ABD$ respectively.

By the midline theorem:

- $LM = \frac{1}{2}BC$ and LM||BC (for $\triangle ABC$);
- $LN = \frac{1}{2}AD$ and LN||AD (for $\triangle ABD$).

From BC||AD we obtain that LM||LN. Therefore, the lines LM and LN coincide. We have $NM = LN - LM = \frac{1}{2}(AD - BC)$.

Problem 3. (6 points)

Two towns A and B are situated on opposite sides of a river whose banks CD and EF are parallel straight lines. At which point should one build a slant bridge MM' across the river, where M is on the line CD, such that $\angle CMM' = 45^{\circ}$ and such that AM + MM' + M'B is the shortest possible path between A and B? Describe how to construct M or M' and explain your answer.

Solution. Note that all such 45° -slant bridges across the river are parallel and equal. Let AA' be the unique line segment parallel and congruent to every 45° -slant bridge such that A' is closer to CD than A. In other words, if MM' is a 45° -slant bridge, then AA'M'M is a parallelogram:

Since AA' = MM' and AM = A'M', the sum AM + MM' + M'B is minimal if and only if AA' + A'M' + M'B is minimal. The latter sum is minimal if and only if A'M' + M'B is minimal. This implies that M' is the intersection of A'B and EF.

Answer: M' is the intersection of A'B and EF.