MAT 515: Geometry for Teachers
 Problem Set 9

Stony Brook University
Fall 2019
Dzmitry Dudko
Problem 1. ($3+3$ points $)$
(a) Prove that the midpoints of the sides of a rectangle are vertices of a rhombus.
(b) Prove that the midpoints of the sides of a rhombus are vertices of a rectangle.

Solution. (a) Let $A B C D$ be a rectangle, and let K, L, M, N be the midpoints of $A B, B C, C D, D A$ respectively. Since $A B C D$ is a rectangle, we have $A C=B D$. By the midline theorem:

- $K L=\frac{1}{2} A C$ (for $\left.\triangle A B C\right)$;
- $L M=\frac{1}{2} B D($ for $\triangle B C D)$;
- $M N=\frac{1}{2} C A$ (for $\left.\triangle C D A\right)$;
- $N K=\frac{1}{2} D B($ for $\triangle D A B)$.

Therefore, $K L=L M=M N=N K$; i.e. $K L M N$ is a rhombus.
(b) Let $A B C D$ be a rhombus, and let K, L, M, N be the midpoints of $A B, B C, C D, D A$ respectively. By the midline theorem:

- $K L \| A C$ (for $\triangle A B C$);
- $L M \| B D$ (for $\triangle B C D)$;
- $M N \| C A$ (for $\triangle C D A$);
- $N K \| D B$ (for $\triangle D A B)$.

Therefore, $\angle K L M, \angle L M N, \angle M N K, \angle N K L$ are equal to the angle between $A C$ and $B D$ which is a right angle because $A B C D$ is a rhombus. This implies that $K L M N$ is a rectangle.

Problem 2. (6 points)
Let $A B C D$ be a trapezoid where $B C<A D$ are its bases (i.e., BC and AD are parallel sides). Denote by M and N the midpoints of the diagonals $A C$ and $B D$. Prove that $M N$ is congruent to $\frac{1}{2}(A D-B C)$.
Hind: consider $\triangle A B D, \triangle A B C$ and use the midline theorem.
Solution. Let $L M$ and $L N$ be the midlines of $\triangle A B C$ and $\triangle A B D$ respectively.

By the midline theorem:

- $L M=\frac{1}{2} B C$ and $L M \| B C$ (for $\triangle A B C$);
- $L N=\frac{1}{2} A D$ and $L N \| A D$ (for $\triangle A B D$).

From $B C \| A D$ we obtain that $L M \| L N$. Therefore, the lines $L M$ and $L N$ coincide. We have $N M=L N-L M=\frac{1}{2}(A D-B C)$.

Problem 3. (6 points)
Two towns A and B are situated on opposite sides of a river whose banks $C D$ and $E F$ are parallel straight lines. At which point should one build a slant bridge $M M^{\prime}$ across the river, where M is on the line $C D$, such that $\angle C M M^{\prime}=45^{\circ}$ and such that $A M+M M^{\prime}+M^{\prime} B$ is the shortest possible path between A and B ? Describe how to construct M or M^{\prime} and explain your answer.

Solution. Note that all such 45°-slant bridges across the river are parallel and equal. Let $A A^{\prime}$ be the unique line segment parallel and congruent to every 45°-slant bridge such that A^{\prime} is closer to $C D$ than A. In other words, if $M M^{\prime}$ is a 45°-slant bridge, then $A A^{\prime} M^{\prime} M$ is a parallelogram:

Since $A A^{\prime}=M M^{\prime}$ and $A M=A^{\prime} M^{\prime}$, the sum $A M+M M^{\prime}+M^{\prime} B$ is minimal if and only if $A A^{\prime}+A^{\prime} M^{\prime}+M^{\prime} B$ is minimal. The latter sum is minimal if and only if $A^{\prime} M^{\prime}+M^{\prime} B$ is minimal. This implies that M^{\prime} is the intersection of $A^{\prime} B$ and $E F$.

Answer: M^{\prime} is the intersection of $A^{\prime} B$ and $E F$.

