MAT 515: Geometry for Teachers
 Problem Set 9

Stony Brook University
Fall 2019
Dzmitry Dudko
Problem 1. ($3+3$ points $)$
(a) Prove that the midpoints of the sides of a rectangle are vertices of a rhombus.
(b) Prove that the midpoints of the sides of a rhombus are vertices of a rectangle.

Problem 2. (6 points)
Let $A B C D$ be a trapezoid where $B C<A D$ are its bases (i.e., BC and AD are parallel sides). Denote by M and N the midpoints of the diagonals $A C$ and $B D$. Prove that $M N$ is congruent to $\frac{1}{2}(A D-B C)$.
Hind: consider $\triangle A B D, \triangle A B C$ and use the midline theorem.

Problem 3. (6 points)
Two towns A and B are situated on opposite sides of a river whose banks $C D$ and $E F$ are parallel straight lines. At which point should one build a slant bridge $M M^{\prime}$ across the river, where M is on the line $C D$, such that $\angle C M M^{\prime}=45^{\circ}$ and such that $A M+M M^{\prime}+M^{\prime} B$ is the shortest possible path between A and B ? Describe how to construct M or M^{\prime} and explain your answer.

Hint: compare with the "classical bridge problem" discussed on October 21 (page 78 in the book).

Due Date: Wednesday November 6.

