MAT 515: Geometry for Teachers
 Problem Set 7

Stony Brook University
Fall 2019
Dzmitry Dudko
Problem 1. (5 points)
Let $A A_{1}$ and $B B_{1}$ be bisectors of a triangle $A B C$. Let us denote by O the intersection point of $A A_{1}$ and $B B_{1}$. Assume that $\angle A O B=130^{\circ}$. Find $\angle A C B$.

Problem 2. ($4+3$ points)
(a) Suppose that $C C_{1}=\frac{1}{2} A B$, where $C C_{1}$ is a median of a triangle $A B C$. Prove that $\angle A C B=90^{\circ}$.
(b) Consider a triangle $A B C$ and suppose that $\angle A C B=90^{\circ}$. Let $C C_{1}$ be a median of a triangle $A B C$. Prove that $C C_{1}=\frac{1}{2} A B$.

Problem 3. (5 +1 points)
(a) Show that a convex polygon can not have 4 acute angles.
(b) Give an example of a convex polygon with 3 acute angles.

Problem 4. (5 points)
Let $C C_{1}$ be an altitude of a triangle $A B C$. Assume that $C C_{1}$ is inside $\triangle A B C$. Let O be a point on $C C_{1}$ strictly between C and C_{1}. Show that if $\angle A O C=\angle B O C$, then $A C=B C$.

Due Date: Wednesday October 23.

