MAT 515: Geometry for Teachers

Problem Set 3

Stony Brook University
Fall 2019
Dzmitry Dudko
Problem 1. ($4+4$ points) A kite is a quadrilateral whose four sides can be grouped into two pairs of equal-length sides that are adjacent to each other. Show that:
a) A quadrilateral is kite if it has an axis of symmetry passing through a vertex.
b) Diagonals of a kite are perpendicular.

Solution. a) Let us assume that $A B C D$ is a quadrilateral and ℓ is its axis of symmetry passing through A. Since the numbers of vertices on both sides of ℓ are equal, ℓ also passes through C. Thus ℓ is the line $A C$.

The flip of the plane along the line $A C$ interchanges the segments $A B$ and $A D$; hence $A B=A D$. Similarly, the flip of the plane along $A C$ interchanges the segments $C B$ and $C D$; hence $C B=C D$. Finally, the flip of the plane along $A C$ fixes $B D$. Therefore, $B D$ is orthogonal to $A C$.
b) Let us assume that $A B C D$ is a kite, $A B=A D$, and $C B=C D$. Then $\triangle A B D$ and $\triangle C B D$ are isosceles triangle.

Suppose D is the middle point of $B D$. Then $A D$ and $C D$ are medians in $\triangle A B D$ and $\triangle C B D$. Since the triangles are isosceles, $A D$ and $C D$ are altitudes in $\triangle A B D$ and $\triangle C B D$. Therefore, A, D, C are on the same line and $A C$ is perpendicular to $B D$.

Problem 2. ($1+3$ points) A triangle $A B C$ is given. Using a compass, construct a segment $A^{\prime} B^{\prime}$ congruent to $A B$ on a given line. Then, using a compass, construct a point C^{\prime} such that $A^{\prime} B^{\prime} C^{\prime}$ is a triangle congruent to $A B C$.

Proof. Suppose ℓ is the given line. Choose a point A^{\prime} on ℓ. Construct a circle with center at A^{\prime} and radius $A B$; denote by B^{\prime} one of the intersections between the circle and ℓ. Then $A^{\prime} B^{\prime}=A B$.

Construct a circle with center at A^{\prime} and radios $A C$ and a circle with center at B^{\prime} and radios $B C$. Denote by C^{\prime} one of the intersections of these two circles. Then $A C=A^{\prime} C^{\prime}$ and $B C=B^{\prime} C^{\prime}$.

Triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are congruent by SSS-test.

Problem 3. (5 points)
Prove that if two sides and the median drawn to the first of them in one triangle are respectively congruent to two sides and the median drawn to the first of them in an other triangle, then such triangles are congruent.

Solution. Let us denote the first triangle by $A B C$ and the second triangle by $A^{\prime} B^{\prime} C^{\prime}$. We assume $A B, B C$, and the median $C C_{1}$ are congruent respectively to $A^{\prime} B^{\prime}, B^{\prime} C^{\prime}$, and the median $C^{\prime} C_{1}^{\prime}$.

Since $A B=A^{\prime} B^{\prime}$, we have $C_{1} A=B C_{1}=C_{1}^{\prime} A^{\prime}=B^{\prime} C_{1}^{\prime}$. Then $\triangle B C C_{1}$ and $\triangle B^{\prime} C^{\prime} C_{1}^{\prime}$ are congruent by SSS-test. Therefore, $\angle B C_{1} C=\angle B^{\prime} C_{1}^{\prime} C^{\prime}$. Note that $\angle A C_{1} C$ is supplementary to $\angle B C_{1} C$ and $\angle A^{\prime} C_{1}^{\prime} C^{\prime}$ is supplementary to $\angle B^{\prime} C_{1}^{\prime} C^{\prime}$. We obtain that $\angle A C_{1} C=$ $\angle A^{\prime} C_{1}^{\prime} C^{\prime}$, hence $\triangle A C C_{1}$ and $\triangle A^{\prime} C^{\prime} C_{1}^{\prime}$ are congruent by SAS-test.

Problem 4. (5 points) Prove that in a convex pentagon, if all sides are congruent and all diagonals are congruent, then all interior angles are congruent.
Solution. Consider such pentagon $A B C D E$. Since

$$
A B=B C, \quad B C=C D, \quad \text { and } \quad A C=C D,
$$

$\triangle A B C$ and $\triangle B C D$ are congruent by SSS-test. Therefore, $\angle A B C=\angle B C D$.
Similarly, $\angle B C D=\angle C D E=\angle D E A=\angle E A B$.

Problem 5. (5 points)
On each side of an equilateral triangle ABC , congruent segments $A B^{\prime}, B C^{\prime}$, and $C A^{\prime}$ are marked, and points A^{\prime}, B^{\prime}, and C^{\prime} are connected by lines. Prove that $A^{\prime} B^{\prime} C^{\prime}$ is also equilateral.

Proof. We assume that the point B^{\prime} is marked on $A C$, the point C^{\prime} is marked on $A B$, and the point A^{\prime} is marked on $B C$. Since

$$
A B^{\prime}=B C^{\prime}=C A^{\prime} \quad \text { and } A C=B A=C B
$$

we also have

$$
C B^{\prime}=A C^{\prime}=B A^{\prime}
$$

Since $\angle A=\angle B=\angle C$, the triangles $A^{\prime} B C^{\prime}, C^{\prime} A B^{\prime}$, and $B^{\prime} C A^{\prime}$ are congruent by SAS-test. Therefore, $A^{\prime} C^{\prime}=C^{\prime} B^{\prime}=B^{\prime} A^{\prime}$.

