MAT 515: Geometry for Teachers

Problem Set 12

Stony Brook University
Fall 2019
Dzmitry Dudko

Problem 1. (6 points) Let $A B C D$ be a trapezoid where $B C<A D$ are its bases. Prove that if $\angle B A D=\angle C D A$, then $A B=D C$, i.e., $A B C D$ is an isosceles trapezoid.

Recall that the three (possibly extended) altitudes intersect in a single point, called the orthocenter of the triangle.

Problem 2. ($5+1$ points)
Let H be the orthocenter of $\triangle A B C$. Prove that C is the orthocenter of $\triangle A B H$. When do C and H coincide?

Problem 3. (6 points)
Using a compass and a straightedge, construct a triangle $A B C$ given $A C$ and the lengths of two medians belonging to the vertices A and C.
Hint. Let $A A_{1}$ and $C C_{1}$ be the medians of $\triangle A B C$ belonging to the vertices A and C. Construct first $\frac{2}{3} A A_{1}$ and $\frac{2}{3} C C_{1}$. Use Problem $3(\mathrm{~b})$ of Midterm 2 to trisect a given line segment.

Problem 4. (5+1 points)
Let $A B C D$ be a rhombus, and let O be the intersection of the diagonals $A C$ and $B D$. Drop the perpendiculars $O P, O Q, O T, O S$ onto the sides $A B, B C, C D, D A$. Prove that $\triangle A O P, \triangle O B P, \triangle O B Q, \triangle C O Q, \triangle C O T, \triangle O D T, \triangle O D S, \triangle A O S$ are similar. Is $O P=O Q=O T=O S ?$

Problem 5. (Bonus problem, 5 points)
Using a compass and a straightedge, inscribe a circle into a given rhombus.

Due Date: Wednesday December 4.

