1 Basis and Dimension

Recall that S is a subspace of \mathbb{R}^{n} if:

1) S contains 0 ;
$2+3$) a linear combination of vectors from S is in S.
Equivalently, S is a subspace if and only if $S=\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$. If $v_{1}, v_{2}, \ldots, v_{k}$ are linearly independent, then $v_{1}, v_{2}, \ldots, v_{k}$ is a basis for S. In this case k is the dimension of S.

Example: lines and planes through the origin are subspaces.
The dimension of a subspace is independent of the choice of a basis because:
Theorem. Any two bases for a subspace have the same number of vectors.

$1.1 \operatorname{row}(\mathrm{~A})$

Consider the following problem: find a basis for

$$
\left.\operatorname{span}\left(\begin{array}{lll}
{\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right],} \\
1 & 1 & 1
\end{array}\right],\right)
$$

Note that $\left[\begin{array}{lll}3 & 1 & 3\end{array}\right]=2\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]+\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$. By definition, $\operatorname{span}\left(\begin{array}{ccc}{\left[\begin{array}{lll}1 & 0 & 1\end{array}\right] \text {, }} \\ 1 & 1 & 1\end{array}\right]$, is

$$
\begin{gathered}
c_{1}\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]+c_{2}\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]+c_{3}\left[\begin{array}{lll}
3 & 1 & 3
\end{array}\right]= \\
c_{1}\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]+c_{2}\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]+c_{3}\left(2\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]+\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\right)= \\
\left(c_{1}+2 c_{3}\right)\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]+\left(c_{2}+c_{3}\right)\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] .
\end{gathered}
$$

Since c_{1}, c_{2}, c_{3} are any numbers, $c_{1}+2 c_{3}$ and $c_{2}+c_{3}$ are also any numbers. Therefore,

$$
\left(c_{1}+2 c_{3}\right)\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]+\left(c_{2}+c_{3}\right)\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]
$$

is

$$
\left.\operatorname{span}\left(\begin{array}{lll}
{\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right],} \\
{[1} & 1 & 1
\end{array}\right]\right)
$$

Clearly, $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ are linearly independent (they are not parallel). Thus, $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ is a basis for span $\left(\begin{array}{ccc}{\left[\begin{array}{lll}1 & 0 & 1\end{array}\right],} \\ 1 & 1 & 1\end{array}\right]$, [318$] ., ~$ and this subspace has dimension
2.

Recall next that span $\left.\left(\begin{array}{ccc}{\left[\begin{array}{lll}1 & 0 & 1\end{array}\right],} \\ 1 & 1 & 1\end{array}\right],\right)$ is row $\left(\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 3 & 1 & 3\end{array}\right]\right)$. Hence $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ is also a basis for row $\left(\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 3 & 1 & 3\end{array}\right]\right)$.

Remark. Let A be a matrix. Then elementary row operations do not change $\operatorname{row}(A)$.
In particular, we can remake the previous example using the elementary row operations as follows:

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
3 & 1 & 3
\end{array}\right] \xrightarrow{R_{3}-2 R_{1}}\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \xrightarrow{R_{3}-R_{2}}\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right],
$$

thus

$$
\operatorname{row}\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
3 & 1 & 3
\end{array}\right]=\operatorname{row}\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

and $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ is a basis for row $\left(\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 3 & 1 & 3\end{array}\right]\right)$.
We can also continue

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{R_{2}-R_{1}}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

eliminating the first 1 in the second row. We obtain a matrix in reduced echelon form. The dimension of row $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ is clearly two.

$1.2 \operatorname{null}(\mathrm{~A})$ and $\operatorname{col}(\mathrm{A})$

Recall that elementary row operations of a matrix do not change solutions of the associated system of linear equations. Therefore, if A is a matrix, then elementary row operations of A do not change $\operatorname{null}(A)$.

In our example:

$$
\text { null }\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
3 & 1 & 3
\end{array}\right]=\text { null }\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \text {. }
$$

For the last matrix, the corresponding system is

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

or

$$
\begin{aligned}
x \quad+z & =0 \\
y \quad & =0 .
\end{aligned}
$$

We conclude that $\operatorname{null}(A)$, or the set of solutions, is $t\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ or span $\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$.

We can also double-check that $\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ is a solution for the original system of equations

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
3 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad \text { we have: }\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
3 & 1 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Remark. Elementary row operations change $\operatorname{col}(A)$ but do not change the dimension of $\operatorname{col}(A)$.

In our example, we see that the first two columns of $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ are linearly independent, therefore the first two columns of $\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 3 & 1 & 3\end{array}\right]$ are also linearly independent. On the other hand, the last column of $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ is equal to its first column. Similarly, the last column of $\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 3 & 1 & 3\end{array}\right]$ is equal to its first column.

1.3 Rank.

Definition. The rank of a matrix is the dimension of its row space. The rank of a matrix is also equal to the dimension of its column space. The rank of a matrix is equal to the number of non-zero rows in its echelon form. The nullity of a matrix is the dimension of its null space.

The Rank Theorem. If A is an $m \times n$ matrix, then

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=n .
$$

Explanation. Consider a system of linear equations $A x=0$, where x is a column vector. Assume that A is in row echelon form. Then $\operatorname{rank}(A)$ is equal to the number of non-free variables, while nullity (A) is equal to the number of free variables. The number of all variables is n.

In our example,

$$
\operatorname{rank}\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & 1 \\
3 & 1 & 3
\end{array}\right]=\operatorname{rank}\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]=2
$$

and

$$
\text { nullity }\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
3 & 1 & 3
\end{array}\right]=\text { nullity }\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]=1
$$

The rank theorem takes form:

$$
2+1=3 .
$$

1.4 More examples

Question: Find bases for $\operatorname{row}(A)$ and $\operatorname{null}(A)$, and find the dimension of $\operatorname{col}(A)$, where

$$
A=\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 0 & 4 \\
1 & 1 & 3
\end{array}\right]
$$

Solution. Applying the elimination method, we obtain:

$$
\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 0 & 4 \\
1 & 1 & 3
\end{array}\right] \xrightarrow{R_{2}-2 R_{1}}\left[\begin{array}{ccc}
R_{3}-R_{1} \\
1 & 2 & 4 \\
0 & -4 & -4 \\
0 & -1 & -1
\end{array}\right] \xrightarrow{\begin{array}{l}
R_{2} /(-4) \\
R_{3} /(-1)
\end{array}\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right] \xrightarrow{R_{2}-R_{2}}\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] ~}
$$

Therefore, row $\left[\begin{array}{lll}1 & 2 & 4 \\ 2 & 0 & 4 \\ 1 & 1 & 3\end{array}\right]=$ row $\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$ and $\left[\begin{array}{lll}1 & 2 & 4\end{array}\right],\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$ is a basis for row $\left[\begin{array}{lll}1 & 2 & 4 \\ 2 & 0 & 4 \\ 1 & 1 & 3\end{array}\right]$.
We can also continue

$$
\left[\begin{array}{lll}
1 & 2 & 4 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{R_{1}-2 R_{2}}\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

(reduced echelon form is more convenient than just echelon form). We see that $\left[\begin{array}{lll}1 & 0 & 2\end{array}\right],\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$ is also a basis for row $\left[\begin{array}{lll}1 & 2 & 4 \\ 2 & 0 & 4 \\ 1 & 1 & 3\end{array}\right]$.

We have null $\left[\begin{array}{lll}1 & 2 & 4 \\ 2 & 0 & 4 \\ 1 & 1 & 3\end{array}\right]=$ null $\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$ and we need to solve

$$
\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

We have

$$
\text { null }\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 0 & 4 \\
1 & 1 & 3
\end{array}\right]=\operatorname{null}\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]=\operatorname{span}\left(\left[\begin{array}{c}
-2 \\
-1 \\
1
\end{array}\right]\right) .
$$

The dimension of col $\left[\begin{array}{lll}1 & 2 & 4 \\ 2 & 0 & 4 \\ 1 & 1 & 3\end{array}\right]$ is rank $\left[\begin{array}{lll}1 & 2 & 4 \\ 2 & 0 & 4 \\ 1 & 1 & 3\end{array}\right]=\operatorname{rank}\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]=2$. The Rank Theorem " $\operatorname{rank}(A)+\operatorname{nullity}(A)=n$ " takes form

$$
2+1=3 .
$$

Read Example 3.51 in the book (page 205).
Read Theorem 3.29 in the book (page 208).

