# MAT 211: Linear Algebra <br> Problem Set 8 

Stony Brook University
Spring 2019
Dzmitry Dudko

Problem 1. (2 points) Compute the standard matrix of the linear transformation

$$
P\left[\begin{array}{l}
x \\
y
\end{array}\right]=(2 x+7 y)\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

Problem 2. $(4+4+4$ points)
Recall that

- a vector $u$ is unit if it has length 1 ; i.e. if $\|u\|=\sqrt{u \cdot u}=1$;
- if $v$ is a non-zero vector, then $\frac{1}{\|v\|} v$ is a unit vector parallel to $v$.

Consider a unit vector $d=\left[\begin{array}{l}d_{1} \\ d_{2}\end{array}\right]$. Denote by $\ell$ the line passing through the origin whose direction vector is $d$. In other words,

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=t\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]
$$

is the vector form of the equation of $\ell$. The linear transformation

$$
P_{\ell}(v)=(v \cdot d) d=\left(v_{1} d_{1}+v_{2} d_{2}\right)\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]
$$

is a projection of the plane $\mathbb{R}^{2}$ onto the line $\ell$, where $v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$.

1) Prove that

$$
P_{\ell}(v)=(v \cdot d) d=\left(v_{1} d_{1}+v_{2} d_{2}\right)\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]
$$

is the orthogonal projection of $\mathbb{R}^{2}$ onto the line $\ell$ by showing that the vector

$$
w=v-P_{\ell}(v)
$$

is orthogonal to $d$.

2) Suppose that $d=\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$. Check that $d$ is a unit vector. Compute the standard matrix of the projection $P_{\ell}$. Compute $P_{\ell}\left[\begin{array}{l}2 \\ 0\end{array}\right]$.
3) Suppose that $d=\left[\begin{array}{l}3 / 5 \\ 4 / 5\end{array}\right]$. Check that $d$ is a unit vector. Compute the standard matrix of the projection $P_{\ell}$. Compute $P_{\ell}\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

Due Date: Thursday April 11.

