# MAT 211: Linear Algebra <br> Problem Set 7 

Stony Brook University
Spring 2019
Dzmitry Dudko
Problem 1. (3+3 points)

- Find all $2 \times 2$ matrices $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] .
$$

- Find all $2 \times 2$ matrices $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] .
$$

Problem 2. (3 points) Find a basis for the span of the following vectors

$$
\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right] .
$$

Due Date: Thursday April 4.

