MAT 211: Linear Algebra Problem Set 7

Stony Brook University Dzmitry Dudko Spring 2019

Problem 1. (3+3 points)

• Find all 2 × 2 matrices
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 such that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$
• Find all 2 × 2 matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

Problem 2. (3 points) Find a basis for the span of the following vectors

[1]		$\begin{bmatrix} -1 \end{bmatrix}$		0	
-1	,	0	,	1	
		1		[-1]	

Due Date: Thursday April 4.