MAT 211: Linear Algebra
 Problem Set 6

Stony Brook University
Spring 2019
Dzmitry Dudko

Problem 1. $\left(2+2\right.$ points) Consider the matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that $a d-b c \neq 0$. Prove that A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

by showing that
a) $A A^{-1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$;
b) $A^{-1} A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

Problem 2. ($2+2+2$ points) An elementary matrix is a matrix which differs from the identity matrix by one single elementary row operation. For example, the following matrices are elementary:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right] \stackrel{R_{3}-2 R_{1}}{\longleftrightarrow}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],} \\
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \stackrel{R_{2} \leftrightarrow R_{3}}{\longleftrightarrow}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],} \\
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right] \stackrel{R_{2}-R_{3}}{\longleftrightarrow}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

Consider the matrix $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 2 & 1 & 1\end{array}\right]$.
a) Compute

$$
B=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right] A
$$

a) Compute

$$
C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] B
$$

c) Verify that

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right] C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Note that left multiplication by an elementary matrix represents elementary row operations:

$$
A \xrightarrow{R_{3}+2 R_{1}} B \xrightarrow{R_{2} \leftrightarrow R_{3}} C \xrightarrow{R_{2}-R_{3}}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Remark: a matrix is invertible if and only if it is a product of elementary matrices.

Due Date: Thursday March 28.

