MAT 211: Linear Algebra

Problem Set 12

Stony Brook University
Spring 2019
Dzmitry Dudko

Problem 1. (3 points) Find t such that

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
3 \\
-1
\end{array}\right]-t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

is an orthogonal basis for \mathbb{R}^{2}.

Problem 2. $(3+4$ points $)$ Show that $\left[\begin{array}{c}2 \\ -1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}3 \\ -1 \\ 0 \\ 4\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ are linearly independent vectors.

Find an orthogonal basis for span $\left(\left[\begin{array}{c}2 \\ -1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}3 \\ -1 \\ 0 \\ 4\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right)$.
Hint: you may find t, s, k such that

$$
\left[\begin{array}{c}
2 \\
-1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
3 \\
-1 \\
0 \\
4
\end{array}\right]-t\left[\begin{array}{c}
2 \\
-1 \\
1 \\
2
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]-s\left[\begin{array}{c}
2 \\
-1 \\
1 \\
2
\end{array}\right]-k\left[\begin{array}{c}
3 \\
-1 \\
0 \\
4
\end{array}\right]
$$

is an orthogonal set. Or you may apply the Gram-Schmidt Process.

Due Date: Thursday May 9.

