MAT 211: Linear Algebra Problem Set 12

Stony Brook University Dzmitry Dudko

Problem 1. (3 points) Find t such that

$$\begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 3\\-1 \end{bmatrix} - t \begin{bmatrix} 1\\1 \end{bmatrix}$$

is an orthogonal basis for \mathbb{R}^2 .

Problem 2. (3+4 points) Show that
$$\begin{bmatrix} 2\\-1\\1\\2 \end{bmatrix}$$
, $\begin{bmatrix} 3\\-1\\0\\4 \end{bmatrix}$, $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ are linearly independent vectors.
Find an orthogonal basis for span $\left(\begin{bmatrix} 2\\-1\\1\\2 \end{bmatrix}, \begin{bmatrix} 3\\-1\\0\\4 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \right)$.
Hint: you may find t, s, k such that

$\begin{bmatrix} 2 \end{bmatrix}$	[3]	[2]	[1]	[2]	[3]
$\begin{bmatrix} 2\\ -1\\ 1 \end{bmatrix},$	-1 ,	-1	1	-1 ,	-1
1 '	$\begin{vmatrix} 0 \end{vmatrix} - t$	$ 1 ^{,}$	$ 1 ^{-s}$	$\begin{vmatrix} 1 \end{vmatrix} - \kappa$	0
	4	2	1	$\begin{bmatrix} 2\\-1\\1\\2 \end{bmatrix} - k$	4

is an orthogonal set. Or you may apply the Gram-Schmidt Process.

Due Date: Thursday May 9.

Spring 2019