MAT 211: Linear Algebra Problem Set 11

Stony Brook University Dzmitry Dudko Spring 2019

Problem 1. (2+3 points) Show that $\begin{bmatrix} 1\\1 \end{bmatrix}$ and $\begin{bmatrix} 3\\1 \end{bmatrix}$ are eigenvectors of $A = \begin{bmatrix} -3 & 6\\ -2 & 5 \end{bmatrix}.$

Compute $A^{3} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = A^{3} \left(\begin{bmatrix} 3 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right).$

Problem 2. (5 points)

Suppose that v and w are eigenvectors of a matrix A corresponding to eigenvalues 2 and 3; i.e. Av = 2v and Aw = 3w. Prove that v and w are linearly independent. *Hint:* consider $c_1v + c_2w = 0$ and multiply this equation by A.

Due Date: Thursday May 2.