MAT 211: Linear Algebra

Problem Set 11

Stony Brook University
Dzmitry Dudko
Problem 1. $(2+3$ points $)$ Show that $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}3 \\ 1\end{array}\right]$ are eigenvectors of

$$
A=\left[\begin{array}{ll}
-3 & 6 \\
-2 & 5
\end{array}\right]
$$

Compute $A^{3}\left[\begin{array}{l}2 \\ 0\end{array}\right]=A^{3}\left(\left[\begin{array}{l}3 \\ 1\end{array}\right]-\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$.

Problem 2. (5 points)
Suppose that v and w are eigenvectors of a matrix A corresponding to eigenvalues 2 and 3; i.e. $A v=2 v$ and $A w=3 w$. Prove that v and w are linearly independent.
Hint: consider $c_{1} v+c_{2} w=0$ and multiply this equation by A.
Due Date: Thursday May 2.

