Similarity and diagonalization
 (Section 4.4 in the book)

A few examples of matrix transformations

Recall that if A is an $m \times n$ matrix, then $T_{A}(v)=A v$ is a matrix linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m}.

If $A B$ is a product of matrices, then

$$
T_{A B}(v)=A B v=T_{A}\left(T_{B}(v)\right)
$$

If A is an invertible matrix, then

$$
T_{A}^{-1}(v)=A^{-1} v=T_{A^{-1}}(v) .
$$

Example. Find a matrix P such that

$$
\begin{aligned}
& T_{P}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right] \\
& T_{P}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
4
\end{array}\right] .
\end{aligned}
$$

We will often write it as

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
0
\end{array}\right] \stackrel{T_{P}}{\longmapsto}\left[\begin{array}{l}
2 \\
2
\end{array}\right]} \\
& {\left[\begin{array}{l}
0 \\
1
\end{array}\right] \stackrel{T_{P}}{\longmapsto}\left[\begin{array}{l}
3 \\
4
\end{array}\right] .}
\end{aligned}
$$

Solution. Suppose $P=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then

$$
\begin{aligned}
& {\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
a \\
c
\end{array}\right],} \\
& {\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
b \\
d
\end{array}\right] .}
\end{aligned}
$$

Therefore, $P=\left[\begin{array}{ll}2 & 3 \\ 2 & 4\end{array}\right]$.
Example. Find a matrix Q such that

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
0
\end{array}\right] \stackrel{T_{Q}}{\longmapsto}\left[\begin{array}{l}
0 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
0 \\
1
\end{array}\right] \stackrel{T_{Q}}{\longmapsto}\left[\begin{array}{l}
1 \\
2
\end{array}\right] .}
\end{aligned}
$$

Answer: $Q=\left[\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right]$.
Example. Find a matrix S such that

$$
\begin{aligned}
& {\left[\begin{array}{l}
2 \\
1
\end{array}\right] \stackrel{T_{S}}{\longmapsto}\left[\begin{array}{l}
1 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{l}
1 \\
1
\end{array}\right] \stackrel{T_{S}}{\longmapsto}\left[\begin{array}{l}
0 \\
1
\end{array}\right] .}
\end{aligned}
$$

Solution. Since $T_{S}^{-1}=T_{S^{-1}}$, we may reformulate the problem as

$$
\begin{aligned}
& {\left[\begin{array}{l}
2 \\
1
\end{array}\right] \stackrel{T_{S^{-1}}}{\longleftrightarrow}\left[\begin{array}{l}
1 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{l}
1 \\
1
\end{array}\right] \stackrel{T_{S^{-1}}}{\longleftrightarrow}\left[\begin{array}{l}
0 \\
1
\end{array}\right] .}
\end{aligned}
$$

Therefore, $S^{-1}=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$ and $S=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right]$.
Example. Find a matrix R such that

$$
\begin{aligned}
& {\left[\begin{array}{l}
0 \\
3
\end{array}\right] \stackrel{T_{R}}{\longmapsto}\left[\begin{array}{l}
1 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{l}
1 \\
1
\end{array}\right] \stackrel{T_{R}}{\longmapsto}\left[\begin{array}{l}
0 \\
1
\end{array}\right] .}
\end{aligned}
$$

Solution. As in the previous example:

$$
\begin{aligned}
& {\left[\begin{array}{l}
0 \\
3
\end{array}\right] \stackrel{T_{R^{-1}}}{\longleftrightarrow}\left[\begin{array}{l}
1 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{l}
1 \\
1
\end{array}\right] \stackrel{T_{R^{-1}}}{\longleftrightarrow}\left[\begin{array}{l}
0 \\
1
\end{array}\right] .}
\end{aligned}
$$

Therefore, $R^{-1}=\left[\begin{array}{ll}0 & 1 \\ 3 & 1\end{array}\right]$ and $R=\left[\begin{array}{ll}0 & 1 \\ 3 & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}-1 / 3 & 1 / 3 \\ 1 & 0\end{array}\right]$.
Example. Find a matrix L such that

$$
\begin{gathered}
{\left[\begin{array}{l}
1 \\
0
\end{array}\right] \stackrel{T_{L}}{\longmapsto} 3\left[\begin{array}{l}
1 \\
0
\end{array}\right]} \\
{\left[\begin{array}{l}
0 \\
1
\end{array}\right] \stackrel{T_{L}}{\longmapsto}-6\left[\begin{array}{l}
0 \\
1
\end{array}\right] .}
\end{gathered}
$$

Answer: $L=\left[\begin{array}{cc}3 & 0 \\ 0 & -6\end{array}\right]$.

Example. Find a matrix N such that

$$
\begin{aligned}
& 2\left[\begin{array}{l}
1 \\
0
\end{array}\right] \stackrel{T_{N}}{\longmapsto}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& 4\left[\begin{array}{l}
0 \\
1
\end{array}\right] \stackrel{T_{N}}{\longmapsto}\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
\end{aligned}
$$

Answer: $N^{-1}=\left[\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right]$ and $N=\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 4\end{array}\right]$.
In the last two examples the matrices L and N are diagonal.

Similarity and diagonalization

Let A, B be $n \times n$ matrices. We say that A is similar to B if there is an invertible $n \times n$ matrix P such that $P^{-1} A P=B$. If A is similar to B, we write $A \sim B$.

An $n \times n$ matrix A is diagonalizable if there is a diagonal matrix D such that A is similar to B - that is, if there is an invertible $n \times n$ matrix P such that $P^{-1} A P=D$.

Theorem (4.23 in the book). Let A be an $n \times n$ matrix. Then A is diagonal if and only if A has n linearly independent eigenvectors.

More precisely, there exists an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$ if and only if the columns of P are n linearly independent eigenvectors of A and the diagonal entrices of D are eigenvalues of A corresponding to the eigenvectors in P in the same order.

Let us illustrate the above theorem in the following example. Consider a matrix $A=\left[\begin{array}{cc}5 & -1 \\ 2 & 2\end{array}\right]$. Using the previous lectures, we can find eigenvalues of A and bases for the corresponding eigenspaces. The matrix A has eigenvectors $\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]$ corresponding to eigenvalues 4,3 respectively:

$$
\begin{aligned}
& T_{A}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{cc}
5 & -1 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
5-1 \\
2+2
\end{array}\right]=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& T_{A}\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{cc}
5 & -1 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
5-2 \\
2+4
\end{array}\right]=3\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
\end{aligned}
$$

We may write:

$$
T_{A}\left(x\left[\begin{array}{l}
1 \tag{1}\\
1
\end{array}\right]+y\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=4 x\left[\begin{array}{l}
1 \\
1
\end{array}\right]+3 y\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

for every x, y.
Set $D=\left[\begin{array}{ll}4 & 0 \\ 0 & 3\end{array}\right]$. We have:

$$
T_{D}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{ll}
4 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
4 \\
0
\end{array}\right]=4\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

$$
T_{D}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{ll}
4 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]=3\left[\begin{array}{l}
0 \\
1
\end{array}\right],
$$

and we may also write

$$
T_{D}\left(x\left[\begin{array}{l}
1 \tag{2}\\
0
\end{array}\right]+y\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=4 x\left[\begin{array}{l}
1 \\
0
\end{array}\right]+3 y\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

for every x, y.
Observe "similarity" between Equations (1) and (22). The theorem states that A and D are indeed similar:

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]^{-1}\left[\begin{array}{cc}
5 & -1 \\
2 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
4 & 0 \\
0 & 3
\end{array}\right],
$$

or $P^{-1} A P=D$, where $P=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$ is a matrix whose columns are linearly independent eigenvectors.

Explanation why $P^{-1} A P$ is diagonal. Observe first that $P=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$ is constructed so that

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
0
\end{array}\right] \stackrel{T_{P}}{\longmapsto}\left[\begin{array}{l}
1 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
0 \\
1
\end{array}\right] \stackrel{T_{P}}{\longmapsto}\left[\begin{array}{l}
1 \\
2
\end{array}\right] ;}
\end{aligned}
$$

in other words, T_{P} maps $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$ to eigenvectors of A.
Let us calculate $P^{-1} A P\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $P^{-1} A P\left[\begin{array}{l}0 \\ 1\end{array}\right]$:

$$
\begin{aligned}
& T_{P^{-1} A P}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=P^{-1} A P\left[\begin{array}{l}
1 \\
0
\end{array}\right]=P^{-1} A\left[\begin{array}{l}
1 \\
1
\end{array}\right]=P^{-1}\left(4\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=4\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& T_{P^{-1} A P}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=P^{-1} A P\left[\begin{array}{l}
0 \\
1
\end{array}\right]=P^{-1} A\left[\begin{array}{l}
1 \\
2
\end{array}\right]=P^{-1}\left(3\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=3\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
\end{aligned}
$$

We may illustrate the above calculations by the following picture

Since $T_{P^{-1} A P}\left[\begin{array}{l}1 \\ 0\end{array}\right]=4\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $T_{P^{-1} A P}\left[\begin{array}{l}0 \\ 1\end{array}\right]=3\left[\begin{array}{l}0 \\ 1\end{array}\right]$, the matrix $P^{-1} A P$ must be $D=$ $\left[\begin{array}{ll}4 & 0 \\ 0 & 3\end{array}\right]$. This explains $P^{-1} A P=D$.

Look at more examples in the book.

