Problem 1. Let $h(t)=\frac{\sin ^{3}(\pi t)+e^{\sqrt{t}}}{\arctan \left(1-t^{2}\right)-t}$ and let $G(x)=\int_{0}^{x} h(t) d t$.
(a) Find $\int_{-1}^{1} h^{\prime}(t) d t$.
(b) Find $G^{\prime}(0)$.

Problem 2. Determine whether the following integrals converge or diverge. Explain your answer completely. Find the exact answer if possible.
(a) $\int_{2}^{\infty} \frac{d x}{x \ln (x)}$
(b) $\int_{0}^{\infty} \frac{d x}{1+x^{3}}$
(c) $\int_{0}^{\infty} \frac{x}{e^{x}} d x$
(d) $\int_{0}^{2} \frac{d x}{\sqrt{2-x}}$

Problem 3.

(a) Use the left hand rule with $n=5$ to approximate $\int_{2}^{12} \frac{8 x+3}{x^{2}-5 x+9} d x$.
(b) Use the right hand rule with $n=5$ to approximate $\int_{2}^{12} \frac{8 x+3}{x^{2}-5 x+9} d x$.
(c) Use the trapezoid hand rule with $n=5$ to approximate $\int_{2}^{12} \frac{8 x+3}{x^{2}-5 x+9} d x$.
(d) Use the midpoint rule with $n=5$ to approximate $\int_{2}^{12} \frac{8 x+3}{x^{2}-5 x+9} d x$.
(e) Use Simpson's rule with $n=4$ to approximate $\int_{2}^{10} \frac{8 x+3}{x^{2}-5 x+9} d x$.

Problem 4. [20 points] Consider the region trapped by the two curves $y=\frac{4}{1+e^{x}}$ and $y=$ $\sqrt{x}+2$ and between the lines $x=0$ and $x=5$. Here is a picture of the region:

(a) Use an integral to express the volume of the solid formed by rotating this region around the x-axis. Do not evaluate the integral.
(b) Use an integral to express the volume of the solid formed by rotating this region around the line $x=5$. Do not evaluate the integral.

EXAM

Practice Midterm 1
Math 132

February 20, 2004
\qquad

