MAT 544 — Test 1

1. (a) State (without proof) hypotheses under which it is justifiable to move a derivative past
a summation sign. (Work on a real interval I = (a,b); assume the summation is infinite.)
(b) Suppose U C R" is open. Let || || denote the sup norm on U. For f € C*(U), let

s 2
Ifller = 1511+ 3 5

(Here f : U — R.) Let C}(U) ={f € CY(U) : ||f|lcr < oo}. Tt is easy to see that C}(U) is
a normed vector space with norm || ||c1. Show that this normed vector space is complete.
(Hint: use (a)).

Solution (a) For example, if the F}, are continuously differentiable on I, and if )~ F}, and
> F] both converge uniformly on I, then (3 F)) = Y F]. (Of course, one can weaken
these hypotheses, but this is all we need for (b).)

(b) Suppose Y, fm converges absolutely in C1(U); we need only show that this series
converges in C(U). Since Cy(U) is complete, and since the series 3, f,, converges abso-
lutely in Cy(U), it converges uniformly to a continuous function on U. Similarly, for any
k, >, %= converges uniformly to a continuous function on U. Restricting all the f,, to a
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line segment in a coordinate direction, and using (a), we see now that —Ga— = Y om T

Thus Y, fm is in CY(U), with the series converging in C}(U), since as N — oo,
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2. Let P denote the orthogonal projection onto a closed subspace E of a Hilbert space H.
Assume E # {0}.
(a) Show that || P|| = 1.
(b) Let @ denote the orthogonal projection onto another closed subspace F' of H, such that
ENF ={0}. Suppose also that H is finite dimensional. Show that ||PQ] < 1.

Solution (a) For any = € H, since Pz and (I — P)z are orthogonal, we have
1Pz + (I = P)||* = [l

Accordingly, for all z € H, ||Px| < ||z|| (with equality if and only if Px = x); so || P|| =
sup,o || Pz[|/||z]| < 1. On the other hand, if 0 # z € E, then Pz = x, so || Pz|| = [|z[; so
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(b) Let S = {x : ||z|| = 1}. Since H is a finite-dimensional normed vector space, and S is
closed and bounded, S is a compact set. Also the map taking x to ||PQz|| is continuous
from S to R, and hence achieves a maximum on S. Thus |[|[PQ| = sup,cq ||PQz| =

max,cgs | PQz||. So it suffices to show that if ||z|| = 1, then |[|[PQz|| < ||z|. But for any z,
| PQz|| < ||Qz|| < ||z||, with equality if and only if PQz = Qz = z. In particular || PQx| <
|z|| for all z € S; we could only have |PQz|| = ||z||, for some xz € S, if PQx = Qz = x.
Since Qz € F and PQx € F, this can happen only if z = Qx = PQz € EN F = {0}.
Thus, if ||PQz|| = ||z||, then x = 0 and ||z|| cannot be 1, as desired.

. Suppose that Y; € R. Let
S =[to— h,to+ h] x [Yo — R, Yy + R].

Suppose Fi, Fy : S — R. (The domain of Fy and of F; is precisely S.) Suppose that for
1= 1,2, F; is continuous, and that for some K > 0 we have

(1) — F(t,Y2)| < K[Y: — Vi

for all (¢1,Y7), (t1,Y32) € S.

Show that for some P > 0, there is a unique continuous function y : (tg — P,to + P) — R
satisfying

o(6) = Yo+ [ Fuls.plo)dsll || Falowy(u))dul

Proof Choose M > 0 so that |F;(¢,Y)| < M for all (¢t,Y) € S, i =1,2. We may assume
K > 0. We claim that we may take P = min(%, sirie ). Say 0 < r < P; we first solve
the equation on (tg — r,to + 7). Let I = (to — r,to + 7). Let

Vo = {continuous functions f: I — R : ||f — Y| < R, and f(t) = Yo}

Since Fi, Fy are only defined on S = [tg — h,to + h] X [Yo — R, Yy + R, it follows that any
solution of the equation on I must lie in V. So we shall look for our solution within V{;
we shall find it by using the Contraction Mapping Principle.

Vo is a complete metric space (with the uniform metric). For f € V , define new functions
T f, Tof, Tf on I by

(N0 = [ Fis, f(5)ds

to

for i = 1,2 (we may do this, since s € I implies (s, f(s)) € S by the definition of V}), and

(Th)(#) = Yo + (LN OI(T2f)(B)]-
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We are looking for y € V with

Ty =vy.

Note that for any t € I, if i = 1,2, then

(L)) = | i, Fi(s, f(s))ds| < | fy | Fi(s, f(s))|ds]
< | [ Mds| = M|t — to] < MP < V/R;

so | Tif|| < VR. Also, if yy,ys € Vp, then for i = 1,2, t € I, we have
(Tip) () — (T ()] = | / (5, 2(5)) — Fils. 3 (s))]ds]
- <| /to [Fi(s, 9a(s)) — Fi(s, ya())|ds|
= <1 [ Klals) — a(s)las

t
<l —wlll [ ks
0

= |y — n || K[t —to|
< (rK)|ly2 — mll-

To show that there exists a unique y € Vj satisfying Ty = y, we need only show that the
key hypothesis of the contraction mapping principle holds, namely, we must show:

T :Vy — V, is a contraction.
Of course, if f € Vp, then (T'f)(to) = Yo. Moreover, for any ¢ € I,

(TH(t) = Yol =] < (THOINT2)()] < VRVR = R,

so, in fact, T : Vy — V4.
Moreover, if yy, o € Vj; then for t € I,

[(Ty)(t) = Ty)O)] = [(Tiy) (@) (Toyn)(t) — (Try2) () (Toye) (1)]

[(Thy) () [(Toy1) (8) — (Tay2) (D)) + [(Thyn) (1) — (Thy2) (D)](T2y2)(1)]
Ty l[[(T2y1) () — (Toy2) ()] + [(T1yn) () — (Try2) (O] 1 T2y |l
2MrK)|ly2 — wll-

<
<

Put 7 = 2MrK; then 7 < 1 (since r is strictly less than 1/2M K), and ||[Tys — Ty || <
Tlly2 — w1 for all y1,y2 € Vi. So T is a contraction, as desired.
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We have now seen that that there’s a unique solution on (ty — r,tg + r) for any r < P.
If 0 <r <ry < P, and g is the solution on (ty — r1,ty + r1), and ys is the solution
on (tg — ra,to + r2), then y; = yo on (tg — r1,t0 + r1). Clearly, then, we may find the
desired solution on (tg — P, ty + P), simply by requiring that it be equal to the solution on
(to — r,to + r) for any 0 < r < P. This completes the proof.

. Suppose that H is a real Hilbert space, that (4, B) C R, and that v : (A,B) — H is
differentiable. Assume also that v’ is continuous. Suppose [a,b] C (A, B). Show that, for
every € > 0, there exists 0 > 0 such that whenever |h| < § and t,t + h € [a, b], then

[o(t + R) = v(t) = V' ()R] < lh].

(Hint: first explain why v’ is uniformly continuous on [a, b].)

Solution The proof of Proposition 1.4.4 (¢) in the book shows in fact that if V' is a normed
vector space and f : [a,b] — V is continuous, then f is uniformly continuous on [a, b[. (In
fact this is true if V' is merely known to be a Hausdorff space.) Select § > 0 such that if
t,t+ h € [a,b], and |h| < 4, then ||v'(t) — V' (t + h)|| < e.

For any u € H, [Jul| = supy,=; [(u,y)|. Thus it suffices to show that for any fired y € H
with |ly|]| = 1, we have that

I(w(t +h) = v(t) =" ()b, y)|| < elh]

whenever |h| < 0 and t,t + h € [a,b]. Define f : (A, B) — R by f(t) = (v(t),y), so that
f'(t) = (V'(t),y). We then have that

[(v(t +h) —o(t) ="' Oh )l = |f{E+h)—fE)— f()h]
= |f'(t+k)h—f(t)n]
= [(W(t+k) =2 (O], y) 7]
< 't +k) =o' @) A
< €lh|

as desired. (In the second line, we used the Mean Value Theorem; k is some number
between 0 and h. In the fourth line, we used Cauchy-Schwarz.)



