1. (a) Let \((Y, d)\) be a metric space. Say \(\varepsilon > 0\). Let us say that a sequence \(\{z_n\}\) in \(Y\) is eventually \(\varepsilon\)-close to \(z \in Y\) provided that, for some \(N > 0\), one has \(d(z_n, z) < \varepsilon\) whenever \(n > N\).

Prove that a sequence \(y_n \to y\) in \(Y\) if and only if, for every \(\varepsilon > 0\), every subsequence of \(\{y_n\}\) has a subsequence which is eventually \(\varepsilon\)-close to \(y\).

(b) Let \((X, \mathcal{M}, \mu)\) be a measure space. Suppose that \(g, f, f_1, f_2, \ldots\) are all measurable functions from \(X\) to \(C\). Suppose that \(|f_n| \leq g\) for all \(n\), and that \(\int_X g \, d\mu < \infty\). In the homework you showed that \(f_n \to f\) in \(L^1(X)\) if and only if \(f_n \to f\) in measure, provided that \(\mu(X) < \infty\). Show that this conclusion remains true, if \(X\) is only known to be \(\sigma\)-finite.

Solution

(a) Say \(y_n \to y\). Any fixed subsequence approaches \(y\), so for every \(\varepsilon > 0\), that subsequence itself is eventually \(\varepsilon\)-close to \(y\), so it surely has a subsequence (itself) which is eventually \(\varepsilon\)-close to \(y\).

Conversely, say every subsequence of \(\{y_n\}\) has a subsequence which is eventually \(\varepsilon\)-close to \(y\). If \(y_n\) does not approach \(y\), then, for some \(\varepsilon > 0\), \(\{y_n\}\) must have a subsequence, each term of which is more than \(\varepsilon\) away from \(y\). No subsequence of that subsequence could be eventually \(\varepsilon\)-close to \(y\), contradiction.

(b) (Sorry – this works for any measure space \(X\) (it doesn’t have to be \(\sigma\)-finite), and the actual homework problem said so.) Say \(f_n \to f\) in \(L^1\). Then \(f_n \to f\) in measure by Tchebychev’s inequality

\[
\mu(\{x : |f_n - f| > \varepsilon\}) \leq \frac{\|f_n - f\|_1}{\varepsilon}.
\]

On the other hand, say \(f_n \to f\) in measure. Since \(L^1\) is a metric space, it is enough to show that every subsequence of \(\{f_n\}\) has a subsequence which approaches \(f\) in \(L^1\). Let \(\{h_n\}\) be a subsequence of \(\{f_n\}\). Then \(h_n \to f\) in measure, so a subsequence of \(\{h_n\}\) approaches \(f\) a.e. By DCT, that subsequence of \(\{h_n\}\) approaches \(f\) in \(L^1\), as desired.

2. (a) For \(n \in \mathbb{Z}\), \(x \in [0, 2\pi]\), let \(e_n(x) = e^{inx}\). Prove that the sequence \(e_1, e_2, \ldots\) has no \(L^2\)-convergent subsequence. This obviously implies, in particular, that the closed unit ball of \(L^2([0, 2\pi])\) is not compact.

(b) Now \(1 \leq p \leq \infty\) is arbitrary. Show that the closed unit ball of \(L^p([0, 2\pi])\) is not compact.

Solution For both parts, it is enough to show that \(e_1, e_2, \ldots\) has no \(L^1\)-convergent subsequence. For if a subsequence converged in \(L^p\) for any \(p > 1\), then it would converge in \(L^1\).
Say then, to obtain a contradiction, that \(\{e_{n_j}\} \) is an \(L^1 \)-convergent subsequence of \(\{e_n\} \), and that in fact \(e_{n_j} \to f \) in \(L^1 \). On the one hand \(\|f\|_1 = \lim_{n \to \infty} \|e_{n_j}\|_1 = 1 \). On the other hand, for any \(m \in \mathbb{Z} \), \(\hat{f}(m) = \lim_{j \to \infty} e_{n_j}, e_m = 0 \), which implies \(f \equiv 0 \) by the injectivity of \(\hat{\cdot} \) on \(L^1(\mathbb{T}) \). This contradicts \(\|f\|_1 = 1 \), as desired. (The equation \(\hat{f}(m) = \lim_{j \to \infty} e_{n_j}, e_m \) follows from the hypothesis that \(e_{n_j} \to f \) in \(L^1 \) together with the fact that \(e_m \in L^\infty \), since \((2\pi)^{-1} \int_0^{2\pi} e_{-m} - \int_0^{2\pi} e_{n_j} e_{-m} \leq \|f - e_{n_j}\|_1 \|e_{-m}\|_\infty \).)

3. Say \(f \in L^1(\mathbb{T}) \). Show that \(f \in C^\infty(\mathbb{T}) \) if and only if: for every \(k > 0 \) there exists \(C_k > 0 \) such that for all \(n \in \mathbb{Z} \), \(|n|^k |\hat{f}(n)| \leq C_k \).

(Hint: for one direction, you can use Corollary 11.2.12 (copy attached).)

Solution Say first that \(f \in C^\infty(\mathbb{T}) \). Repeated integrations by parts show that for any positive integer \(k \), \(|\hat{f}^{(k)}(n)| = |n|^k |\hat{f}(n)| \). Let \(C_k = \|f^{(k)}\|_1 \); then for any \(n \), \(|n|^k |\hat{f}(n)| \leq C_k \), as desired.

Conversely, suppose \(f \in L^1(\mathbb{T}) \), and that for every \(k > 0 \) there is a \(C_k \) such that \(|n|^k |\hat{f}(n)| \leq C_k \) for all \(n \). Note three facts:
1. We have \(\sum |n|^k |\hat{f}(n)| < \infty \) for any positive integer \(k \). For in fact,

\[
\sum_{n \neq 0} |n|^k |\hat{f}(n)| \leq \sum |n|^k \frac{C_{k+2}}{|n|^{k+2}} < \infty.
\]

2. By Corollary 11.2.12 and fact 1, \(f = \sum \hat{f}(n)e_n \), where the series converges uniformly on \(\mathbb{T} \).

3. Suppose \(\sum_{n=-\infty}^{\infty} |nb_n| < \infty \) (so that also \(\sum_{n=-\infty}^{\infty} |b_n| < \infty \)). Then surely \(\sum b_ne_n \) and \(\sum inb_ne_n \) converge uniformly to functions in \(C(\mathbb{T}) \); and by our theorems on moving derivatives past summation signs, in fact \(\sum b_ne_n \in C^1(\mathbb{T}) \), and \((\sum b_ne_n)' = \sum inb_ne_n \).

Combining these three facts and using induction, we see that \(f \in C^k \) for any \(k \), and in fact that \(f^{(k)} = \sum (in)^k b_ne_n \), where the series converges uniformly on \(\mathbb{T} \). So \(f \in C^\infty \).

4. Let \(\mu \) be a measure on \(\mathbb{R}^n \). Suppose that \(F \subseteq \mathbb{R}^n \) is closed, and that \(m(F) = 0 \). Finally suppose that for every \(f \in C_c(\mathbb{R}^n) \), with \(\text{supp} \ f \subseteq F^c \), one has that \(\int_{\mathbb{R}^n} f d\mu = 0 \). Show that the measures \(\mu \) and \(m \) are mutually singular.

Solution Let \(U = F^c \). Since \(m(F) = 0 \), it suffices to show that \(\mu(U) = 0 \).

First say \(K \subseteq U \) is compact; we show that \(\mu(K) = 0 \). Indeed, we may select \(f \in C_c \) with \(K \prec f \prec U \), and then

\[
0 \leq \mu(K) = \int \chi_K d\mu \leq \int f d\mu = 0.
\]

Thus \(\mu(K) = 0 \), as claimed.

Now, if \(I \in \mathcal{D}_U \), \(I \) is a countable increasing union of compact rectangles, so \(\mu(I) = 0 \). Finally \(\mu(U) = \sum_{I \in \mathcal{D}_U} \mu(I) = 0 \), as desired.

(The proof shows that the result remains true if, in the statement, we replace \((\mathbb{R}^n, m) \) by \((X, \nu) \), where \(\nu \) is any measure on the locally compact Hausdorff space \(X \), provided that \(U \) is \(\sigma \)-compact.)