
ON A THEOREM OF CAMPANA AND PĂUN

CHRISTIAN SCHNELL

Abstract. Let X be a smooth projective variety over the complex numbers,

and ∆ ⊆ X a reduced divisor with normal crossings. We present a slightly

simplified proof for the following theorem of Campana and Păun: If some ten-
sor power of the bundle Ω1

X(log ∆) contains a subsheaf with big determinant,

then (X,∆) is of log general type. This result is a key step in the recent proof

of Viehweg’s hyperbolicity conjecture.

1. Introduction. The purpose of this paper is to present a slightly simplified proof
for the following result by Campana and Păun [CP15, Theorem 7.6]. It is a crucial
step in the proof of Viehweg’s hyperbolicity conjecture for families of canonically
polarized manifolds [CP15, Theorem 7.13], and more generally, for smooth families
of varieties of general type [PS16, Theorem A].

Theorem 1.1. Let X be a smooth projective variety, and ∆ ⊆ X a reduced divisor
with at worst normal crossing singularities. If some tensor power of Ω1

X(log ∆)
contains a subsheaf with big determinant, then KX + ∆ is big.

The simplification is that I have substituted an inductive procedure for the ar-
guments involving Campana’s “orbifold cotangent bundle”; otherwise, the proof of
Theorem 1.1 that I present here is essentially the same as in the one in [CP15].
My reason for writing this paper is that it gives me a chance to draw attention
to some of the beautiful ideas involved in the proof by Campana and Păun: slope
stability with respect to movable classes; a criterion for the leaves of a foliation to
be algebraic subvarieties; and positivity results for relative canonical bundles.

2. Strategy of the proof. Let (X,∆) be a pair, consisting of a smooth projective
variety X and a reduced divisor ∆ ⊆ X with at worst normal crossing singularities.
We denote the logarithmic cotangent bundle by the symbol Ω1

X(log ∆), and its
dual, the logarithmic tangent bundle, by the symbol TX(− log ∆). Recall that
TX(− log ∆) is naturally a subsheaf of the tangent bundle TX , and that it is closed
under the Lie bracket on TX . Indeed, suppose that ∆ is given, in suitable local
coordinates x1, x2, . . . , xn, by the equation x1x2 · · ·xk = 0; then TX(− log ∆) is
generated by the n commuting vector fields

x1
∂

∂x1
, . . . , xk

∂

∂xk
,

∂

∂xk+1
, . . . ,

∂

∂xn
,

and is therefore closed under the Lie bracket.
Suppose that Ω1

X(log ∆)⊗N contains a subsheaf with big determinant, for some
N ≥ 1. The following observation reduces the problem to the case of line bundles.

Lemma 2.1. If Ω1
X(log ∆)⊗N contains a subsheaf of generic rank r ≥ 1 and with

big determinant, then Ω1
X(log ∆)⊗Nr contains a big line bundle.
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Proof. Let B ⊆ Ω1
X(log ∆)⊗N be a subsheaf of generic rank r ≥ 1, with the prop-

erty that det B is big. After replacing B by its saturation, whose determinant is
of course still big, we may assume that the quotient sheaf

Ω1
X(log ∆)⊗N

/
B

is torsion-free, hence locally free outside a closed subvariety Z ⊆ X of codimension
≥ 2. On X \ Z, we have an inclusion of locally free sheaves

det B ↪→ B⊗r ↪→ Ω1
X(log ∆)⊗Nr,

which remains valid on X by Hartog’s theorem. �

For the purpose of proving Theorem 1.1, we are therefore allowed to assume that
Ω1
X(log ∆)⊗N contains a big line bundle L as a subsheaf. Let Q denote the quotient

sheaf, and consider the resulting short exact sequence

(2.2) 0→ L→ Ω1
X(log ∆)⊗N → Q → 0.

Since KX + ∆ represents the first Chern class of Ω1
X(log ∆), we obtain

N · (dimX)N−1 · (KX + ∆) = c1(L) + c1(Q)

in N1(X)R, the R-linear span of codimension-one cycles modulo numerical equiva-
lence. By assumption, the class c1(L) is big; Theorem 1.1 will therefore be proved
if we manage to show that the class c1(Q) is pseudo-effective. In fact, we are going
to prove the following more general result, which is of course just a special case of
[CP15, Theorem 7.6 and Theorem 1.2].

Theorem 2.3. Let X be a smooth projective variety, and ∆ ⊆ X a reduced divisor
with at worst normal crossing singularities. Suppose that some tensor power of
Ω1
X(log ∆) contains a subsheaf with big determinant. Then the first Chern class of

every quotient sheaf of every tensor power of Ω1
X(log ∆) is pseudo-effective.

3. Slopes and foliations. To simplify the presentation, we will prove Theorem 2.3
by contradiction. Suppose then that, for some integer N ≥ 1, and for some quotient
sheaf Q of Ω1

X(log ∆)⊗N , the class c1(Q) was not pseudo-effective. Let Qtor ⊆ Q
denote the torsion subsheaf. Since

c1(Q) = c1(Qtor ) + c1
(
Q/Qtor

)
,

and since c1(Qtor ) is effective, we may replace Q by Q/Qtor , and assume without
any loss of generality that Q is torsion-free (and nonzero).

By the characterization of the pseudo-effective cone in [BDPP13, Theorem 2.2],
there is a movable class α ∈ N1(X)R such that c1(Q) · α < 0. As shown in [CP11,
GKP16], there is a good theory of α-semistability for torsion-free sheaves, with
almost all the properties that are familiar from the case of complete intersection
curves. We use this theory freely in what follows. By assumption,

µα(Q) =
c1(Q) · α

rk Q
< 0,

and so Q is a torsion-free quotient sheaf of Ω1
X(log ∆)⊗N with negative α-slope.

The dual sheaf Q∗ is therefore a saturated subsheaf of TX(− log ∆)⊗N with positive
α-slope. At this point, we recall the following result about tensor products.
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Theorem 3.1. Let α ∈ N1(X)R be a movable class. If F and G are torsion-free
and α-semistable coherent sheaves on X, then their tensor product

F ⊗̂G = (F ⊗ G )
/

(F ⊗ G )tor ,

modulo torsion, is again α-semistable, and µα(F ⊗̂G ) = µα(F ) + µα(G ).

Proof. For the reflexive hull of the tensor product, this is proved in [GKP16, Theo-
rem 4.2 and Proposition 4.4], based on analytic results by Toma [CP11, Appendix].
Since F ⊗̂G and its reflexive hull are isomorphic outside a closed subvariety of
codimension ≥ 2, the assertion follows. �

Similarly, the fact that TX(− log ∆)⊗N has a subsheaf with positive α-slope
implies, again by [GKP16, Theorem 4.2 and Proposition 4.4], that TX(− log ∆)
must also contain a subsheaf with positive α-slope. Let F∆ ⊆ TX(− log ∆) be the
maximal α-destabilizing subsheaf [GKP16, Corollary 2.24].

Lemma 3.2. F∆ is a saturated, α-semistable subsheaf of TX(− log ∆), of positive
α-slope. Every subsheaf of TX(− log ∆)/F∆ has α-slope less than µα(F∆).

Proof. This is clear from the construction of the maximal destabilizing subsheaf in
[GKP16, Corollary 2.4]. Note that F∆ is the first step in the Harder-Narasimhan
filtration of TX(− log ∆), see [GKP16, Corollary 2.26]. �

Recall that we have an inclusion TX(− log ∆) ⊆ TX . We define another coherent
subsheaf F ⊆ TX as the saturation of F∆ in TX ; then TX/F is torsion-free, and

(3.3) F ∩TX(− log ∆) = F∆.

We will see in a moment that F is actually a (typically, singular) foliation on X.
Recall that, in general, a foliation on a smooth projective variety is a saturated
subsheaf F ⊆ TX that is closed under the Lie bracket on TX . From the Lie
bracket, one constructs an OX -linear mapping

N : F ⊗̂F → TX/F ,

called the O’Neil tensor of F ; evidently, F is a foliation if and only if its O’Neil
tensor vanishes.

Lemma 3.4. The O’Neil tensor

N : F ⊗̂F → TX/F

vanishes, and F is therefore a foliation on X.

Proof. The Lie bracket of two sections of TX(− log ∆) is a section of TX(− log ∆),
and so we get a logarithmic O’Neil tensor

N∆ : F∆⊗̂F∆ → TX(− log ∆)/F∆.

The key point is that N∆ = 0. Indeed, by Theorem 3.1, the tensor product
F∆⊗̂F∆, modulo torsion, is again α-semistable of slope

µα(F∆⊗̂F∆) = 2 · µα(F∆) > µα(F∆),

which is strictly greater than the slope of any nonzero subsheaf of TX(− log ∆)/F∆

by Lemma 3.2. This inequality among slopes implies that N∆ = 0, see for instance
[GKP16, Proposition 2.16 and Corollary 2.17].
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The O’Neil tensor N and the logarithmic O’Neil tensor N∆ are both induced by
the Lie bracket on TX , and so we have the following commutative diagram:

F∆⊗̂F∆ TX(− log ∆)/F∆

F ⊗̂F TX/F

N∆

N

The vertical arrow on the right is injective by (3.3). Now N∆ = 0 implies that N
factors through the cokernel of the vertical arrow on the left; but the cokernel is a
torsion sheaf, whereas TX/F is torsion-free. The conclusion is that N = 0. �

The next step in the proof is to show that the foliation F is actually algebraic.
This is a simple consequence of the powerful algebraicity theorem of Campana and
Păun [CP15, Theorem 1.1], which generalizes a well-known result by Bogomolov
and McQuillan [BM01] from complete intersection curves to movable classes.

Theorem 3.5. Let X be a smooth projective variety over the complex numbers, and
let F ⊆ TX be a foliation. Suppose that there exists a movable class α ∈ N1(X)R,
such that every nonzero quotient sheaf of F has positive α-slope. Then F is an
algebraic foliation, and its leaves are rationally connected.

To apply this in our setting, we observe that every quotient sheaf of F is, at
least over the open subset X \∆, also a quotient sheaf of F∆, because F and F∆

agree outside the divisor ∆. As F∆ is α-semistable with µα(F ) > 0, it follows
easily that every quotient sheaf of F has positive α-slope. We can now invoke
Theorem 3.5 and conclude that the foliation F is algebraic. In other words [CP15,
§4], there exists a dominant rational mapping

p : X 99K Z

to a smooth projective variety Z, such that

F = ker
(
dp : TX → p∗TZ

)
outside a subset of codimension ≥ 2. More precisely, let us follow [CKT16, Con-
struction 2.29] and denote by the symbol TX/Z the unique reflexive sheaf on X that

agrees with ker
(
dp : TX → p∗TZ

)
on the big open subset where p is a morphism.

Using this notation, the algebraicity of F may be expressed as

(3.6) F = TX/Z ;

indeed, F is reflexive, due to the fact that TX/F is torsion-free.

Note. Theorem 3.5 also says that the fibers of p are rationally connected, but we
are not going to make any use of this extra information.

4. Pseudo-effectivity. Let us first convince ourselves that Z cannot be a point.
This will later allow us to argue by induction on the dimension, because the general
fiber of p has dimension less than dimX.

Lemma 4.1. With notation as above, we must have dimZ ≥ 1.

Proof. If dimZ = 0, then F = TX and F∆ = TX(− log ∆), and consequently, the
logarithmic tangent bundle TX(− log ∆) is α-semistable of positive slope. Since
the tensor product of α-semistable sheaves remains α-semistable [GKP16, Proposi-
tion 4.4], this means that any tensor power of Ω1

X(log ∆) is α-semistable of negative
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slope. But that contradicts the hypothesis of Theorem 2.3, namely that some tensor
power of Ω1

X(log ∆) contains a subsheaf with big determinant, because the α-slope
of such a subsheaf is obviously positive. �

The only properties of F∆ that we are still going to use in the proof of Theo-
rem 2.3 are the identity in (3.3), and the fact that c1(F∆)·α > 0 for a movable class
α ∈ N1(X)R. In return, we are allowed to assume that p : X → Z is a morphism.

Lemma 4.2. Without loss of generality, p : X → Z is a morphism.

Proof. Choose a birational morphism f : X̃ → X, for example by resolving the
singularities of the closure of the graph of p : X 99K Z inside X × Z, with the
following properties: the rational mapping p ◦ f extends to a morphism p̃ : X̃ → Z;
both KX̃/X and p̃∗∆ are normal crossing divisors; and f is an isomorphism over

the open subset where p is already a morphism.
Let ∆̃ be the reduced normal crossing divisor whose support is equal to the

preimage of ∆ in X̃. Then

Ω1
X̃

(log ∆̃) ∼= p̃∗Ω1
X(log ∆),

and since the pullback of a big line bundle by p̃ stays big, it is still true that some
tensor power of Ω1

X̃
(log ∆̃) contains a big line bundle as a subsheaf. Now define

F̃ = TX̃/Z = ker
(
p̃∗ : TX̃ → p̃∗TZ

)
,

which is a saturated subsheaf of TX̃ . The intersection

F̃ ∩TX̃(− log ∆̃)

is a saturated (and hence reflexive) subsheaf of TX̃(− log ∆̃), whose pushforward to
X is isomorphic to F∆, by (3.3) and the fact that F∆ is reflexive. Consequently,

c1

(
F̃ ∩TX̃(− log ∆̃)

)
· α̃ = c1(F∆) · α > 0,

where the class α̃ = p̃∗α ∈ N1(X̃)R is of course still movable. Nothing essential is
therefore changed if we replace the rational mapping p : X 99K Z by the morphism
p̃ : X̃ → Z; the divisor ∆ ⊆ X by ∆̃ ⊆ X̃; the sheaf F∆ by the intersection

TX̃/Z ∩TX̃(− log ∆̃) ⊆ TX̃

and the movable class α ∈ N1(X)R by its pullback α̃ = p̃∗α. �

Let R(p) denote the ramification divisor of the morphism p : X → Z; see [CKT16,
Definition 2.16] for the precise definition. Recall from [CKT16, Lemma 2.31] the
following formula for the first Chern class of our foliation F ⊆ TX , in N1(X)R:

(4.3) c1(F ) = c1(TX/Z) = −KX/Z +R(p)

Computing the first Chern class of F∆ is a little tricky [CP15, Proposition 5.1],
but at least we can use the fact that F = TX/Z to estimate the difference

c1(F )− c1(F∆) = c1(F/F∆).

Recall that the horizontal part ∆hor ⊆ ∆ is the union of all irreducible components
of ∆ that map onto Z; evidently, ∆hor is again a reduced divisor on X with at
worst normal crossing singularities.

Lemma 4.4. The class c1(F )− c1(F∆)−∆hor is effective.
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Proof. It is easy to see from (3.3) that we have an inclusion of sheaves

F/F∆ ↪→ TX

/
TX(− log ∆).

The sheaf on the right-hand side is supported on the divisor ∆, and a brief compu-
tation shows that

TX

/
TX(− log ∆) ∼=

⊕
D⊆∆

ND|X

is isomorphic to the direct sum of the normal bundles of the irreducible components
of ∆. The rank of F/F∆ at the generic point of D is thus either 0 or 1, and

c1(F/F∆) =
∑
D⊆∆

aDD,

where aD = 0 if F = F∆ at the generic point of D, and aD = 1 otherwise. To
prove that c1(F/F∆) −∆hor is effective, we only have to argue that F 6= F∆ at
the generic point of each irreducible component of ∆hor . This is a consequence of
the fact that F = TX/Z , as we now explain.

Fix an irreducible component D of the horizontal part ∆hor . At the generic point
of D, the morphism p : X → Z is smooth. After choosing suitable local coordinates
x1, . . . , xn in a neighborhood of a sufficiently general point of D, we may therefore
assume that p is locally given by

p(x1, . . . , xn) = (x1, . . . , xd),

where d = dimZ, and that the divisor ∆ is defined by the equation xn = 0. In
these local coordinates, F = TX/Z is the subbundle of TX spanned by

∂

∂xn
,

∂

∂xn−1
, . . . ,

∂

∂xd+1
.

On the other hand, the subsheaf TX(− log ∆) is spanned by the vector fields

xn
∂

∂xn
,

∂

∂xn−1
, . . . ,

∂

∂xd+1
, . . . ,

∂

∂x1
,

and so it is clear from (3.3) that F 6= F∆ in a neighborhood of the given point. �

From Lemma 4.4, we draw the conclusion that

(4.5) −
(
KX/Z + ∆hor −R(p)

)
· α =

(
c1(F )−∆hor

)
· α ≥ c1(F∆) · α > 0,

where α ∈ N1(X)R is the movable class from above. We will therefore reach the
desired contradiction if we manage to prove that the divisor classKX/Z+∆hor−R(p)
is pseudo-effective. According to [CP15, Theorem 3.3] or to [CKT16, Theorem 7.1],
it is actually enough to check that KF +∆F is pseudo-effective for a general fiber F
of the morphism p; and we can prove, by induction on the dimension, that KF +∆F

is not only pseudo-effective, but even big.

5. Induction on the dimension. In this section, we use induction on the di-
mension to finish the proof of Theorem 2.3 and Theorem 1.1.

Proposition 5.1. Suppose that Theorem 1.1 is true in dimension less than dimX.
If some tensor power of Ω1

X(log ∆) contains a subsheaf with big determinant, then
KX/Z + ∆hor is pseudo-effective.



ON A THEOREM OF CAMPANA AND PĂUN 7

Proof. Let F be a general fiber of the morphism p : X → Z; since dimZ ≥ 1, we
have dimF ≤ dimX − 1. Denote by ∆F the restriction of ∆; since F is a general
fiber, ∆F is still a normal crossing divisor. Clearly

(KX/Z + ∆hor )
∣∣
F

= KF + ∆F ,

and according to [CKT16, Theorem 7.3], the pseudo-effectivity of KX/Z +∆hor will
follow if we manage to show that KF + ∆F is pseudo-effective.

By hypothesis and by Lemma 2.1, there is a nonzero morphism

L→ Ω1
X(log ∆)⊗k

from a big line bundle L to some tensor power of Ω1
X(log ∆). Since F is a general

fiber of p : X → Z, we can restrict this morphism to F to obtain a nonzero morphism

LF →
(

Ω1
X(log ∆)

∣∣
F

)⊗k
.

Here LF denotes the restriction of L to the fiber; since L is big, LF is also big.
The inclusion of F into X gives rise to a short exact sequence

0→ NF |X → Ω1
X(log ∆)

∣∣
F
→ Ω1

F (log ∆F )→ 0,

which induces a filtration on the k-th tensor power of the locally free sheaf in the
middle. Since the normal bundle NF |X is trivial of rank dimZ, we find, by looking
at the subquotients of this filtration, that there is a nonzero morphism

LF → Ω1
F (log ∆F )⊗j

for some 0 ≤ j ≤ k. Because LF is big, we actually have 1 ≤ j ≤ k. Since we are
assuming that Theorem 1.1 is true for the pair (F,∆F ), the class KF + ∆F is big
on F , hence pseudo-effective. Appealing to [CKT16, Theorem 7.3], we deduce that
the class KX/Z + ∆hor is pseudo-effective on X. �

By induction on the dimension, the two assumptions of Proposition 5.1 are met
in our case, and the class KX/Z + ∆hor is therefore pseudo-effective. According

to [CKT16, Theorem 7.1], this implies that KX/Z + ∆hor − R(p) is also pseudo-

effective.1 Going back to the inequality in (4.5), we find that

0 ≥ −
(
KX/Z + ∆hor −R(p)

)
· α ≥ c1(F∆) · α > 0,

and so we have reached the desired contradiction. The conclusion is that c1(Q) is
indeed pseudo-effective, and so Theorem 2.3 and Theorem 1.1 are proved.

Note. Most of the argument, for example the proof of Lemma 4.1, goes through
when some tensor power of Ω1

X(log ∆) contains a subsheaf with pseudo-effective
determinant. But Theorem 2.3 is obviously not true under this weaker hypothesis:
for example, on the product E×P1 of an elliptic curve and P1, there are nontrivial
one-forms, yet the canonical bundle is not pseudo-effective. What happens is that
the last step in the proof of Proposition 5.1 breaks down: when L is not big, it may
be that j = 0 (and LF is then trivial).

1As stated, both [CP15, Theorem 3.3] and [CKT16, Theorem 7.1] actually assume that KX +∆
is pseudo-effective, but in the case of a morphism p : X → Z, the proofs go through under the

weaker hypothesis that KX/Z + ∆hor is pseudo-effective.
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