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Abstract For an embedding of sufficiently high degree of a smooth projective
variety X into projective space, we use residues to define a filtered holonomic
D-module (M, F) on the dual projective space. This gives a concrete description
of the intermediate extension to a Hodge module on P of the variation of Hodge struc-
ture on the middle-dimensional cohomology of the hyperplane sections of X . We also
establish many results about the sheaves FkM, such as positivity, vanishing theorems,
and reflexivity.
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1 Overview

1.1 Introduction

Let X be a complex projective manifold of dimension n, and let D ⊆ X be a smooth
and very ample hypersurface. The cohomology of the complement X\D can be rep-
resented by meromorphic forms on X with poles along D. It also carries a mixed
Hodge structure, and Griffiths [5] (for X = Pn) and Green [4] (in general) have
shown that the Hodge filtration is basically the filtration by pole order, provided that
the line bundle OX (D) is sufficiently ample. One consequence is a formula for the
Hodge filtration on the vanishing cohomology Hn−1

ev (D, Q) of the hypersurface (see
Sect. 1.2 below).
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728 C. Schnell

The purpose of this article is to generalize the above picture to the case when D is
allowed to have singularities. Fix a very ample line bundle OX (1) on X , and consider
all hypersurfaces, smooth or singular, that belong to the linear system P = |OX (1)|.
Using residues, we construct a D-module M on the projective space P , together
with a good filtration F = F•M by OP -coherent subsheaves. Provided that OX (1) is
sufficiently ample, we then show that (M, F) is regular and holonomic, and in fact
underlies a polarized Hodge module on P . We also show that the coherent sheaves
FkM have many remarkable properties. The D-module M is intimately related to the
geometry of the incidence variety X ⊆ P × X , and in the process of describing M,
we recover the results about X obtained by Brosnan et al. [2]. We also strengthen
one of their theorems, by showing that, in the Decomposition Theorem applied to the
projection X → P , no terms with support in the discriminant locus appear once the
vanishing cohomology of the hypersurfaces is nontrivial.

These results are interesting for two reasons. One is theoretical: Computing mini-
mal extensions of holonomic D-modules is a difficult problem, except in the case of a
divisor with normal crossing singularities. In the situation above, we have a flat vector
bundle with fibers Hn−1

ev (D, C) on the complement of the discriminant locus P\X∨,
underlying the evident variation of Hodge structure. Our D-module M is in fact the
minimal extension of that flat vector bundle, and so we have a very explicit description
of the minimal extension via residues, despite the fact that the divisor X∨ is typically
very singular.

The other reason is practical: The Hodge filtration on a minimal extension can
be used very nicely in the construction of certain analytic spaces, the main example
being the construction of complex-analytic Néron models for families of intermediate
Jacobians [16]. Good properties of the sheaves in the filtration (such as positivity or
reflexivity) translate directly into good properties of the resulting analytic spaces (such
as holomorphic convexity or control over singularities). In a forthcoming paper, we
will use the results about the sheaves FkM obtained here to give a precise description
of the Néron model for the family of intermediate Jacobians J n−1(D), for n = dim X
even. Other applications are to the study of Noether–Lefschetz loci in P (for n odd).

1.2 Summary of results

Before outlining the results of this paper, we shall briefly review the theorem of
Griffiths and Green. Keeping the notation of Sect. 1.1, the Lefschetz theorems show
that the cohomology groups of D can be obtained from those of X with the exception
of Hn−1(D, Q); the latter is the direct sum of Hn−1(X, Q) and the so-called vanishing
cohomology

Hn−1
ev (D, Q) = ker

(
i∗ : Hn−1(D, Q) → Hn+1(X, Q)

)
,

the kernel of the Gysin map for the inclusion i : D ↪→ X . The vanishing cohomology
of D is related to the cohomology of the open complement X\D through the exact
sequence
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Residues and filtered D-modules 729

0 ! Hn
0 (X, Q) ! Hn(X\D, Q) ! Hn−1

ev (D, Q) ! 0 (1)

in which Hn
0 (X, Q) = ker

(
i∗ ◦ i∗ : Hn(X, Q) → Hn+2(X, Q)

)
denotes the primitive

cohomology of X . The map Hn(X\D, Q) → Hn−1
ev (D, Q) is the well-known residue

map, whose analytic description is as follows: by a theorem of Grothendieck’s, the
cohomology groups of X\D are computed by holomorphic forms on X\D with at
worst poles along the divisor D, and the residue map takes such a form to its residue
along D.

All three groups in (1) carry mixed Hodge structures, and through the work of Grif-
fiths [5] (for the case X = Pn) and Green [4], it is known how to compute their Hodge
filtrations: they are essentially given by pole order. That is to say, if we let "

p
X (∗D)

denote the sheaf of meromorphic p-forms on X with poles along D, and "
p
X (k D) the

subsheaf of those with a pole of order at most k, then

Hn(X\D, C) ( H0(X,"n
X (∗D)

)

d H0
(
X,"n−1

X (∗D)
) ,

and the Hodge filtration is (for k ≥ 1) given by

Fn+1−k Hn(X\D, C) ( H0(X,"n
X (k D)

)

d H0
(
X,"n−1

X ((k − 1)D)
) .

In both formulas, d stands for the exterior derivative on forms. The second one holds
as long as the line bundle OX (D) is sufficiently ample; more precisely, one needs that
Hq(

X,"
p
X (k)

)
= 0 for p ≥ 0 and q, k > 0. From (1), one obtains the following

formula for the Hodge filtration on the vanishing cohomology of D:

Fn−k Hn−1
ev (D, C) ( H0(X,"n

X (k D)
)

Fn+1−k Hn
0 (X, C) + d H0

(
X,"n−1

X ((k − 1)D)
) (2)

The isomorphism in (2) is compatible with moving D in the linear system P , and
provides a very convenient description for the resulting variation of Hodge struc-
ture. Consider the incidence variety X ⊆ P × X , which is a projective bundle
over X and hence nonsingular. From now on, we denote the individual hypersurfac-
es by Xp = π−1(p), where π : X → P is the projection to the first factor. Let
π sm : X sm → Psm be the restriction of π to the open subset Psm over which π is
smooth, and let j : Psm ↪→ P denote the inclusion map.

On Psm, we have the variation of Hodge structure

H = Rn−1
ev π sm

∗ Q = ker
(
Rn−1π sm

∗ Q → Hn+1(X, Q)
)
,

whose fibers are the weight n−1 rational Hodge structures on Hn−1
ev (Xp, Q). Let HO

be the underlying holomorphic vector bundle, and let FkHO be the holomorphic sub-
bundles FkHO given by the Hodge filtration. The Gauss–Manin connection ∇ makes
HO into a flat vector bundle, and the Hodge bundles satisfy Griffiths’ transversality
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730 C. Schnell

condition ∇(FkHO ) ⊆ "1
Psm ⊗ Fk−1HO . Now the isomorphism in (2) means that

Fn−kHO is a quotient of the vector bundle

π sm
∗ "n

Psm×X/Psm(kX sm) ( H0(X,"n
X (k)

)
⊗ OPsm(k),

in a way that is compatible with differentation.
Trying to extend this description to singular hypersurfaces naturally leads to fil-

tered D-modules. To avoid the problems caused by the singularities, we use the fact
that the incidence variety X is nonsingular, and define coherent subsheaves FkM
of the quasi-coherent sheaf j∗HO by the following rule: for any open set U ⊆ P , a
section s ∈ $(U ∩ Psm,HO ) shall belong to $(U, FkM) if and only if there exists
a meromorphic n-form ω ∈ $

(
U × X,"n

P×X (kX )
)

such that

s(p) = ResXp

(
ω|X\Xp

)

for any p ∈ U ∩ Psm. The result of Griffiths and Green shows that, once OX (1) is
sufficiently ample, the coherent sheaf FkM is a natural extension of the vector bundle
Fn−kHO from Psm to P . Now let M be the union of the FkM inside j∗HO . It is
then not hard to show that (M, F) is a coherent filtered DP -module, whose restriction
to Psm is the flat vector bundle (HO , ∇) with its Hodge filtration (see Sect. 2.4). The
following theorem summarizes our main results.

Theorem A If the vanishing cohomology of the hypersurfaces is nontrivial, meaning
that HO .= 0, then the filtered D-module (M, F) has the following properties:

1. M is regular and holonomic, and is the minimal extension of the flat vector bundle
(HO , ∇) from Psm to P.

2. (M, F•+n) underlies the polarized Hodge module obtained by intermediate exten-
sion of the variation of Hodge structure Rn−1

ev π sm
∗ Q, provided that Hq(

X,"
p
X (k)

)

= 0 for every p ≥ 0 and every q, k > 0.
3. By the Riemann–Hilbert correspondence, the de Rham complex DRP (M) is con-

structible, and its cohomology sheaves satisfy

Rn−1+kπ∗C ( Hk−d DRP
(
M

)
⊕ Hn−1−k(X, C)

for all 0 ≤ k ≤ d.

Note 1 The conditions in the theorem are always satisfied if OX (1) is a sufficiently
high power of a very ample line bundle.

In the process of proving Theorem A, we compute the characteristic variety of the
D-module M inside the cotangent bundle of P . Before we state the result, recall that
GrF DP ( Sym &P is the symmetric algebra on the tangent bundle of P; conse-
quently, the graded module GrF M defines a coherent sheaf on T ∗

P , whose support is
by definition the characteristic variety. Because of the grading, we also get a coherent
sheaf on the projectivized cotangent bundle P(&P ). One can show (see Sect. 2.2) that
the incidence variety X embeds into P(&P ). Denote by Y ⊆ X the union of all
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Residues and filtered D-modules 731

the singular points in the hypersurfaces Xp; then the second projection ψ : Y → X
is again a projective bundle, and so Y is also a smooth subvariety of P(&P ). The
following theorem relates it to the characteristic variety of (M, F).

Theorem B If the vanishing cohomology of the hypersurfaces is nontrivial, then the
coherent sheaf on P(&P ) defined by the graded Sym &P -module GrF M is precisely
ψ∗ωX .

We note that this result fits into the context of Fourier–Mukai transforms for filtered
D-modules [9], in this case between X and on P . That is to say, if we transform OX
(with the trivial filtration GrF

0 OX = OX ) by the kernel OP×X (∗X ), then (M, F) is
a direct summand in one of the cohomology modules of the resulting complex. More
generally, because of the embedding i : X ↪→ Q, this may be seen as a special case
of the Fourier–Mukai transform between filtered D-modules on the projective space
Q and its dual P . (It appears that this observation is originally due to Beilinson.)

This computation also leads to the following result about the terms that appear
in the Decomposition Theorem for the direct image of Q[dX ] under the morphism
π : X → P .

Theorem C If the vanishing cohomology of the hypersurfaces is nontrivial, then each
piece in the decomposition of the polarized Hodge modules Hkπ∗QH

X [dX ] has strict
support equal to all of P.

As explained above, we view the coherent sheaves FkM (especially in the range
1 ≤ k ≤ n) as being natural extensions of the Hodge bundles Fn−kHO . The concrete
description by residues allows us to show that they have many nice properties.

Theorem D Suppose that we have Hq(
X,"

p
X (k)

)
= 0 for k, q > 0 and p ≥ 0. Then

the coherent sheaves FkM have the following properties:

(1) F1M is an ample vector bundle, and is a direct summand of the vector bundle
π∗OX (KX /P ).

(2) Hi (P,"
p
P ⊗ FkM

)
= 0 for every i ≥ max(p, 0).

(3) For 0 ≤ i ≤ dim P − 1, we have

Exti
p
(
FkM,OP

)
(

(
Fn+1−k Hn+1−i (X, C)

Fn−k Hn−1−i (X, C)

)∨
.

(4) Given m ≥ 1, the sheaves GrF
k M and FkM in the range 1 ≤ k ≤ n satisfy a

variant of Serre’s condition Sm, provided that OX (1) is a sufficiently high power
of a very ample line bundle. In particular, they are reflexive.

The proof of (4), given in Sect. 4.5, depends on two things: a general duality result
for filtered Cohen–Macaulay D-modules [15], and the fact that the set of hypersurfaces
with “many” singularities has very high codimension in P if OX (1) is a sufficiently
large power of a very ample line bundle.
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732 C. Schnell

1.3 Conventions

In dealing with filtrations, we index increasing filtrations (such as weight filtra-
tions, or Hodge filtrations on D-modules) by lower indices, and decreasing filtrations
(such as Hodge filtrations on vector spaces, or V -filtrations on left D-modules) by
upper indices. We may pass from one to the other by the convention that F• = F−•.
To be consistent, shifts in the filtration thus have different effects in the two cases:

F[1]• = F•+1, while F[1]• = F•−1.

This convention agrees with the notation used in M. Saito’s papers.
In this paper, we work with left D-modules, and D-module always means left

D-module (in contrast to [12], where right D-modules are used).
When M is a mixed Hodge module, the effect of a Tate twist M(k) on the underlying

filtered D-module (M, F) is as follows:

(M, F)(k) =
(
M, F[k]

)
=

(
M, F•−k

)
.

For a regular holonomic D-module M that is defined on the complement of a divi-
sor D ⊆ X , we let j reg

∗ M be the direct image in the category of regular holonomic
D-modules; its sections have poles of finite order along D.

2 Residues and filtered D-modules

Throughout, we let X be a smooth projective variety of dimension n, and OX (1) a
very ample line bundle, embedding X into the projective space Q = P(V ), where
V = H0(X,OX (1)

)
. We denote by P the dual projective space, parametrizing hyper-

plane sections of X for the given embedding, and let π : X → P be the universal
hypersurface.

2.1 Filtered D-modules on projective space

Let V be a complex vector space of dimension d + 1, and set P = P(V ∨), which is
a projective space of dimension d. Let DP denote the sheaf of differential operators
on P; it is naturally filtered, with the subsheaf FmDP consisting of those differential
operators whose order is at most m. The associated graded sheaf

GrF DP =
∞⊕

m=0

FmDP
/

Fm−1DP

is commutative, and in fact isomorphic to the symmetric algebra on the tangent bun-
dle Sym &P . Recall that a left D-module on P is a quasi-coherent sheaf M with a
left action by DP . Moreover, a filtered D-module is a pair (M, F), consisting of left
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Residues and filtered D-modules 733

a D-module M together with an increasing filtration F = F•M by OP -coherent
subsheaves that is bounded from below, and satisfies

FmDP · FkM ⊆ Fm+kM (3)

for all k, m ∈ Z. One says that the filtration F is good if the inclusion in (3) is an
equality for large values of k; this is equivalent to

GrFM =
⊕

k∈Z
FkM

/
Fk−1M

being finitely generated over Sym &P by [1, Theorem 4.4]. Note that M is coherent
as an OP -module if, and only if, it is locally free of finite rank (and hence a flat vector
bundle); see [1, Proposition 1.7].

Sym &P is naturally the sheaf of functions on the cotangent bundle of P , and so
any filtered coherent D-module (M, F) defines a coherent sheaf on T ∗

P ; its support is
by definition the characteristic variety SS(M, F). Again, the characteristic variety is
contained in the zero section exactly when M is locally free of finite rank.

Because of the grading, SS(M, F) is a cone in T ∗
P , and each component of this

cone has dimension at least d = dim P , a fact known as Bernstein’s inequality
[1, Theorem 1.10]. The filtered D-module (M, F) is said to be holonomic if its char-
acteristic variety is of pure dimension d. For every holonomic D-module M, there is
a finite union of closed subvarieties of P , outside of which M is a flat vector bundle,
namely the image of all those components of SS(M, F) that are not contained in the
zero section. For a holonomic D-module M, the multiplicity of the sheaf GrFM along
each component of the characteristic variety is the same for every good filtration F .
These multiplicities are additive in short exact sequences of holonomic D-modules,
which implies that the category of holonomic D-modules is Artinian: every holonomic
module admits a finite filtration with simple holonomic subquotients. This leads to
the following notion: given a holonomic D-module N on P\Z , we say that a holo-
nomic D-module M is the minimal extension of N if M|P\Z ( N , and if M has no
nontrivial submodules or quotient modules whose support is contained in Z .

Given a filtered coherent D-module (M, F), the graded Sym &P -module GrFM
naturally defines a coherent sheaf on the projectivized cotangent bundle P(&P ) =
Proj(Sym &P ); we shall call it the characteristic sheaf of (M, F), and denote it by
C (M, F). We recover the characteristic variety by taking the cone over the support
of the characteristic sheaf, together with possibly the zero section; in particular, one
can compute the multiplicity along the components of the characteristic variety from
C (M, F).

A second interpretation will be useful in what follows. Let Q = P(V ), and note
that the two projective spaces P and Q are dual to each other, with points p ∈ P
corresponding to hyperplanes Hp ⊆ Q. The incidence variety

Q =
{
(p, x) ∈ P × Q

∣∣ x ∈ Hp
}
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734 C. Schnell

is a nonsingular hypersurface, with line bundle OP×Q(Q) ( pr∗
POP (1)⊗pr∗

QOQ(1).
It is naturally isomorphic to the projectivized cotangent bundle P

(
&P

)
; indeed, the

exactness of the Euler sequence

0 ! OP ! OP (1) ⊗ V ! &P ! 0

on the projective space P implies that P
(
&P

)
embeds into P

(
OP (1) ⊗ V

)
= P × Q,

with line bundle pr∗
POP (1)⊗pr∗

QOQ(1), and a moment’s thought shows that the image
is precisely Q.

Let i : Q ↪→ P × Q be the inclusion. The line bundle OP×Q(Q) is very ample,
and embeds P × Q into a larger projective space; we let

S =
∞⊕

k=0

H0(Q, i∗OP×Q(kQ)
)

be the homogeneous coordinate ring in this embedding, so that P(&P ) ( Proj S. Not
surprisingly, we have an isomorphism of graded rings

S ( H0(P, Sym &P
)
;

in fact, after pushing forward the exact sequence

0 ! OP×Q
(
(k − 1)Q

) ! OP×Q(kQ) ! i∗OP×Q(kQ) ! 0

to P , and using the information coming from the Euler sequence, we find that

H0(Q, i∗OP×Q(kQ)
)

( H0
(

P,
OP (k) ⊗ Symk V

OP (k − 1) ⊗ Symk−1 V

)
( H0(P, Symk &P

)

for all k ≥ 0. It follows from these observations that the characteristic sheaf SS(M, F)

of a filtered coherent D-module (M, F) is the coherent sheaf on Proj S associated to
the graded S-module

C(M, F) =
⊕

k∈Z
H0(P, FkM/Fk−1M

)
= H0(P, GrFM

)
. (4)

We shall refer to it as the characteristic module of (M, F); as usual, the characteris-
tic sheaf is completely determined by the homogeneous components of C(M, F) in
degrees k 2 0.

2.2 The universal hyperplane section

Now let X be a smooth projective variety of dimension n, and fix a very ample line
bundle OX (1) on X . We let V = H0(X,OX (1)) be the space of its global sections,
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Residues and filtered D-modules 735

and therefore get a nondegenerate embedding i : X ↪→ Q into the projective space
Q = P(V ). The universal hyperplane section is the incidence variety

X =
{
(p, x) ∈ P × X

∣∣ x ∈ Hp ∩ X
}
.

We obviously have X = Q ∩ (P × X) inside P × Q, in the notation of Sect. 2.1.
Because Q ( P(&Q), it follows that

X ( P(i∗&Q)

is itself a projective bundle of rank d − 1 over X ; consequently, X is a nonsingular
very ample hypersurface in P × X of dimension n + d − 1, with corresponding line
bundle OP×X (X ) ( pr∗

POP (1) ⊗ pr∗
XOX (1). Let π : X → P be the projection to

the first coordinate; its fibers Xp = π−1(p) are the hyperplane sections of X .
We shall also use the subvariety Y ⊆ X , defined by the condition

Y =
{
(p, x) ∈ P × X

∣∣ Hp is tangent to X at x
}
;

its points are exactly the singular points in the fibers of π . Note that Y is itself non-
singular of dimension d − 1, since it is isomorphic to the projective bundle P(NX |Q)

over X ; this follows from the exact sequence

0 ! &X ! i∗&Q ! NX |Q ! 0. (5)

The dual variety X∨ ⊆ P is by definition the image π(Y ). If there are points in P cor-
responding to hyperplane sections with just a single ordinary double point singularity,
then Y is birational to X∨ and hence a resolution of singularities.

Note 2 Both X and Y can be considered as subvarieties of the projectivized cotan-
gent bundle P(&P ) ( Q. In what follows, we shall see that both varieties are the
support of the characteristic sheaves of two natural filtered D-modules on P .

2.3 An auxiliary D-module

Having completed our discussion of the universal hyperplane section, we now turn to
the problem of extending the residue calculus to singular hyperplane sections of X . As
above, let π : X → P be the universal hyperplane section. To begin with, we define

N = prP∗"
n
P×X/P (∗X ),

which is a quasi-coherent sheaf on P whose sections over an open set U are relative
rational n-forms on U × X with poles along X . It has a natural increasing filtration
by coherent subsheaves FkN , corresponding to the order of the pole; set

FkN = prP∗"
n
P×X/P (kX ) ( H0(X,"n

X (k)
)

⊗ OP (k),

as well as FkN = 0 for k ≤ 0 to avoid degenerate cases.
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736 C. Schnell

We observe that N is naturally a left D-module, since the sheaf of differential opera-
tors DP acts on N by differentiating the coefficients. More precisely, for ω ∈ $(U,N )

a relative rational n-form on U × X , and ξ ∈ $(U,&P ) a vector field, we define

ξ · ω = ξ ′! dω ∈ $(U,N ),

where ξ ′ is the natural horizontal lifting of ξ to a vector field on U × X , and ξ ′! dω

indicates contraction. It is not hard to prove the following: (1) for a holomorphic func-
tion f on U , we have ( f ξ) · ω = f (ξ · ω), as well as ξ · ( f ω) = (ξ f ) · ω + f (ξ · ω);
(2) for a second vector field η, we have [ξ, η] · ω = ξ · (η · ω) − η · (ξ · ω); (3) if ω is
a section of FkN , then ξ · ω is a section of Fk+1N . The action by vector fields thus
extends uniquely to an action by DP , and so N is a left D-module; moreover, we have
FmDP · FkN ⊆ Fm+kN , where F•DP is the order filtration on DP .

Lemma 1 F•N is a good filtration, and (N , F) is therefore a coherent filtered
D-module.

Proof To prove that the filtration is good, we need to show that F1DP ·FkN = Fk+1N
for all sufficiently large k. This is equivalent to the surjectivity of the map

&P ⊗ FkN → Fk+1N /FkN , (6)

a question which is local on P . Fix an arbitrary point p ∈ P , and let s0, s1, . . . , sd be
a basis for the vector space H0(X,OX (1)), with [s0] equal to the point p. Any local
section of FkN can now be written in the form

ω = ω(t)
(
s0 + ∑

ti si
)k ,

for some holomorphic map ω(t) from Cd into H0(X,"n
X (k)

)
. Setting ∂i = ∂/∂ti , we

then have

(
∂i · ω

)∣∣
t=0 = −k · siω(0)

sk+1
0

+ ∂iω(t)|t=0

sk
0

≡ −k · siω(0)

sk+1
0

mod FkN .

Thus surjectivity of (6) on stalks is equivalent to surjectivity of the product maps

H0(X,OX (1)
)

⊗ H0(X,"n
X (k)

)
→ H0(X,"n

X (k + 1)
)
,

which is satisfied for k 2 0 because OX (1) is very ample. 56

Since it is illustrative, we shall also compute the characteristic variety of N ; more
precisely, we shall compute the characteristic sheaf C (N , F). To state the result, let
φ : X → X be the projection to the second coordinate, and recall that X is naturally
embedded into P(&P ).
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Residues and filtered D-modules 737

Lemma 2 We have C (N , F) ( φ∗"n
X ; consequently, the characteristic variety of

N is the cone over X , and thus has a single irreducible component of dimension
dim X + 1 = d + n and multiplicity one.

Proof As explained in Sect. 2.1, the coherent sheaf C (N , F) is determined by its
module of sections

C(N , F) =
⊕

k∈Z
H0(P, FkN /Fk−1N

)
.

To compute the individual summands, recall that

FkN = prP∗"
n
P×X/P

(
kX

)
( H0(X,"n

X (k)
)

⊗ OP (k)

for k ≥ 1 (and 0 otherwise). Thus H1(P, Fk−1N ) = 0, and so

H0(P, FkN
/

Fk−1N
)

( H0(P, FkN
)

H0
(
P, Fk−1N

) (
H0(P × X,"n

P×X/P (kX )
)

H0
(
P × X,"n

P×X/P ((k − 1)X )
) .

Writing OX (1) for the restriction of OP×X (X ) to the universal hyperplane section,
we have the exact sequence

0 ! "n
P×X/P

(
(k − 1)X

) ! "n
P×X/P

(
kX

) ! φ∗"n
X ⊗ OX (k) ! 0.

The higher cohomology of the first term being zero for k 2 0, we thus get

H0(P, FkN
/

Fk−1N
)

( H0(X , φ∗"n
X ⊗ OX (k)

)
,

and hence C(N , F) agrees in large degrees with the graded module

∞⊕

k=0

H0(X , φ∗"n
X ⊗ OX (k)

)
.

This means that the characteristic sheaf C (N , F) is precisely φ∗"n
X , viewed as a sheaf

on P(&P ) under the inclusion X ↪→ P(&P ). 56

2.4 The object of interest

We now define the D-module that we are actually interested in. Let HO be the vector
bundle

HO = OPsm ⊗C Rn−1
ev π sm

∗ C
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738 C. Schnell

with fibers Hn−1
ev (Xp, C). It underlies the variation of Hodge structure Rn−1

ev π sm
∗ Q

on the vanishing cohomology of the hyperplane sections. Let j : Psm ↪→ P be the
inclusion. The operation of taking fiberwise residues defines a map of sheaves

ResX /P : N → j∗HO ;

concretely, for ω ∈ $(U,N ), we let ResX /P (ω) ∈ $(U ∩ Psm,HO ) be the section
whose value at a point p ∈ U ∩ Psm is

ResXp

(
ω|X\Xp

)
∈ Hn−1

ev (Xp, C).

We define M as the image sheaf, and also let FkM be the image of FkN . Over Psm,
taking residue commutes with the action by vector fields [17, pp. 425–6], and we can
therefore give M the induced D-module structure. Then F•M is a good filtration on
M, and ResX /P : N → M is a map of filtered D-modules.

Clearly, ResX /P is surjective over Psm, and so we have j∗M = HO ; this is con-
sistent with the D-module structure on HO given by the Gauss–Manin connection.
Moreover, once OX (1) is sufficiently ample, we even have

j∗ FkM = Fn−kHO .

because the Hodge filtration is determined by pole order. Thus (M, F) is an exten-
sion of (HO , F) to a filtered D-module on P; we will see later that M is, in fact, the
minimal extension in the category of holonomic D-modules.

3 Mixed Hodge modules

In this section, we investigate the relationship between our filtered D-module and
M. Saito’s theory of mixed Hodge modules; the main point is that, up to a shift in the
filtration, (M, F) underlies a Hodge module.

3.1 Mixed Hodge modules

Instead of reviewing Saito’s theory in the abstract, we shall concentrate on a specific
example: how to prove the following familiar result using mixed Hodge modules.

Proposition 1 Let X be a smooth complex projective variety of dimension n, and
let D ⊆ X be a smooth hypersurface. Assume that OX (D) is ample enough so that
Hq(

X,"
p
X (k D)

)
= 0 for q > 0 and k > 0. Then the cohomology in degree k of the

complex

H0(X,"
p
X (D)

) d! H0(X,"
p+1
X (2D)

) · · ·! H0(X,"n
X
(
(n − p + 1)D

))

is isomorphic to F p Hk(X\D, C). The isomorphism takes a d-closed rational form to
the cohomology class defined by its restriction to X\D.
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For X any quasi-projective complex algebraic variety, MHM(X) denotes the abe-
lian category of algebraic mixed Hodge modules on X . Each mixed Hodge module
M has an underlying perverse sheaf rat M , and the functor

rat : MHM(X) → Pervalg(X)

to the category of Q-valued algebraic perverse sheaves on X is fully faithful. (Here
“algebraic” means that we only consider stratifications whose strata are algebraic vari-
eties.) Each mixed Hodge module also has an underlying filtered holonomic D-module
(M, F), which corresponds to (the complexification of) rat M under the Riemann–
Hilbert correspondence; the isomorphism rat M ⊗Q C ( DRX (M) should be seen as
providing the D-module M with a Q-structure. In order for M to be a mixed Hodge
module, several very restrictive conditions have to be satisfied (for instance, existence
of a weight filtration, admissibility, good behavior under nearby and vanishing cycle
functors, to name just a few); since we do not need them here, we refer to [11, §4] for
details.

The basic examples of mixed Hodge modules are (admissible, graded-polarized)
variations of mixed Hodge structure. In the case of a point, MHM(pt) is the category
of (graded-polarized) mixed Hodge structures defined over Q. Following Saito, we let
QH ∈ MHM(pt)be the unique Hodge structure on Q of weight zero. With dX = dim X
and aX : X → pt the structure map, we also define QH

X = a∗
X QH ∈ Db MHM(X).

When X is smooth, QH
X [dX ] is a pure Hodge module on X whose underlying perverse

sheaf is QX [dX ]; the corresponding D-module is OX , with filtration

FkOX =
{

OX if k ≥ 0,
0 otherwise.

Now suppose that X is a smooth projective variety of dimension n, and that D ⊆ X
is a smooth divisor. The cohomology of U = X\D is governed by the mixed Hodge
module j∗QH

U [n] on X , where j : U ↪→ X is the inclusion map. Since D has no
singularities, the underlying filtered D-module is easy to describe: it is the sheaf
MU = OX (∗D) of rational functions with poles along D, and the filtration

FkMU =
{

OX
(
(k + 1)D

)
if k ≥ 0,

0 otherwise,

is given by pole order (see [13, Corollary 4.3] for more details).
To compute the Hodge filtration on the cohomology groups Hi (U, Q), we observe

that, as mixed Hodge structures,

Hi (U ) ( Hi−naU∗QH
U [n] ( Hi−naX∗

(
j∗QH

U [n]
)
.
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740 C. Schnell

The underlying vector space can be computed with the help of the de Rham complex
of the D-module MU ; this is the complex

DRX (MU ) =
[
MU

d! "1
X ⊗ MU · · ·! "n

X ⊗ MU

]
[n],

supported in degrees −n, . . . , 0. Its hypercohomology group Hk(DRX (MU )
)

is the
C-vector space underlying the mixed Hodge structure HkaU∗QH

U [n].
The de Rham complex is naturally filtered by the subcomplexes

Fk DRX (MU ) =
[

FkMU ! "1
X ⊗ Fk+1MU · · ·! "n

X ⊗ Fk+nMU

]
[n],

and the induced filtration on hypercohomology, and hence on HkaU∗QH
U [n], is exactly

the Hodge filtration. Moreover, since X is smooth and projective, the filtration is actu-
ally strict, meaning that the map

Hk(Fk DRX (MU )
)

→ Hk(DRX (MU )
)

is injective. It is now very easy to compute the Hodge filtration on Hi (U, C). Indeed,

F p Hi (U, C) ( F−p Hi−n(
DRX (MU )

)
( Hi−n(

F−p DRX (MU )
)
,

and the term in degree i − n of the indicated complex is

"
n+(i−n)
X ⊗ F−p+n+(i−n)MU =

{
"i

X

(
(i − p + 1)D

)
for i ≥ p,

0 otherwise.

Under the ampleness assumptions on D, each of these sheaves has no higher coho-
mology, and so we obtain the assertion of Proposition 1.

3.2 Cohomology of the universal hypersurface

We take from Brosnan et al. [2] the idea of studying the universal hypersurface by
means of mixed Hodge modules. Where convenient for the purpose of this paper,
we reprove some of their results using the theory of D-modules instead of perverse
sheaves. For notational economy, let d = dim P, n = dim X , and dX = n + d − 1.

The crucial point is that X is nonsingular; this makes it possible to use the Decom-
position Theorem. Recall from [2, 4.5] that there is a decomposition

π∗QH
X [dX ] (

⊕

i, j

Ei, j [−i] (7)

in the derived category Db MHM(P). Indeed, since X is smooth and projective, the
mixed Hodge module QH

X [dX ] on X is pure of weight dX ; the same is then true
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for its image under π∗ because π is smooth and projective. Applying Saito’s version
of the Decomposition Theorem, we have

π∗QH
X [dX ] (

⊕

i

Ei [−i],

where Ei = Hiπ∗QH
X [dX ]. We can further decompose each Ei into simple Hodge

modules; let Ei, j be the direct sum of all those pieces whose codimension of strict
support is equal to j . We then arrive at the isomorphism in (7), with Ei, j pure of weight
dX + i and supported on a closed subscheme of P of codimension j . Moreover, we
see that

Hiπ∗QH
X [dX ] (

d⊕

j=0

Ei, j (8)

for all i ∈ Z. This decomposition is most interesting when i = 0.
One general result about the decomposition is Saito’s Hard Lefschetz Theorem

[12, Théorème 1 on p. 853], which asserts that

Ei, j ( E−i, j (−i); (9)

note that it again depends on the fact that π is projective and smooth. Essentially all
the individual Hodge modules Ei, j have been computed in [2]; for the convenience
of the reader, we summarize the main results:

(a) Perverse Weak Lefschetz Theorem: Ei, j = 0 unless i = 0 or j = 0.
(b) Ei,0 ( Hn+i−1(X) ⊗ QH

P [d] for i < 0.
(c) E0,0 ( j!∗V n−1 ( j!∗V n−1

ev ⊕ Hn−1(X) ⊗ QH
P [d].

(d) E0,1 = 0 iff the vanishing cohomology V n−1
ev is nonzero.

(e) E0, j = 0 for all j > 0, provided that OX (1) is sufficiently ample.

To understand the notation, recall that j : Psm ↪→ P is the inclusion of the open set
where the map π : X → P is smooth. Let V n−1 = Hn−1π sm

∗ QH
X sm [d] denote the

Hodge module on Psm whose underlying perverse sheaf is the shifted local system
Rn−1π sm

∗ Q[d]; it admits a direct sum decomposition

V n−1 = V n−1
ev ⊕ Hn−1(X) ⊗ QH

Psm [d], (10)

where V n−1
ev is the polarized variation of Hodge structure given by the vanishing

cohomology of the fibers, viewed as an element of MHM
(
Psm)

. Finally, j!∗ is the
intermediate extension functor.

The methods of our paper produce a stronger vanishing theorem for the modules
E0, j , namely that E0, j = 0 for every j ≥ 2 (the proof can be found in Sect. 3.7
below). If we combine this small improvement with the results of [2], we obtain the
following useful formulas for the cohomology of the universal hypersurface.
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742 C. Schnell

Theorem 1 (Brosnan, Fang, Nie, and Pearlstein) If the vanishing cohomology of the
hypersurfaces is nontrivial, then

Hkπ∗QH
X [dX ] (






Hk+n−1(X) ⊗ QH
P [d] for k < 0,

Hk+n+1(X)(1) ⊗ QH
P [d] for k > 0,

j!∗V n−1
ev ⊕ Hn−1(X) ⊗ QH

P [d] for k = 0,

as polarized Hodge modules on P of weight k + (d + n − 1).

Proof This follows from (8) and the other results quoted above. 56

3.3 An exact sequence

We shall now derive most of the above results from a somewhat different point of
view; this will also show how the D-module (M, F) is connected to mixed Hodge
modules.

Let U = P × X\X be the complement of the universal hypersurface. We denote
by g the inclusion of U into P × X , and by i that of X into P × X , as shown in the
diagram. Our starting point is the distinguished triangle

i∗i !QH
P×X

! QH
P×X

! g∗g∗QH
P×X

! i∗i !QH
P×X [1]

in the category Db MHM(P × X) [12, (4.4.1) on p. 321]. Obviously, g∗QH
P×X = QH

U ;
moreover, since X ⊆ P × X is a smooth hypersurface, Verdier duality gives an iso-
morphism i !QH

P×X ( QH
X (−1)[−2]. We can therefore rotate the triangle one step to

the left and shift by dP×X steps to obtain

QH
P×X [dP×X ] ! g∗QH

U [dU ] ! i∗QH
X (−1)[dX ] ! QH

P×X [dP×X + 1]

We then apply the functor prP∗ and take cohomology; this gives a long exact sequence
in MHM(P), a typical portion of which is (for k ∈ Z arbitrary)

Hk−1π∗QH
X (−1)[dX ]

HkprP∗QH
P×X [dP×X ]
"

! Hkq∗QH
U [dU ] ! Hkπ∗QH

X (−1)[dX ]

Hk+1prP∗QH
P×X [dP×X ].
"

(11)
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Ultimately, we would like to find H0π∗QH
X [dX ]; this makes it necessary to com-

pute the other mixed Hodge modules in the sequence. Throughout, Hi (X) denotes the
Hodge structure on the i-th cohomology of X , viewed as an object in MHM(pt).

Lemma 3 For each k ∈ Z, we have HkprP∗QH
P×X [dP×X ] ( Hk+n(X) ⊗ QH

P [d].

Proof By Proper Base Change [12, (4.4.3) on p. 323] for the diagram

P × X
prX! X

P

prP"
aP ! pt,

aX"

we have prP∗QH
P×X = prP∗pr∗

X QH
X = a∗

P aX∗QH
X . From the decomposition

aX∗QH
X (

⊕

i

H i aX∗QH
X [−i] =

⊕

i

H i (X)[−i]

in MHM(pt) [11, Corollaire 3 on p. 857], it follows that

prP∗QH
P×X [dP×X ] ( a∗

P

⊕

i

H i (X)[dP×X − i] =
⊕

i

H i (X) ⊗ QH
P [dP×X − i].

Now apply Hk to get HkprP∗QH
P×X [dP×X ] ( Hk+n(X) ⊗ QH

P [d], since QH
P

[dP×X − i] sits in degree d − (dP×X − i) = i − n. 56

The cohomology of a smooth affine variety vanishes above the middle dimen-
sion. The following lemma shows that a similar result is true for the cohomology of
q∗QH

U [dU ]; given that U = P × X\X is affine, this is not surprising.

Lemma 4 We have Hkq∗QH
U [dU ] = 0 for all k > 0.

Proof We give a proof using the theory of D-modules. The mixed Hodge module
g∗QH

U [dU ] has underlying D-module OP×X (∗X ), because the divisor X is nonsin-
gular [13, Corollary 4.3]. The D-module associated to q∗QH

U [dU ] = prP∗g∗QH
U [dU ]

is therefore the direct image of OP×X (∗X ); it can be computed from the relative de
Rham complex

DRP×X/P
(
OP×X (∗X )

)

=
[
OP×X (∗X ) ! "1

P×X/P (∗X ) · · ·! "n
P×X/P (∗X )

]
[n].

Noting that each sheaf in the complex is acyclic for the functor prP∗, the direct image
is represented by the complex prP∗ DRP×X/P

(
OP×X (∗X )

)
. It is clearly supported

in degrees −n, . . . , 0, and therefore the cohomology sheaf in degree k > 0 vanishes.
Since the functor that takes a mixed Hodge module to its underlying D-module is
faithful, we conclude that Hkq∗QH

U [dU ] is also zero. 56
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Finally, we borrow the following lemma from [2, Proposition 4.8].

Lemma 5 (Brosnan, Fang, Nie, and Pearlstein) We have

E0,0 ( j!∗V n−1 ( j!∗V n−1
ev ⊕ Hn−1(X) ⊗ QH

P [d].

Proof By definition, E0,0 is the piece in the decomposition of H0π∗QH
X [dX ] that has

strict support equal to all of P . By the Base Change Theorem, applied to the inclusion
j : Psm → P , we have

j∗ H0π∗QH
X [dX ] ( H0π sm

∗ QH
X sm [dX ] = Hn−1π sm

∗ QH
X sm [d] = V n−1.

Therefore, j!∗V n−1 is a submodule of H0π∗QH
X [dX ]. Since all other terms E0, j

are supported in proper subvarieties, we conclude that j!∗V n−1 ( E0,0. The second
isomorphism is then an immediate consequence of (10). 56

3.4 Analysis of the exact sequence

We can now look at the exact sequence in (11) one more time. For k > 0, each portion
of the sequence simplifies to

0 ! Hkπ∗QH
X (−1)[dX ] ! Hn+1+k(X) ⊗ QH

P [d] ! 0,

using the vanishing in Lemma 4, and the result of Lemma 3. In terms of the decom-
position (8), we thus have

Ek,0 = Ek ( Hn+1+k(X)(1) ⊗ QH
P [d] for k > 0,

noting that Ek, j = 0 if j .= 0 because Ek is supported on all of P . For k < 0, we
deduce from this and Saito’s Hard Lefschetz Theorem (9) that

Ek,0 ( E−k,0(−k) ( Hn+1−k(X)(1 − k) ⊗ QH
P [d] ( Hn+k−1(X) ⊗ QH

P [d],

where the last isomorphism is because of the usual Hard Lefschetz Theorem. Since
both isomorphisms are induced by the polarization, and therefore compatible, it follows
that the restriction map Hn+k−1(X)⊗QH

P [d] → Ek,0 itself has to be an isomorphism.
Again, Ek, j = 0 if k < 0 and j .= 0, and so we have proved (a).

Next, we look at the exact sequence in negative degrees. After incorporating the
results from above, a typical portion simplifies to

Hn+k−2(X)(−1) ⊗ QH
P [d]

Hn+k(X) ⊗ QH
P [d]

"
! Hkq∗QH

U [dU ] ! Hn+k−1(X)(−1) ⊗ QH
P [d]

Hn+k+1(X) ⊗ QH
P [d].

"
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Both vertical maps are injective (by the usual Hard Lefschetz Theorem), and so we
find that

Hkq∗QH
U [dU ] ( Hn+k(X)

Hn+k−2(X)(−1)
⊗ QH

P [d] (12)

when k < 0.
Finally, the part of the exact sequence for k = 0 reads

Hn−2(X)(−1) ⊗ QH
P [d]

Hn(X) ⊗ QH
P [d]

"
! Hkq∗QH

U [dU ] ! H0π∗QH
X [dX ]

Hn+1(X) ⊗ QH
P [d].

"

From (8) and Lemma 5, we have the decomposition

H0π∗QH
X [dX ] ( j!∗V n−1

ev ⊕ Hn−1(X) ⊗ QH
P [d] ⊕

⊕

j>0

E0, j . (13)

Combining this with the fact that the primitive cohomology of weight n satisfies
Hn

0 (X) ( Hn(X)/Hn−2(X)(−1), we obtain the short exact sequence

0 ! Hn
0 (X) ⊗ QH

P [d] ! H0q∗QH
U [dU ] ! j!∗V n−1

ev (−1) ⊕ R ! 0 (14)

Here R = ⊕
j>0 E0, j (−1) is a sort of “error term,” containing those pieces in the

decomposition of H0π∗QH
X [dX ] whose support is contained in the dual variety X∨.

As mentioned above, it was shown in [2] that R = 0 for sufficiently ample OX (1); we
give a more precise statement in Sect. 3.7.

3.5 The underlying D-modules

We now pass to the underlying D-modules in the exact sequence (11). As explained
during the proof of Lemma 4, the mixed Hodge module g∗QH

U [dU ] has associated
D-module OP×X (∗X ), with filtration

FkOP×X (∗X ) =
{

OP×X
(
(k + 1)X

)
if k ≥ 0,

0 otherwise.
(15)

By [11, 2.3], the direct image of this D-module under the projection P × X → P is
computed by the complex RprP∗ DRP×X/P

(
OP×X (∗X )

)
, where

DRP×X/P =
[
OP×X ! "1

P×X/P · · ·! "n
P×X/P

]
[n]
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is the relative de Rham complex, with differential dP×X/P . For q > 0, we have

RqprP∗"
k
P×X/P ⊗ OP×X (∗X ) = RqprP∗"

k
P×X/P (∗X ) = 0,

and so each of the sheaves "k
P×X/P (∗X ) is acyclic for the push-forward map prP∗.

Thus the complex prP∗ DRP×X/P
(
OP×X (∗X )

)
, which looks like

[
prP∗OP×X (∗X ) ! prP∗"

1
P×X/P (∗X ) · · ·! prP∗"

n
P×X/P (∗X )

]
[n], (16)

represents the direct image of OP×X (∗X ) in the derived category of filtered holo-
nomic complexes on P . Note that each term in the complex is naturally a D-module
on P; moreover, the maps in the complex are OP -linear. We conclude that the j-th
cohomology sheaf N j of the complex,

N j = H j prP∗ DRP×X/P
(
OP×X (∗X )

)
,

is the D-module underlying the mixed Hodge module H j q∗QH
U [dU ] = H j prP∗g∗

QH
U [dU ]. As in Lemma 4, N j = 0 outside the range −n ≤ j ≤ 0.
Both the complex in (16) and its cohomology sheaves N j are naturally filtered.

Indeed, the pole-order filtration on OP×X (∗X ) induces a filtration on the relative
de Rham complex; this filtration consists of the subcomplexes Fk DRP×X/P

(
OP×X

(∗X )
)
, which equal

[
Fk ! "1

P×X/P ⊗ Fk+1 · · ·! "n
P×X/P ⊗ Fk+n

]
[n],

where Fk = FkOP×X (∗X ) is as in (15). The filtration on the complex in (16) is then
induced by the subcomplex RprP∗ Fk DRP×X/P

(
OP×X (∗X )

)
; note that prP∗ means

the derived functor here, as the individual sheaves in the complex are not necessarily
acyclic. Since the morphism prP is projective, the filtration is strict by a result of Saito’s
[12, Theorem 2.14]; this means that the cohomology sheaves of the subcomplex inject
into those of the whole complex. The filtration on each of the D-modules N j is the
induced filtration,

FkN j = H j prP∗ Fk DRP×X/P
(
OP×X (∗X )

)
,

where prP∗ is again the derived functor. Observe that each filtered D-module
(
N j , F

)

is regular holonomic, because it underlies a mixed Hodge module.

Proposition 2 Let Fk = FkOP×X (∗X ), and consider the subcomplex

[
prP∗ Fk ! prP∗"

1
P×X/P ⊗ Fk+1 · · ·! prP∗"

n
P×X/P ⊗ Fk+n

]
[n] (17)

of the complex in (16). Then for k 2 0, the coherent sheaf FkN j is the j-th cohomol-
ogy sheaf of the complex in (17). The same is true for arbitrary k ∈ Z, provided that
the line bundle OX (1) satisfies the condition
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Hq(
X,"

p
X (k)

)
= 0 for q > 0 and k > 0. (18)

Proof For k 2 0, each sheaf in the complex is acyclic for the functor prP∗. The same
is true for arbitrary k ∈ Z under the displayed condition on OX (1). 56

The most interesting among those D-modules is

N 0 =
prP∗"

n
P×X/P (∗X )

dP×X/P

(
prP∗"

n−1
P×X/P (∗X )

)
,

(19)

which is filtered by the coherent subsheaves FkN 0. For k 2 0, or in general if the
condition in (18) is satisfied, these sheaves are given by the formula

FkN 0 =
prP∗"

n
P×X/P

(
(n + k + 1)X

)

dP×X/P

(
prP∗"

n−1
P×X/P

(
(n + k)X )

)) . (20)

Now let (Mev, F) be the filtered D-module underlying j!∗V n−1
ev ; it is the mini-

mal extension of the flat vector bundle OPsm ⊗C Rn−1
ev π sm

∗ C. Temporarily, we also
introduce the filtered D-module (R, F), underlying the error term R = ⊕

j>0 E0, j
in (14).

The following theorem summarizes the results of this and the previous section. To
explain the notation, we remark that for a mixed Hodge structure H , the D-module
HC ⊗ OP underlying a∗

P H = H ⊗ QH
P [d] has as its filtration

Fk
(
HC ⊗ OP

)
=

(
Fk HC

)
⊗ OP =

(
F−k HC

)
⊗ OP , (21)

induced from the Hodge filtration on H .

Theorem 2 For any j < 0, we have an isomorphism of filtered D-modules

N j ( Hn+ j (X, C)

Hn+ j−2(X, C)
⊗ OP ,

where the right-hand side has the filtration described in (21). Moreover, we have a
short exact sequence of filtered D-modules

0 ! Hn
0 (X, C) ⊗ OP ! N 0 ! Mev(−1) ⊕ R ! 0,

strict with respect to the filtrations.

Proof The first assertion is an immediate consequence of the isomorphism in (12).
Indeed, we have just shown that the filtered D-module underlying the left-hand side of
(12) is N j , whereas the one underlying the right-hand side is evidently Hn+ j (X, C)

/

Hn+ j−2(X, C) ⊗ OP . The second assertion follows in the same way from the exact
sequence in (14), recalling that morphisms between mixed Hodge modules strictly
preserve the Hodge filtrations on the underlying D-modules. 56
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In Sect. 3.7, we show R = 0 if and only if the vanishing cohomology of the
hypersurfaces is nontrivial; this means that precisely one of R and Mev is nonzero.
After incorporating this result, we arrive at the following description of the filtered
D-module M.

Corollary 1 Suppose that the vanishing cohomology of the hypersurfaces is nontriv-
ial; then we have Mev = M. If moreover the condition in (18) is satisfied, then
FkMev = Fk+nM, and the exact sequence in Theorem 2 becomes

0 ! Hn
0 (X, C) ⊗ OP ! N 0 ! M(−n − 1) ! 0.

Proof By construction, the restriction of Mev to Psm is the flat vector bundle HO ,
and so Mev is a subsheaf of j∗HO by the definition of the intermediate extension
functor. Since R = 0 by Proposition 3, the D-module Mev is a quotient of N 0, and
over Psm, the resulting map from N 0|Psm to HO is clearly the fiberwise residue map.
We conclude that Mev = M. As for the filtrations, note that FkMev is a quotient of
Fk−1N 0, and hence of prP∗"

n
P×X/P

(
(k + n)X

)
. 56

3.6 Vanishing of higher cohomology

In this section, we use the direct image of the relative de Rham complex in (16) to
construct something like a locally free resolution for the sheaves FkN 0, and then use
it to prove a vanishing theorem for their higher cohomology groups. Fix k ∈ Z; we
assume either that (18) is satisfied, or that k 2 0. Consider the subcomplex

E•
k = prP∗ Fk−n−1 DRP×X/P

(
OP×X (∗X )

)

of the direct image of the relative de Rham complex as in (17). It has OP -linear differ-
entials, and is supported in degrees −n, . . . , 0. The individual sheaves in the complex
are easily found to be

E i
k = prP∗

(
"n+i

P×X/P ⊗ Fk+i−1OP×X (∗X )
)

=
{

H0(X,"n+i
X (k + i)

)
⊗ OP (k + i) if k + i ≥ 1,

0 otherwise.

The discussion in Sect. 3.5 shows that the cohomology sheaves of the complex are
precisely the coherent sheaves Fk−n−1N i . Theorem 2 describes these sheaves for
i < 0,

Fk−n−1N i ( Fn+1−k Hn+i (X, C)

Fn−k Hn+i−2(X, C)
⊗ OP . (22)

This is almost as good as having a locally free resolution, and easily allows us to prove
the following vanishing theorem.
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Theorem 3 Suppose that the line bundle OX (1) satisfies the condition in (18), or that
k 2 0. Then we have Hi (P,"

p
P ⊗ FkN 0) = 0 for every i ≥ max(p − 1, 0).

Proof The terms of the complex "
p
P ⊗ E•

k are direct sums of sheaves of the form
"

p
P (m) with m ≥ 1. In the first hypercohomology spectral sequence,

′Ei, j
1 = H j (P,"

p
P ⊗ E i

k) 7⇒ Hi+ j ("p
P ⊗ E•

k
)
,

we have ′Ei, j
1 = 0 for j > 0 by Bott’s vanishing theorem. All but one row is therefore

zero, and so the spectral sequence degenerates. Since moreover ′Ei,0
1 = 0 if i > 0, it

follows that Hi ("p
P ⊗ E•

k

)
= 0 whenever i > 0.

To relate this to the cohomology of Fk−n−1N 0, we use the second hypercohomol-
ogy spectral sequence,

′′Ei, j
2 = Hi (P,"

p
P ⊗ Fk−n−1N j ) 7⇒ Hi+ j ("p

P ⊗ E•
k
)
,

remembering that Fk−n−1N j is the j-th cohomology sheaf of the complex E•
k . Now

"
p
P ⊗ Fk−n−1N j is a direct sum of copies of "

p
P for j < 0, and therefore ′′Ei, j

2 = 0
unless i = p or j = 0. From the vanishing of the hypercohomology in positive
degrees, we now conclude that

Hi (P,"
p
P ⊗ Fk−n−1N 0) = ′′Ei,0

2 = 0

for i ≥ max(p − 1, 0), as asserted. 56
On the other hand, Corollary 1 relates N 0 and M through the short exact sequence

0 ! Fn+1−k Hn
0 (X, C) ⊗ OP ! Fk−n−1N 0 ! FkM ! 0.

The following vanishing theorem for FkM is an immediate consequence (note if the
vanishing cohomology of the hypersurfaces is trivial, then M = 0, and so the result
holds by default).

Corollary 2 If the condition in (18) is satisfied, then Hi (P,"
p
P ⊗ FkM) = 0 for

every i ≥ max(p, 0).

The same spectral sequence argument can also be used to compute spaces of global
sections. To state the result, we introduce the notation

W p
k = H0(P × X,"

p
P×X/P (kX )

)
( H0(X,"

p
X (k)

)
⊗ H0(P,OP (k)

)
,

noting that the relative differential dP×X/P maps W p
k to W p+1

k+1 .

Corollary 3 For k 2 0, or for any k ≥ 1 assuming (18), we have

H0(P, Fk−n−1N 0) ( W n
k

dP×X/P W n−1
k−1

.
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If the line bundle OX (1) is sufficiently ample, then similarly

H0(P, FkM
)

( W n
k

dP×X/P W n−1
k−1 + Fn+1−k Hn

0 (X, C)
.

Corollary 4 If OX (1) satisfies the condition in (18), then FkM is a quotient of the
ample vector bundle H0(X,"n

X (k)
)

⊗ OP (k), and therefore globally generated.

Proof FkM is a quotient of Fk−n−1N 0, which in turn is a quotient of E0
k = H0(X,"n

X
(k)

)
⊗ OP (k), at least when k ≥ 1. This proves the assertion, because FkM = 0 for

k ≤ 0. 56

3.7 The vanishing of the error term

Recall that the error term R in (14) is the direct sum of the Hodge modules E0, j with
j > 0. In [2], it was shown that R = 0 once the line bundle OX (1) is sufficiently
ample, and that E0,1 = 0 precisely when the vanishing cohomology of the hyper-
surfaces is nontrivial. We improve this to a necessary and sufficient condition for the
vanishing of the Hodge module R.

Proposition 3 We have E0, j = 0 for every j ≥ 2. The vanishing cohomology of the
hypersurfaces is nontrivial iff E0, j = 0 for every j > 0 iff the error term R in (14) is
zero.

Note 3 By recent work of Dimca and Saito [3, Theorem 6], it is known that the vanish-
ing cohomology is nontrivial as soon as OX (1) is the third (or, in most cases, second)
power of a very ample line bundle.

The proof of the proposition is based on computing the characteristic variety of
the D-module N 0; we will show that it has exactly two components, one of which is
the cone over the set of singularities Y ⊆ X , and determine the multiplicities. Our
starting point is the following simple lemma.

Lemma 6 As usual, let φ : X → X and ψ : Y → X be the second projections. For
every k ∈ Z, the Koszul-type complex

OX (k − n) ! φ∗"1
X ⊗ OX (k − n + 1) · · ·! φ∗"n

X ⊗ OX (k).

is a locally free resolution on X for the sheaf ψ∗"n
X ⊗ OY (k). The differential in

this complex is given by the rule β 9→ dP×X/P sX ∧ β, where sX is the section of
OP×X (1) defining X ⊆ P × X.

Proof From the embedding i : X ↪→ Q given by the linear system of OX (1), we have
the following exact sequence:

0 ! &X ! i∗&Q ! NX |Q ! 0.
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The projectivization P(i∗&Q) is naturally isomorphic to X , and the exact sequence
determines a canonical section αX of the vector bundle (φ∗&X )∨ ⊗ OP(i∗&Q)(1) (
φ∗"1

X ⊗ OX (1), whose zero scheme is P(NX |Q) ( Y . As a consequence, Y
is a locally complete intersection in X , and its structure sheaf is resolved by the
Koszul-type complex

OX
! φ∗"1

X ⊗ OX (1) · · ·! φ∗"n−1
X ⊗ OX (n − 1) ! φ∗"n

X ⊗ OX (n),

whose differential is given by wedge product with αX . It is then not hard to see that
αX = dP×X/P sX , viewed as a map

dP×X/P sX : OX (−1) → "1
P×X/P

∣∣
X ( φ∗"1

X .

We obtain the asserted resolution after tensoring by OX (k − n). 56
We are now in a position to compute the coherent sheaf on P(&P ) associated to the

graded module GrF N 0.

Lemma 7 We have C
(
N 0, F

)
( ψ∗"n

X ⊗ OY (n + 1), viewed as a coherent sheaf
on Y ↪→ P(&P ) under the natural inclusion map.

Proof As in Lemma 2, we shall compute the characteristic module C
(
N 0, F

)
directly,

at least in sufficiently high degrees k 2 0. To simplify the notation, we again use the
notation

W p
k = H0(P × X,"

p
P×X/P (kX )

)
( H0(X,"

p
X (k)

)
⊗ H0(P,OP (k)

)

for the space of sections of the indicated vector bundle. By definition,

C
(
N 0, F

)
=

⊕

k∈Z
H0(P, FkN 0/Fk−1N 0),

and since H1(P, FkN 0) = 0 for k 2 0 by Theorem 3, we get that

H0(P, FkN 0/Fk−1N 0) ( H0(P, FkN 0)

H0
(
P, Fk−1N 0

) .

By Corollary 3, H0(P, FkN 0) ( W n
k+n+1

/
dP×X/P W n−1

k+n , and so we finally have

H0(P, FkN 0/Fk−1N 0) ( W n
k+n+1

dP×X/P W n−1
k+n + W n

k+n

. (23)

Next, we determine the graded module corresponding to ψ∗"n
X , given by

⊕

k∈Z
H0(X , ψ∗"n

X ⊗ OX (k)
)

(
⊕

k∈Z
H0(Y , ψ∗"n

X ⊗ OY (k)
)
.
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From Lemma 6, we know that the sequence

φ∗"n−1
X ⊗ OX (k − 1) ! φ∗"n

X ⊗ OX (k) ! ψ∗"n
X ⊗ OY (k) ! 0

is exact; as OX (1) is ample, the corresponding sequence of global sections remains
exact for k 2 0. We therefore obtain

H0(Y , ψ∗"n
X ⊗ OY (k)

)
( H0(X , φ∗"n

X ⊗ OX (k)
)

H0
(
X , φ∗"n−1

X ⊗ OX (k − 1)
) .

When k 2 0, one easily shows that H0(X , φ∗"p
X ⊗ OX (k)

)
( W p

k /W p
k−1; since

the differential in the exact sequence is given by dP×X/P sX , we conclude that

H0(X , ψ∗"n
X ⊗ OX (k)

)
( W n

k

dP×X/P W n−1
k−1 + W n

k−1

(24)

once k is sufficiently large. The assertion now follows easily upon comparing the
expressions in (23) and (24). 56

Now we turn to the proof of Proposition 3.

Proof By Lemma 7, the characteristic sheaf C = C
(
N 0, F

)
is supported on Y and

has rank one. Since the restriction of N 0 to Psm is locally free, it follows that the
characteristic variety of N 0 has two irreducible components:

1. The zero section of T ∗
P , with multiplicity the generic rank of N 0.

2. The cone over the set Y , with multiplicity one.

The same is then true (with a different multiplicity for the first component) for the
holonomic D-module Mev ⊕ R, since it differs from N 0 only by the vector bundle
Hn

0 (X, C)⊗OP by Theorem 2. It follows that E0, j = 0 for j ≥ 2: indeed, the support
of E0, j has codimension j in P , and so its characteristic variety could not be contained
in that of N 0 unless j = 1.

Now suppose that the vanishing cohomology of the hypersurfaces is nontrivial.
Multiplicity is an additive function on holonomic D-modules, and so one of Mev and
R has to have multiplicity zero along the cone over Y . Since R is already supported
inside X∨, we conclude that if R .= 0, the characteristic variety of Mev has to consist
of just the zero section, which means that Mev has to be a locally free sheaf. But this
can only happen when Mev = 0, because the monodromy action on the vanishing
cohomology is irreducible [17, Corollaire 15.28]. Indeed, if the D-module Mev was
locally free, it would be a flat vector bundle, and therefore trivial (because P is simply
connected). In particular, the local system Rn−1

ev π sm
∗ C would be trivial. But since it is

known that H0(Psm, Rn−1
ev π sm

∗ C
)

= 0, this is not possible unless Rn−1
ev π sm

∗ C = 0.
Our assumptions rule out this possibility, and we conclude that Mev .= 0 and hence
R = 0. 56
Example 1 It is illustrative to compare our result with the example of plane conics,
given in [2, Example 5.13]. This is the special case when X = P2, with line bundle

123

Author's personal copy



Residues and filtered D-modules 753

OP2(2). As the authors remark, E0,0 = 0, and E0, j = 0 for all j ≥ 2, but E0,1 .= 0.
In other words, Mev = 0 while R .= 0; note that only one of the summands of R is
nonzero, as required by the multiplicity calculation above.

We conclude with a description of the characteristic sheaf of (M, F).

Corollary 5 If the vanishing cohomology of the hypersurfaces is nontrivial, we have
C (M, F) ( ψ∗"n

X .

Proof This follows almost immediately from the calculations just done. Indeed, con-
sider the short exact sequence in Corollary 1. It shows that M and N 0 differ only by
the locally free sheaf Hn

0 (X, C) ⊗ OP , and so we have the isomorphism

GrF
k M ( GrF

k−n−1 N 0;

it holds for any k > 0 provided that (18) is satisfied, and in general for k 2 0, which
is sufficient here. We then get C (M, F) ( ψ∗"n

X from Lemma 7. 56

3.8 Hypercohomology of the de Rham complex

In this section, we assume that the vanishing cohomology of the hypersurfaces is non-
trivial, so that Mev = M by Corollary 1. The D-module M then underlies the Hodge
module j!∗V n−1

ev on P . On the other hand, the corresponding perverse sheaf is

rat j!∗V n−1
ev = j!∗ rat V n−1

ev = j!∗ Rn−1
ev π sm

∗ Q[d];

after tensoring with C, it becomes isomorphic to the de Rham complex for M, by the
definition of mixed Hodge modules. Therefore,

DRP
(
M

)
( j!∗ rat V n−1

ev ⊗Q C. (25)

Our purpose here is to prove that the hypercohomology H−d+1(DRP M
)

of the de
Rham complex is isomorphic to the primitive cohomology of X .

Lemma 8 Assume that the vanishing cohomology of the hypersurfaces is nontrivial.
Then the Leray spectral sequence gives rise to a (canonical) isomorphism

Hn
0 (X, C) ( H−d+1(DRP (M)

)
.

Proof Since R = 0, we get M = Mev. According to the results in Sect. 3.4, we have

Hqπ∗QH
X [dX ] (






Hn+q−1(X) ⊗ QH
P [d] for q < 0,

Hn+q+1(X)(1) ⊗ QH
P [d] for q > 0,

j!∗V n−1
ev ⊕ Hn−1(X) ⊗ QH

P [d] for q = 0.

(26)
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The D-module component of j!∗V n−1
ev is precisely M, and so the hypercohomol-

ogy of DRP (M) computes the complex vector spaces underlying the cohomology
modules of j!∗V n−1

ev . We calculate that

H−d+1aP∗ H0π∗QH
X [dX ] ( H−d+1aP∗ j!∗V n−1

ev ⊕ Hn−1(X) ⊗ H1aP∗QH
P

= H−d+1aP∗ j!∗V n−1
ev ,

because H1aP∗QH
P = H1(P) = 0. It follows that H−d+1(DRP (M)

)
is the complex

vector space of the mixed Hodge structure H−d+1aP∗ H0π∗QH
X [dX ].

Now we bring in the (perverse) Leray spectral sequence,

E p,q
2 = H paP∗ Hqπ∗QH

X [dX ] 7⇒ H p+qaX ∗QH
X [dX ] = H p+q+dX (X ),

which is a spectral sequence of mixed Hodge modules. Note that E p,q
2 = 0 whenever

p < −d = − dim P . The term we are really interested in is

E−d+1,0
2 ( H−d+1aP∗ j!∗V n−1

ev ;

it sits in degree −d + 1, and is thus a graded quotient of H−d+1+dX (X ) =
Hn(X ).

The Decomposition Theorem implies that the spectral sequence degenerates at the
E2-page (in fact, it even implies that HkaX ∗QH

X [dX ] is isomorphic to the direct
sum of all the E p,q

2 with p + q = k, albeit non-canonically). Let us write L• for the
induced filtration on the cohomology of X . We then have a short exact sequence of
mixed Hodge structures

0 ! L1 Hn(X ) ! Hn(X ) ! E−d,1
2

! 0,

and E−d,1
2 ( Hn+2(X)(1) ⊗ H0(P) by virtue of (26).

Consider now the pullback mapφ∗ : Hn(X) → Hn(X ). As the primitive cohomol-
ogy is the kernel of Hn(X) → Hn+2(X)(1), we get an induced map from Hn(X)prm
to L1 Hn(X ). The next step of the Leray filtration gives another short exact sequence

0 ! L2 Hn(X ) ! L1 Hn(X )
ρ! E−d+1,0

2
! 0,

and by composition, we finally obtain a (canonical) map of mixed Hodge structures

ρ ◦ φ∗ : Hn
0 (X) → E−d+1,0

2 ( H−d+1aP∗ j!∗V n−1
ev . (27)

That this map is an isomorphism follows easily from the fact that φ : X → X is a
projective space bundle of rank d − 1. Indeed, we naturally have

Hn(X ) (
⊕

i≥0

Hi (P) ⊗ Hn−i (X) = Hn(X) ⊕
⊕

i≥2

Hi (P) ⊗ Hn−i (X).
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The terms in the direct sum are precisely the graded quotients of L2 Hn(X ), because
the isomorphisms in (26) imply that

E−d+i,−i+1
2 = H−d+i aP∗ H−i−1π∗QH

X [dX ] ( Hi (P) ⊗ Hn−i (X)

whenever i ≥ 2. Therefore, the map from Hn(X) to Hn(X )
/

L2 Hn(X ) is an iso-
morphism for dimension reasons; this implies that (27) is also an isomorphism. By
passing to the underlying complex vector spaces, we get the result. 56

3.9 Cohomology sheaves of the de Rham complex

We conclude our application of the theory of mixed Hodge modules by determin-
ing the cohomology sheaves of the de Rham complex DRP (M). Again, we assume
throughout that the vanishing cohomology of the hypersurfaces is nontrivial, so that
Mev = M. Recall that DRP (M) is a perverse complex, because M underlies a
Hodge module; all of its cohomology sheaves

Hk = Hk DRP
(
Mev

)
( Hk DRP

(
M

)

are therefore constructible sheaves (in the Zariski topology). The following lemma
describes them very precisely.

Lemma 9 If the vanishing cohomology of the hypersurfaces is nontrivial, then

Rn−1+(d+k)π∗CX ( Hk DRP
(
M

)
⊕ Hn−1−(d+k)(X, C) ⊗ CP

for all k ≥ −d.

Proof The proof mirrors that of Corollary 5.6 in [2]. Let p ∈ P be an arbitrary point.
Since the map π : X → P is proper, we have

(
Rn−1+d+kπ∗CX

)
p = Hn−1+d+k(Xp, C

)
= rat Hn−1+d+k(Xp

)
⊗Q C

for the stalk of the higher direct image sheaf at p, by the Proper Base Change Theorem
from topology. Because of the decomposition in (7), we also have

Hn−1+d+k(Xp
)

= HdX +k(Xp
)

= Hk
p
(
π∗QH

X [dX ]
)

=
⊕

i j

Hk−i
p

(
Ei, j

)
.

The assumption on the vanishing cohomology implies that Ei, j = 0 for all j .= 0; see
Proposition 3 and the work in Sect. 3.4. Therefore

Hn−1+d+k(Xp
)

=
⊕

i

Hk−i
p

(
Ei,0

)
.
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The remaining terms are now easily computed. On the one hand,

Hk
p
(
E0,0

)
( Hk

p
(

j!∗V n−1) ( Hk
p
(

j!∗V n−1
ev

)
⊕

{
Hn−1(X) if k = −d,
0 otherwise,

from Lemma 5. On the other hand, we have

Ei,0 =
{

Hn+i−1(X) ⊗ QH
P [d] for i < 0,

Hn−i−1(X)(−i) ⊗ QH
P [d] for i > 0,

again using the results in Sect. 3.4. Since Hk−i
p

(
QH

P [d]
)

= 0 for k − i .= −d, it then
follows that

Hk−i
p

(
Ei,0

)
(






Hn−1+(d+k)(X) if i = d + k < 0,
Hn−1−(d+k)(X)

(
−(d + k)

)
if i = d + k > 0,

0 if i .= d + k and i .= 0.

In conclusion, we have for k ≥ −d an isomorphism

Hn−1+(d+k)
(
Xp

)
( Hk

p
(

j!∗V n−1
ev

)
⊕ Hn−1−(d+k)(X)

(
−(d + k)

)
. (28)

Now apply the functor rat to this, and note that

rat Hk
p
(

j!∗V n−1
ev

)
⊗Q C ( Hk

p

by the comments preceding the statement of the lemma. On stalks, we thus have

(
Rn−1+(d+k)π∗CX

)
p ( Hk

p ⊕ Hn−1−(d+k)(X, C),

from which the asserted identity follows immediately. 56

Note 4 It should be noted that the second part of the isomorphism in (28) can be
described explicitly. Let L : Hk(X) → Hk+2(X)(1) be the Lefschetz operator asso-
ciated with the very ample line bundle OX (1). For each hypersurface Xp ⊆ X , smooth
or not, there is then naturally a map

Hn−1−(d+k)(X)
(
−(d + k)

) Ld+k! Hn−1+(d+k)(X) ! Hn−1+(d+k)
(
Xp

)
.

So (28) tells us in particular that this map is always injective.

4 Properties of the Hodge filtration

Note 5 For the remainder of the paper, we assume that the vanishing cohomology of
the hypersurfaces is nontrivial; this guarantees that Mev = M.
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4.1 The lowest level in the filtration

Our next result is about the lowest level in the filtration on M, namely the sheaf F1M,
and its relationship to the relative canonical bundle of X → P . In this context, the
following theorem by Kawamata comes to mind: If f : Y → X is an algebraic fiber
space such that f is smooth over the complement of a normal crossing divisor D, and
Rdim Y −dim X f∗C has unipotent monodromy on X\D, then f∗OY (KY/X ) is locally
free and nef, and agrees with the lowest level of the Hodge filtration on the canonical
extension [6, p. 266]. Obviously, neither of the two assumptions is satisfied in our
case, but a similar result holds.

Proposition 4 Assume that OX (1) is sufficiently ample. Then F1M is an ample vector
bundle, and forms part of a short exact sequence

0 ! F1M ! π∗OX
(
KX /P

) ! Hn−1,0(X) ⊗ OP ! 0. (29)

In particular, π∗OX
(
KX /P

)
is locally free and nef.

Proof From the locally free resolution introduced in Sect. 3.6, we get a short exact
sequence

0 ! H0(X,"n
X
)

⊗ OP ! H0(X,"n
X (1)

)
⊗ OP (1) ! F1M ! 0. (30)

The first map is pointwise injective, because we have the containment H0(X,"n
X

)
⊆

H0(X,"n
X (Xp)

)
for every p ∈ P , and so the quotient F1M is locally free, proving

the first assertion.
To establish (29), we use the fact that X is a smooth hypersurface in the product

P × X , with line bundle OP×X (X ) = OP×X (1). Thus the relative canonical bundle
for π : X → P is given by the formula

OX
(
KX /P

)
( φ∗"n

X ⊗ OX (1),

where φ : X → X is the second projection. Pushing forward the exact sequence

0 ! pr∗
X"n

X
! pr∗

X"n
X ⊗ OP×X (1) ! φ∗"n

X ⊗ OX (1) ! 0

and using the vanishing of H1(X,"n
X (1)

)
, we get a five-term exact sequence; the

second assertion follows by comparing it with the resolution for F1M in (30).
Now F1M is evidently ample, since it is a quotient of H0(X,"n

X (1)
)

⊗ OP (1).
Because of the short exact sequence in (29), it is then immediate that the direct image
π∗OX

(
KX /P

)
is both locally free and nef. 56

Note 6 A similar result is true in certain other cases: in the 34-dimensional family of
all cubic threefolds in P4, for instance, the coherent sheaf F2M is locally free, and in
fact isomorphic to H0(P4,OP4(1)

)
⊗ OP (2).
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4.2 Computation of Ext-groups

The purpose of this section is the computation of the groups Exti
P (FkM,OP ). We

begin by looking at the sheaves Fk−n−1N 0.

Lemma 10 We have

Exti
P
(
Fk−n−1N 0,OP

)
(






0 for i = 0, 1,
(

Fn+1−k Hn+1−i (X, C)

Fn−k Hn−1−i (X, C)

)∨
for 2 ≤ i ≤ d − 1.

Proof We use the locally free complex E •
k from Sect. 3.6; its cohomology sheaf in

degree i is the sheaf Fk−n−1N i . When we apply the functor HomP ( ___ ,OP ) to the
complex, we obtain two spectral sequences; the terms of the first one are

′E p,q
1 = Extq

P

(
E −p

k ,OP
)

( Hd−q(
P,E −p

k ⊗ OP (−d − 1)
)∨

,

by Serre Duality. Now each E −p
k is either zero (when k − p ≤ 0), or a sum of

positive line bundles OP (k − p), and so ′E p,q
1 can only be nonzero if q = d and

0 ≤ p ≤ k − 1 − d. The limit of the spectral sequence is therefore zero whenever
p + q < d. We conclude that the second spectral sequence, with terms

′′E p,q
2 = Ext p

P

(
Fk−n−1N −q ,OP

)

converges to zero in degrees p + q < d. For q < 0, each Fk−n−1N −q is a trivial
bundle, and so ′′E p,q

2 = 0 unless p = 0 or q = 0. This implies that ′′E0,p−1
2 ( ′′E p,0

2

for 2 ≤ p ≤ d − 1. Since ′′E p,0
2 = Ext p

P

(
Fk−n−1N 0,OP

)
and

′′E0,p−1
2 = Hom

(
Fk−n−1N 1−p,OP

)
(

(
Fn+1−k Hn+1−p(X, C)

Fn−k Hn−1−p(X, C)

)∨

by (22), we get the assertion. 56
Theorem 4 For all integers 0 ≤ i ≤ d − 1, we have

Exti
p
(
FkM,OP

)
(

(
Fn+1−k Hn+1−i (X, C)

Fn−k Hn−1−i (X, C)

)∨
.

Thus HomP
(
FkM,OP

)
= 0 and Ext1

P

(
FkM,OP

)
(

(
Fn+1−k Hn

0 (X, C)
)∨.

Proof The short exact sequence in Corollary 1 becomes

0 ! Fn+1−k Hn
0 (X, C) ⊗ OP ! Fk−n−1N 0 ! FkM ! 0 (31)

after passing to Fk−n−1. The result now follows from Lemma 10 by looking at the
long exact sequence for the functor HomP ( ___ ,OP ). 56
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The proof shows that the isomorphism between Ext1
P

(
FkM,OP

)
and the group(

Fn+1−k Hn
0 (X, C)

)∨ is given by the extension class of the sequence (31). This
class is an element εk ∈ Ext1

P

(
FkM, Fn+1−k Hn

0 (X, C) ⊗ OP
)
. Any linear map

f : Fn+1−k Hn
0 (X, C) → C defines a homomorphism

f∗ : Ext1
P
(
FkM, Fn+1−k Hn

0 (X, C) ⊗ OP
)

→ Ext1
P
(
FkM,OP

)
,

and f∗(εk) is the element corresponding to f under the isomorphism in the theorem.

Note 7 Likewise, we have Ext1
P

(
GrF

k M,OP
)

( Hn+1−k,k−1
0 (X).

4.3 Duality theorems

In this section, we apply the general duality theorem of [15] to the filtered D-module
(M, F). Note that (Mev, F) underlies a polarized Hodge module of weight dim X =
d +n −1 on P , and that we have FkMev = Fk+nM. Since we have already computed
the characteristic module

C (M, F) ( ψ∗"n
X

in Corollary 5, the following result is a direct consequence of the duality theorem. As
for notation, we let ψ : Y → X and π : Y → P denote the two projection maps, and
set C = C (M, F) and Gk = GrF

k M for k ∈ Z.

Theorem 5 For every k ∈ Z, we have an exact sequence

Hom(Gn+1−k,OP ) ⊂! Gk ! π∗
(
C ⊗ OY (k)

) !! Ext1(Gn+1−k,OP ), (32)

as well as isomorphisms

Riπ∗
(
C ⊗ OY (k)

)
( Exti+1(Gn+1−k,OP ) (33)

for every i ≥ 1.

The proof in [15] is based on the fact that GrFM is Cohen–Macaulay as a graded
module over the symmetric algebra Sym &P . It is also possible to derive the theorem
from a careful analysis of the spectral sequence

E p,q
1 = Rqπ∗

(
φ∗"p

X (k−n+ p)
)
⊗OP (k−n+ p)7⇒ R p + q − nπ∗

(
ψ∗"n

X ⊗ OY (k)
)
,

coming from the resolution in Lemma 6; details can be found in [14]. We note that
the first map in (32) is induced by the intersection pairing: its restriction to Psm is a
map of vector bundles

(
Fk−1HO/FkHO

)∨ → Fn−kHO/Fn−k+1HO ,
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which, fiber by fiber, is given by (2π i)n−1 times integration over the smooth hyper-
surface Xp (up to a sign factor).

Since the duality theorem actually produces an exact triangle in the derived cate-
gory Db(P), we can take the push-forward to a point to arrive at the following global
statement. Note that HomP

(
GrF

n+1−k M
)

= 0 by Theorem 4.

Proposition 5 For each k ∈ Z, we have an exact sequence

H0(P, GrF
k M

)
⊂! H0(Y , ψ∗"n

X ⊗ OY (k)
) !! Ext1

P
(
GrF

n+1−k M,OP
)
.

Moreover, we have Exti+1
P

(
GrF

n+1−k M,OP
)

( Hi (Y , ψ∗"n
X ⊗OY (k)

)
for all i ≥ 1

and all values of k.

4.4 A curious vanishing theorem

We digress to point out a curious application of the computations for the groups
Exti

P

(
GrF

k M,OP
)

when i > 0. We have obtained two different expressions for these
groups, one in Proposition 5, the other in Theorem 4. By comparing the two, we get
the following statement (which, I believe, is originally due to M. Green).

Proposition 6 Let X be a smooth projective variety of dimension n, and let OX (1) be
a sufficiently ample line bundle on X. For all k ≥ 0 and q > 0, we have

Hq(
X,"n

X ⊗ Symk NX |Q
)

( Hq(
Y , ψ∗"n

X ⊗ OY (k)
)

( Hn−k,q+k
0 (X),

where NX |Q is the normal bundle for the embedding of X into projective space.

Proof Recall that ψ : Y → X is the projective bundle P
(
NX |Q

)
. For k ≥ 0, we thus

have ψ∗OY (k) ( Symk NX |Q . The first asserted isomorphism is then obtained by
push-forward along the map ψ . The second isomorphism now follows immediately
by combining the result of Proposition 5 and Theorem 4. 56

In particular, one gets a vanishing theorem for the ample vector bundle NX |Q .
For example, the condition q + k ≥ n + 1 is sufficient to make the cohomology
group Hq(

X,"n
X ⊗ Symk NX |Q

)
be zero. This does not seem to follow from the

standard vanishing theorems for ample vector bundles, such as Griffiths’ Theorem
[8, Theorem 7.3.1 on p. 90], because the factor of det NX |Q is missing. At the same
time, whenever X has nontrivial primitive cohomology in degree (n − k, q + k), one
gets an example where the group in question is not zero. This places restrictions on
the kind of vanishing theorem one can get for general ample vector bundles.

4.5 The Serre conditions

The sheaves FkM are natural extensions of the Hodge bundles Fn−kHO on Psm.
While they cannot in general be locally free, we nevertheless expect that FkM should
have good properties when the line bundle OX (1) is sufficiently ample—basically
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because the complexity of the dual variety appears in very high codimension. In this
section, we illustrate this by proving that each FkM in the range 1 ≤ k ≤ n is a
reflexive sheaf.

More precisely, recall that a coherent sheaf F on a nonsingular algebraic variety
P is said to satisfy (a slight modification of) Serre’s condition Sm , if the inequality

depth Fp ≥ min
(
m, dim OP,p

)

holds at every point p ∈ P . A locally free sheaf satisfies Sm for all values of m; on the
other hand, condition S1 is equivalent to being torsion-free, and S2 to being reflexive.
There is also a useful criterion for verifying Serre’s condition: F satisfies Sm if and
only if, for every i > 0, the codimension of the support of Exti (F ,OP ) is at least
i + m (see [10, Proposition 7.5] for a careful proof). In particular, F is then locally
free in codimension m.

The following theorem shows that the sheaves GrF
k M and FkM are well-behaved

when 1 ≤ k ≤ n, at least when OX (1) is sufficiently ample.

Theorem 6 Fix an integer m ≥ 1. If the line bundle OX (1) is ample enough, then
each sheaf GrF

k M in the interval 1 ≤ k ≤ n satisfies Serre’s condition Sm.

The proof is based on bounding the codimension of the set of hyperplane sections
with many singular points, or with singular points of high multiplicity.

Proposition 7 Fix two positive integers N and r. If OX (1) is sufficiently ample, then
the linear system P has the following properties:

(a) The subset P1(N ) ⊆ P of hypersurfaces with at least N singular points has
codimension at least N in P.

(b) The subset P2(r) ⊆ P of hypersurfaces with a singular point of multiplicity at
least r has codimension at least r − 1 in P.

Proof As usual, let d = dim P . To prove (a), let S1(N ) ⊆ P × X N be the closure
of the set of points (p, x1, . . . , xN ) for which x1, . . . , xN are distinct singular points
of the hypersurface Xp. Then S1(N ) is irreducible, and its fiber over a general point
(x1, . . . , xN ) ∈ X N has dimension d − N (n + 1) by Lemma 11, provided that OX (1)

is sufficiently ample. Therefore dim S1(N ) = d − N , and so its projection to P ,
which equals P1(N ), has dimension at most d − N .

The argument for b is similar; this time, consider the set S2(r) ⊆ P × X of points
(p, x) such that x ∈ Xp is a singular point of multiplicity at least r . By Lemma 11,
we can take OX (1) sufficiently ample to separate r -jets; then the fiber of S2(r) over a
point x ∈ X has dimension at most d −

(n+r−1
r−1

)
, and so the dimension of P2(r) cannot

be greater than

n + d −
(

n + r − 1
r − 1

)
≤ d − r + 1,

which gives the assertion. 56
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During the proof, we used the following lemma about separation of jets; it is a
straightforward generalization of [7, Theorem 5.1.17].

Lemma 11 Fix two positive integers N and r. If OX (1) is sufficiently ample, then for
any collection of N distinct points x1, . . . , xN ∈ X, the restriction map

H0(X,OX (1)
)

→
N⊕

i=1

OX (1) ⊗ OX,xi /m
r+1
xi

(34)

is surjective.

We now turn to the proof of Theorem 6.

Proof It suffices to show that the sheaves Exti (GrF
n+1−k M,OP

)
are supported in

codimension at least i + m, for all i > 0. First, we treat the case when i ≥ 2, where
we have

Exti (GrF
n+1−k M,OP

)
( Ri−1π∗

(
ψ∗"n

X ⊗ OY (k)
)

by (33). The support of this sheaf is therefore contained in the locus P1 where the
singular set of the fibers has positive dimension; by Proposition 7, we can make its
codimension greater than i + m by taking OX (1) sufficiently ample.

What remains is the case i = 1. The exact sequence in (32) shows that Ext1(Grn+1−k
M,OP

)
is the cokernel of the restriction map

GrF
k M → π∗

(
ψ∗"n

X ⊗ OY (k)
)
.

To complete the proof, we have to show that this map is surjective except on a set of
codimension at least m + 1. We may restrict our attention to the open subset P\P1
where π : Y → P has finite fibers; over that set, π is a finite morphism, and so the
stalk of π∗

(
ψ∗"n

X ⊗ OY (k)
)

at a point p ∈ P\P1 equals H0(Yp,"
n
X (k)

)
. Since we

know from Corollary 3 that H0(X,"n
X (k)

)
⊗ OP (k) → GrF

k M is always surjective,
it is therefore sufficient to prove that the map

H0(X,"n
X (k)

)
→ H0(Yp,"

n
X (k)

)
(35)

is surjective, except when p ∈ P\P1 lies in a subset of codimension ≥ m + 1.
Let P2 ⊆ P be the set of hyperplane sections Xp that either have more than m

singular points, or have a singular point of multiplicity greater than m + 1; by Propo-
sition 7, the codimension of P2 is at least m + 1. On the other hand, (35) is surjective
for each p ∈ P\P2; indeed, Yp consists of at most m points, each with multiplicity
no greater than m + 1, and so we can apply Lemma 11. This concludes the proof that
GrF

k M satisfies Serre’s condition Sm . 56

Corollary 6 If OX (1) is sufficiently ample, then for each k = 1, . . . , n, the sheaves
GrF

k M and FkM are reflexive.
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