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Abstract Given a family of intermediate Jacobians (for a polarizable varia-
tion of integral Hodge structure of odd weight) on a Zariski-open subset of
a complex manifold, we construct an analytic space that naturally extends
the family. Its two main properties are: (a) the horizontal and holomorphic
sections are precisely the admissible normal functions without singularities;
(b) the graph of any admissible normal function has an analytic closure inside
our space. As a consequence, we obtain a new proof for the zero locus conjec-
ture of M. Green and P. Griffiths. The construction uses filtered D-modules
and M. Saito’s theory of mixed Hodge modules; it is functorial, and does not
require normal crossing or unipotent monodromy assumptions.

Mathematics Subject Classification (2000) 14D07 · 32G20 · 14K30

1 Overview

1.1 Introduction

In February 2008, during a lecture at the Institute for Pure and Applied Math-
ematics, P. Griffiths posed the problem of constructing Néron models for arbi-
trary families of intermediate Jacobians. In other words, given a family of in-
termediate Jacobians over a Zariski-open subset X of a complex manifold X̄,
one should construct a space that extends the family to all of X̄. This has to
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be done in such a way that normal functions extend to sections of the Néron
model.

It is known that two additional conditions need to be imposed to make
this into a reasonable question. Firstly, the family of intermediate Jacobians
should come from a polarizable variation of Hodge structure H, which we
may normalize to be of weight −1. Secondly, one should consider only ad-
missible normal functions. The Néron model is then expected to have the
following structure: (1) Over each point of X̄, its fiber should be a countable
union of complex Lie groups. (2) The components over a point x ∈ X̄ − X

where the variation degenerates should be indexed by a countable group,
whose elements are the possible values for the singularity at x of admissible
normal functions—an invariant introduced by M. Green and P. Griffiths [15]
that measures whether the cohomology class of a normal function is trivial
in a neighborhood of x. (3) The horizontal sections of the identity compo-
nent of the Néron model should be the admissible normal functions without
singularities.

The existence of Néron models with good properties has useful conse-
quences, for instance, a proof of the following conjecture by M. Green and
P. Griffiths:

Conjecture 1.1 Let ν be an admissible normal function on an algebraic va-
riety X. Then the zero locus Z(ν) is an algebraic subvariety of X.

By Chow’s Theorem, it suffices to show that the closure of Z(ν) inside
a projective compactification X̄ remains analytic; this is almost automatic
once ν has been extended to a section of a Néron model over X̄ with good
properties. M. Saito has established Conjecture 1.1 for dimX = 1 by this
method [35]; an entirely different approach has been pursued by P. Brosnan
and G. Pearlstein [4, 5], who have announced a full proof in the summer of
2009 [6].

In this paper, we largely solve P. Griffiths’ problem, by constructing an
analytic space J̄ (H) that has all the properties expected for the identity com-
ponent of the Néron model—in particular, its horizontal and holomorphic
sections are precisely the admissible normal functions without singularities.
We also show that the graph of any admissible normal function has an analytic
closure inside our space; one consequence is a new proof for Conjecture 1.1.
Lastly, we describe the construction of an analytic Néron model for admissi-
ble normal functions with torsion singularities. Based on some examples, we
argue that this is the most general setting in which a Néron model exists as an
analytic space or even as a Hausdorff space.

The construction that is proposed here is very natural and suitably func-
torial; it is motivated by unpublished work of H. Clemens on the family
of hypersurface sections of a smooth projective variety (briefly reviewed in
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Sect. 1.4 below). An important point is that no assumptions on the singular-
ities of D = X̄ − X, or on the local monodromy of the variation of Hodge
structure are needed. This is in contrast to the traditional approach, which
would be to make D into a divisor with normal crossings by using resolution
of singularities, and then to pass to a finite cover to get unipotent monodromy.
We accomplish this generality with the help of M. Saito’s theory of mixed
Hodge modules [32].

Two other solutions to the problem have been given recently. One is by
P. Brosnan, G. Pearlstein, and M. Saito [7], whose Néron model is a topo-
logical space to which admissible normal functions extend as continuous sec-
tions. They also show that the base manifold X̄ can be stratified in such a
way that, over each stratum, their space is a family of complex Lie groups,
and the extended normal function a holomorphic section. Unfortunately, it is
not clear from the construction whether the resulting space is Hausdorff; and
when the local monodromy is not unipotent, the fibers of their Néron model
can be too small, even in one-parameter degenerations of abelian varieties.
We address both issues in Sect. 4.6 below, by showing that there is always a
continuous and surjective mapping from the analytic space constructed here
to the identity component of their Néron model.

A second solution is contained in a series of papers by K. Kato, C. Nakay-
ama, and S. Usui [24, 25], who use classifying spaces of pure and mixed
nilpotent orbits to define a Néron model in the category of log manifolds.
When I first wrote this paper, their construction was only available for
dimX = 1; in the two years since then, they have extended their construc-
tion to the case when D is a normal crossing divisor and HZ has unipotent
monodromy, and have used it to give a third proof of Conjecture 1.1. It seems
likely that there will be a connection between the identity component of their
Néron model and the subset of J̄ (H) defined by the horizontality condition in
Sect. 4.2. This question is currently under investigation by T. Hayama, who
has proved a similar result in the case dimX = 1 [19].

1.2 Conventions

(i) In dealing with filtrations, we index increasing filtrations (such as weight
filtrations, or Hodge filtrations on D-modules) by lower indices, and decreas-
ing filtrations (such as Hodge filtrations on vector spaces, or V -filtrations on
left D-modules) by upper indices. We may pass from one to the other by the
convention that F • = F−•. To be consistent, shifts in the filtration thus have
different effects in the two cases:

F [1]• = F •+1, while F [1]• = F•−1.

This convention agrees with the notation used in M. Saito’s papers. In the
case of weight filtrations, we also define W [1]• = W•−1; the reader should be
aware that this is different from the convention used in [10].
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(ii) Unless stated otherwise, all (mixed) Hodge structures are assumed to
be defined over Z. When dealing with mixed Hodge modules and mixed
Hodge structures (or variations of mixed Hodge structure) at the same time,
we usually consider the Hodge filtrations on the latter as increasing filtra-
tions.

(iii) Throughout the paper, we work exclusively with left D-modules, and
the term “D-module” shall always mean “left D-module” (in contrast to [32],
where right D-modules are used most of the time).

(iv) When M is a mixed Hodge module, the effect of a Tate twist M(k) on
the underlying filtered D-module (M,F ) is as follows:

(M,F )(k) = (M,F [k])= (M,F•−k

)
.

(v) For a mixed Hodge module M on a complex manifold X, we let DX(M)

denote the dual; its underlying holonomic D-module is ExtdX

D (M, DX ⊗ω−1
X ),

where dX = dimX. When M is pure of weight w, a polarization of M is
an isomorphism DX(M) � M(w) in the category of mixed Hodge modules
on X.

(vi) The dual of a complex vector space V will be denoted by V ∨ =
HomC(V ,C). Similar notation is used for mixed Hodge structures and for
coherent sheaves.

1.3 Summary of the principal results

We now describe the construction of the analytic space J̄ (H), and summarize
the main results of the paper. Throughout, we let H be a polarizable variation
of integral Hodge structure of weight −1, defined on a Zariski-open subset X

of a complex manifold X̄. We denote the corresponding family of intermedi-
ate Jacobians by J (H) → X.

To begin with, let us consider a single integral Hodge structure H of weight
−1, with underlying abelian group HZ. To emphasize the analogy with what
comes later, we shall view the Hodge filtration as an increasing filtration
F•HC by setting FpHC = F−pHC. Since H has weight −1, the (normalized)
dual Hodge structure Ȟ = HomMHS(H,Z(1)) is again integral of weight −1,
and we have an isomorphism HC/F0HC � (F0ȞC)∨; this justifies defining
the intermediate Jacobian as

J (H) = (F0ȞC)∨/HZ,

where the map HZ ↪→ (F0ȞC)∨ is induced by the natural action of HC

on ȞC. The reader can find a comparison with the usual definition in Sect. 2.1.
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The advantage of this point of view is that an extension of mixed Hodge struc-
tures

0 → H → V → Z(0) → 0

of “normal function type” determines a point in J (H) with only one choice:
after dualizing the extension, one has F0V̌C � F0ȞC; now any element
vZ ∈ VZ lifting 1 ∈ Z defines a linear functional on F0ȞC, and hence a point
in J (H).

Similarly, the sheaf of sections of the family J (H) → X is given by
(F0ȞO)∨/HZ, where HZ is the local system underlying the variation, and
F•ȞO the Hodge filtration on the flat vector bundle underlying Ȟ = H∨(1).
To extend this formula in a natural way to X̄, we view H as a Hodge module
on X; according to M. Saito’s theory, it can be extended in a canonical man-
ner to a polarizable Hodge module M = j!∗H[dimX] on X̄. The holonomic
D-module M underlying M is always the minimal extension of the flat vector
bundle (HO,∇); in particular, its de Rham complex DR(M) is isomorphic
to the intersection complex of HC. The D-module comes with a good filtra-
tion F = F•M by OX̄-coherent subsheaves; Fp M is difficult to describe in
general, but may be viewed as a natural (if somewhat mysterious) extension
of the Hodge bundle Fp HO .

Guided by the above, we let M̌ = DX̄(M)(1 − n) be the (normalized) dual
of M in the category of Hodge modules on X̄, and denote by (M̌,F ) its un-
derlying filtered D-module. We then define the space J̄ (H) in such a way that
its sheaf of holomorphic sections is (F0M̌)∨/j∗HZ. Namely, we let T (F0M̌)

be the analytic spectrum of the symmetric algebra of F0M̌ (see Sect. 2.3), and
TZ the étalé space of the sheaf j∗HZ. Using a basic result about holonomic
D-modules, we show that there is a holomorphic mapping ε : TZ → T (F0M̌)

(see Sect. 2.6). The main technical result of the paper is that the image of ε is
a closed analytic subset of T (F0M̌).

Theorem A The mapping ε : TZ → T (F0M̌) is a proper holomorphic em-
bedding. Consequently, the fiberwise quotient space T (F0M̌)/TZ is an ana-
lytic space, and in particular Hausdorff.

In fact, the second statement follows from the first by simple topological
arguments (see Sect. 2.5). We now define J̄ (H) = T (F0M̌)/TZ; this is an
analytic space over X̄ that naturally extends the family of intermediate Jaco-
bians. Further evidence that it is a good candidate for the identity component
of the Néron model is given by the following list of properties:

(1) Every normal function on X that is admissible (relative to X̄) and without
singularities extends to a holomorphic section of J̄ (H) (Proposition 4.2).
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In fact, the process that gives the extension is analogous to the one for a
single Hodge structure, explained above.

(2) There is a notion of horizontality for sections of J̄ (H), and the holomor-
phic and horizontal sections are precisely the admissible normal functions
without singularities (Proposition 4.4).

(3) The construction is functorial, in the following sense: Given a holomor-
phic mapping f : Ȳ → X̄ such that Y = f −1(X) is dense in Ȳ , let f ∗H
denote the pullback of the variation of Hodge structure to Y . Then there
is a canonical holomorphic mapping

Ȳ ×X̄ J̄ (H) → J̄ (f ∗H),

compatible with normal functions (Proposition 2.22).
(4) There is a continuous and surjective mapping from J̄ (H) to the identity

component of the Néron model defined in [7], compatible with normal
functions, and which partially contracts of certain fibers (Lemma 4.13).

A few words about the proof of Theorem A. We use results from M. Saito’s
theory, in particular nearby and vanishing cycle functors and their description
in terms of the V -filtration of M. Kashiwara and B. Malgrange, to reduce
the general problem to the case where X̄ = �n, X = (�∗)n, and the local
system HZ has unipotent monodromy (see Sect. 2.11). In that case, there is
an explicit description of the sheaf F0M̌ in terms of P. Deligne’s canonical
extension of (ȞO,∇): for every k ≥ 0, F0M̌ contains all k-th derivatives of
sections in F−k Ȟe

O = Fk Ȟe
O . In particular, we have a holomorphic mapping

T (F0M̌) → T (F0Ȟe
O). In general, the image of TZ in T (F0Ȟe

O) is badly

behaved, which stems from the fact that sections of F0Ȟe
O are not sufficient

to separate sections of HZ “in the limit”. The following result shows that
F0M̌ has enough additional sections to overcome this problem.

Theorem B Let HC denote the space of sections of HC on the universal
covering space H

n, and let N1, . . . ,Nn be the logarithms of the monodromy
operators. Also let σ1, . . . , σr be a collection of holomorphic sections that
generate F0M̌ on �n, and write Q for the natural pairing between HC and
sections of M̌. Then there are constants C > 0 and α > 0, such that for every
z = (z1, . . . , zn) ∈ H

n and every real vector h ∈ HR,

max
k≥0

∥
∥(y1N1 + · · · + ynNn)

kh
∥
∥≤ C · max

1≤j≤r

∣
∣Q
(
h,σj (z)

)∣∣, (1.1)

provided that yj = Im zj ≥ α and 0 ≤ Re zj ≤ 1 for all j = 1, . . . , n.

The estimate (1.1), which will be proved in Sect. 3.7 below, quickly leads
to the proof of Theorem A in the normal crossing case. We obtain it essentially
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by linear algebra methods, using only familiar consequences of the SL2-Orbit
Theorem [10].

Perhaps surprisingly, the space J̄ (H) is also useful for the study of normal
functions with nontrivial singularities. Of course, such normal functions can-
not be extended to holomorphic sections; nevertheless, the following is true
(see Sect. 4.3).

Theorem C Let ν : X → J (H) be a normal function, admissible relative
to X̄. Then the topological closure of its graph inside J̄ (H) is a closed ana-
lytic subset.

This result clearly implies that the closure of the zero locus of ν is an
analytic subset of X̄, and leads to a different proof for Conjecture 1.1. To
prove Theorem C in the normal crossing case (see Sect. 5.2), we use one
consequence of the SL2-Orbit Theorem of [23], namely the boundedness of
the canonical splitting in mixed nilpotent orbits. The rest of the argument is
elementary linear algebra. The reader who is mainly interested in the proof
of Conjecture 1.1 should focus on Parts 3 and 5 of the paper, where mixed
Hodge modules play no role.

For admissible normal functions with torsion singularities, it turns out (in
Proposition 4.8) that there is always a maximal extension whose graph is
closed inside of J̄ (H). As a consequence, it is possible to construct a Néron
model for this class of normal functions by a gluing construction similar to
the one used in [7] (see Sect. 4.4).

Theorem D There is an analytic space J̄tor(H) → X̄ whose holomorphic and
horizontal sections are the admissible normal functions with torsion singular-
ities. It contains J̄ (H) as the identity component, and has similar functoriality
properties.

Unfortunately, it appears that admissible normal functions with torsion sin-
gularities are the biggest class for which there exists a Néron model that is
an analytic space (or a Hausdorff space). The reason is the following: Over
a point in X̄ where an admissible normal function has a non-torsion singu-
larity, the closure of its graph may have a fiber of positive dimension. This
happens even in very simple examples, such as two-parameter families of
elliptic curves (see Sect. 6.3). As we argue in Sect. 4.5 below, it is therefore
unlikely that there can be a Néron model that (a) graphs all admissible normal
functions, (b) has a reasonable identity component, and (c) is Hausdorff as a
topological space. Nevertheless, the result of Theorem C in itself is probably
sufficient to study singularities of normal functions in the way proposed in
[16], without having recourse to such a more general Néron model.

Three examples are described in Part 6, to illustrate different aspects of the
construction. On the other hand, given the length of the paper, we have not
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included any background on mixed Hodge modules, degenerations of varia-
tions of Hodge structure, or admissible normal functions. Here, the reader is
advised to consult the following sources: (1) for mixed Hodge modules, the
nice survey paper [33]; (2) for degenerations of variations of Hodge structure,
the paper [10]; (3) for a discussion of admissibility, the papers [22] and [34].

1.4 Background for the construction

The idea for constructing the analytic space J̄ (H) goes back to unpub-
lished work of H. Clemens, for the case of hypersurface sections of an even-
dimensional variety. Since this has, unfortunately, never appeared in print, we
shall give a brief description here.

Let W be a smooth projective variety of dimension 2m, and consider the
family of its hypersurface sections of large degree, parametrized by the pro-
jective space P̄ = |OW(d)| with d � 0. Denote by D ⊆ P̄ the dual variety;
then P = P̄ −D parametrizes the nonsingular hypersurfaces. Let π : X → P

be the universal family, and let R2m−1π∗ZX (m) be the variation of Hodge
structure on the cohomology of the fibers, normalized to be of weight −1.

Consider now a smooth hypersurface section X of W . A basic fact, due
to P. Griffiths in the case of projective space, and to M. Green [14] in
general, is that the variable part of the cohomology of X is generated by
residues of meromorphic forms; moreover, the Hodge filtration is essen-
tially the filtration by pole order. In particular, for d � 0, the residue map
Res : H 0(W,
2m

W (mX)) → FmH 2m−1
var (X,C) is surjective. H. Clemens ob-

served that, consequently, the intermediate Jacobian

Jvar(X) = (FmH 2m−1
var (X,C))∨

H 2m−1
var (X,Z)

is a subspace of the bigger object

Kvar(X) = H 0(W,
2m
W (mX))∨

H 2m−1
var (X,Z)

.

The original motivation for introducing Kvar(X) was to extend the Abel-
Jacobi map to certain “topological cycles”, and to obtain a form of Jacobi
inversion for such cycles. But if we observe that H 0(W,
2m

W (mX)) is iso-
morphic to the space of sections of the line bundle 
2m

W ⊗ OW(m), then
the numerator in the definition of Kvar(X) is essentially independent of X,
and makes sense even when X becomes singular. This suggests that residues
might be useful in extending the family of intermediate Jacobians from P

to P̄ .
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Let H ⊆ R2m−1π∗ZX (m) be the variation of Hodge structure on the vari-
able part of the cohomology, and (HO,∇) the corresponding flat vector bun-
dle. It can be shown that the residue calculus extends to the family of all
hypersurface sections, including the singular ones, in the following way: Let
j : P ↪→ P̄ be the inclusion, and define subsheaves Fp M of j∗HO by the
condition that a section in H 0

(
U ∩ P, HO

)
belongs to H 0(U,Fp M) iff it

is the residue of a meromorphic 2m-form on U × W with a pole of order at
most m + p along the incidence variety. Let M be the union of the Fp M;
then M is a holonomic D-module on P̄ , extending the flat vector bundle
HO , and F•M is a good filtration. It was proved in [38, 39] that (M,F ) un-
derlies a polarized Hodge module on P̄ , namely the intermediate extension
M = j!∗H[dimP ] of the variation of Hodge structure. This is how filtered
D-modules and M. Saito’s theory introduce themselves into the problem.

This very important example is also the reason why we construct the Néron
model without resolving singularities and without passing to a finite cover.
The geometry of the family of hypersurfaces is beautifully simple: P̄ is a
projective space, and X is a projective bundle over X. Any attempt to re-
solve the singularities of P̄ − P would destroy this nice picture. Moreover,
it can be shown that the sheaf Fp M is a quotient of H 0(W,
2m

W (m + p)) ⊗
OP̄ (m + p), and therefore ample. This circumstance gives our Néron model
many good properties that will be explained in a separate article; it may also
place restrictions on global holomorphic sections of J̄ (H)—that is, on nor-
mal functions without singularities. This is of interest because M. Green and
P. Griffiths have related the existence of singularities of normal functions to
the Hodge conjecture [15, 16].

1.5 History of Néron models

Néron models have their origin in a construction for abelian varieties due to
A. Néron [29]. Let A be an abelian variety, defined over the field of functions
K of a Dedekind domain R. Then the Néron model for A is a smooth and
commutative group scheme A over R, such that A(S) = A(S ×R K) for any
smooth morphism S → R; more details can be found in the book [3]. The
definition means that A is the natural extension of A from the open subset
SpecK to all of SpecR.

In the complex-analytic setting, a family of abelian varieties is a special
case of a polarizable variation of Hodge structure of weight −1. After P. Grif-
fiths popularized the use of normal functions in Hodge theory, Néron models
for one-parameter degenerations of more general variations were constructed
by several people. S. Zucker [41] introduced a generalized intermediate Jaco-
bian for hypersurfaces with one ordinary double point, and used it to define
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the identity component of a Néron model in Lefschetz pencils. H. Clemens
[12] extended this to the construction of a Néron model for one-parameter
degenerations with certain restrictions on the local monodromy. In his pa-
per on admissible normal functions, M. Saito [34] generalized both construc-
tions to arbitrary one-parameter degenerations, and also constructed a com-
pactification of the “Zucker extension” (which, however, is usually not Haus-
dorff).

The recent interest in Néron models stems from the work by M. Green,
P. Griffiths, and M. Kerr [17], who observed that a subspace of the Zucker
extension is sufficient to graph admissible normal functions without singu-
larities. Briefly summarized, their construction works as follows: Let X̄ be a
smooth curve, and H a polarizable variation of Hodge structure with unipo-
tent monodromy, defined on a Zariski-open subset X. At each of the points
x ∈ X̄ − X, a choice of local coordinate determines an asymptotic mixed
Hodge structure; the monodromy-invariant part H = ker(T − id) is indepen-
dent of that choice. The identity component of the Néron model in [17] has
the generalized intermediate Jacobian J (H) = HC/(F 0HC + HZ) as its fiber
over x. M. Green, P. Griffiths, and M. Kerr also defined the full Néron model
that graphs arbitrary admissible normal functions, and computed its finite
group of components at each point of X̄ − X. Their construction produces
a so-called “slit” analytic space; M. Saito [35] has shown that the resulting
topological space is now Hausdorff.

As mentioned above, a construction of a Néron model for X̄ of arbitrary
dimension has been proposed by P. Brosnan, G. Pearlstein, and M. Saito [7].
They observe that, at each point x ∈ X̄, the stalk Hx of the sheaf R1j∗HZ car-
ries a mixed Hodge structure of weight ≤ −1, and therefore defines a gener-
alized intermediate Jacobian J (Hx) = Ext1MHS(Z(0),Hx). The identity com-
ponent of their Néron model is the disjoint union of the complex Lie groups
J (Hx), topologized in a rather tricky way by reduction to the normal-crossing
case. The full Néron model is then obtained by gluing. As pointed out in [7],
the construction does not seem to work very well in the case of non-unipotent
local monodromy.

The most recent work, also alluded to above, is by K. Kato, C. Nakayama,
and S. Usui [24], in the case when X̄ − X is a divisor with normal crossings.
The variation of Hodge structure H determines a period map � : X → �\D,
and if the local monodromy is unipotent, then according to the general theory
in [26], the period map extends to �̄ : X̄ → �\D
 , where D
 is a space of
nilpotent orbits. They show that there is a good choice of a compatible weak
fan 
′, such that an admissible normal function defines a map from X̄ into a
space D′


′ of nilpotent orbits of normal function type. The Néron model can
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then be constructed as the fiber product

J̄
′(H) �′\D′

′

X̄ �\D

�̄

in the category B(log) of log manifolds. The advantage of this construction
is that the Néron model becomes a moduli space for certain log mixed Hodge
structures. On the other hand, the assumption that X̄−X be a normal crossing
divisor is essential for applying the methods of log geometry.

For families of complex abelian varieties, there is a complete construc-
tion of a Néron model in the unpublished Ph.D. thesis of A. Young [40]. His
construction uses toric geometry, and is therefore again restricted to the case
when X̄ − X is a divisor with normal crossings. The identity component of
his model agrees with an older construction by Y. Namikawa [28] for degen-
erations of abelian varieties (and, therefore, with the model that is proposed
in this paper), and is in particular a complex manifold. When all components
are considered together, the space is however not Hausdorff.

2 The construction of the analytic space

2.1 Intermediate Jacobians

The intermediate Jacobian is a complex torus associated to a Hodge structure
of weight −1. It turns out that an nonstandard definition is best suited for the
purpose of constructing Néron models, but we begin with a brief review of
the standard definition, following the conventions in [18, 2.2]. Let H be an
integral Hodge structure of weight −1. We shall always assume that the un-
derlying abelian group HZ is torsion-free, and for consistency with later sec-
tions, we write the Hodge filtration on the underlying complex vector space
HC as an increasing filtration, according to the convention FpHC = F−pHC.

The intermediate Jacobian of H is usually defined as

J (H) = HC

F0HC + HZ

.

There is a natural bijection between J (H) and the group Ext1MHS(Z(0),H)

of (equivalence classes of) extensions of mixed Hodge structure of the form

0 → H → V → Z(0) → 0, (2.1)
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where V is an integral mixed Hodge structure with W−1V = H and GrW0 V =
Z(0). Given an extension as in (2.1), one can find an element vZ ∈ VZ lifting
1 ∈ Z, as well as an element vF ∈ F0VC lifting 1 ∈ C, and the difference vZ −
vF determines a well-defined point of J (H). Conversely, a point h+F0HC +
HZ ∈ J (H) corresponds to the mixed Hodge structure whose underlying bi-
filtered vector space is HC ⊕ C, and whose underlying abelian group is the
image of

HZ ⊕ Z ↪→ HC ⊕ C, (x, n) �→ (x + n · h,n).

It turns out that a definition based on duality is much better suited for the
purpose of constructing Néron models. Recall that Z(1) denotes the Hodge
structure of weight −2 whose underlying complex vector space is C, and
whose underlying abelian group is 2πi · Z. Let

Ȟ = H∨(1) = HomMHS(H,Z(1))

be the (normalized) dual of H , again an integral Hodge structure of
weight −1. Its Hodge filtration is given by

FpȞC = {ψ ∈ HomC(HC,C)
∣∣ ψ(F−pHC) = 0

}
,

and its underlying abelian group is

ȞZ = {ψ ∈ HomC(HC,C)
∣∣ ψ(HZ) ⊆ 2πi · Z

}
.

It follows that HC/F0HC � (F0ȞC)∨, and so the quotient (F0ȞC)∨/HZ is
isomorphic to J (H). One theme of this paper is that this is, in fact, the correct
way to define the intermediate Jacobian.

Definition 2.1 Let H be an integral Hodge structure of weight −1, and de-
fine Ȟ = HomMHS(H,Z(1)). The intermediate Jacobian of H is the complex
torus

J (H) = (F0ȞC)∨/HZ,

where the homomorphism HZ ↪→ (F0ȞC)∨ is given by evaluation.

To motivate what follows, let us briefly discuss the correspondence be-
tween extensions of mixed Hodge structure as in (2.1) and points of J (H).
Given such an extension, the underlying sequence of Z-modules

0 → HZ → VZ → Z → 0
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splits non-canonically, and so we can find vZ ∈ VZ mapping to 1 ∈ Z. After
dualizing (2.1), we obtain a second exact sequence

0 → Z(1) → V̌ → Ȟ → 0,

and the strictness of morphisms of Hodge structure gives F0V̌C � F0ȞC. Now
vZ defines a linear operator on V̌C, and hence on F0V̌C; taking the ambigu-
ity in choosing vZ into account, we therefore get a well-defined point in the
quotient

J (H) = (F0ȞC)∨/HZ.

The main advantage of this construction is that it removes the need to choose
an additional lifting (namely vF ).

Lemma 2.2 Under the natural isomorphism

HC

F0HC + HZ

� (F0ȞC)∨

HZ

,

the above construction gives rise to the same point as the usual one.

Proof Recall that if A and B are two mixed Hodge structures,
Fp Hom(AC,BC) consists of all linear maps f : AC → BC with f (FkAC) ⊆
Fk+pBC. Therefore

F0ȞC = {ψ : HC → C
∣∣ ψ(F0HC) = 0

}
,

and the isomorphism HC/F0HC → (F0ȞC)∨ takes a point h + F0HC to the
linear functional ψ �→ ψ(h). Similarly, we have

F0V̌C = {φ : VC → C
∣∣ φ(F0VC) = 0

}
.

Now let vF ∈ F0VC be a lifting of 1 ∈ C, and consider the composition

HC/F0HC → (F0ȞC)∨ → (F0V̌C)∨.

It takes the element (vZ − vF ) + F0HC to the linear functional φ �→ φ(vZ −
vF ) = φ(vZ), and this shows that both constructions define the same point in
the intermediate Jacobian, as asserted. �

Note Suppose that the Hodge structure H is polarized, and let Q : HZ ⊗
HZ → Z be the alternating and nondegenerate pairing that underlies the po-
larization. Then

H → Ȟ , h �→ 2πi · Q(h,−),
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is an isomorphism of rational Hodge structures; it is an isomorphism of inte-
gral Hodge structures if the polarization is principal.

For the local study of the Néron model, we need a small generalization of
the intermediate Jacobian; it already appears in the paper [7].

Definition 2.3 Let H be an integral mixed Hodge structure of weight ≤ −1.
The generalized intermediate Jacobian of H is the complex Lie group

J (H) = (F0ȞC)∨/HZ,

where Ȟ = HomMHS(H,Z(1)) is an integral mixed Hodge structure of
weight ≥ −1.

For the same reason as before, we have

Ext1MHS

(
Z(0),H

)� HC

F0HC + HZ

� J (H),

and (equivalence classes of) extensions of H by Z(0) are therefore still clas-
sified by the points of J (H).

2.2 Outline of the construction

Our Néron model is an analytic space, obtained by taking a certain quotient
similar to J (H) = (F0ȞC)∨/HZ. We now introduce the relevant objects, and
give an outline of how the analytic space is constructed.

Let X̄ be a complex manifold of dimension n, and let X = X̄ − D be the
complement of a closed analytic subset. Let H = (HO,∇,F•HO, HZ) be a
polarizable variation of Hodge structure of weight −1 on X. To introduce
some notation, we recall that this means the following: HO is a holomorphic
vector bundle with a flat connection ∇ : HO → 
1

X ⊗OX
HO , and HZ is a lo-

cal system of free Z-modules such that ker∇ � HZ ⊗Z C. The Hodge bundles
Fp HO are holomorphic subbundles of HO that satisfy Griffiths’ transversal-
ity condition ∇(Fp HO) ⊆ 
1

X ⊗ Fp+1HO . Finally, the condition that H is
polarizable means that there should exist an alternating and nondegenerate
pairing Q : HZ ⊗ HZ → ZX that is flat with respect to the connection ∇ , and
satisfies Q(Fp HO,Fq HO) = 0 if p + q ≤ 0. The specific choice of Q plays
no role in the construction.

Note Here and in what follows, we consider the flat vector bundle (HO,∇)

as a special case of a left D-module; it is then more natural to write the Hodge
filtration as an increasing filtration, by setting Fp HO = F−p HO .
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Each Hodge structure in the variation has its associated intermediate Ja-
cobian (defined as in Sect. 2.1); they fit together into a holomorphic fiber
bundle that we denote by J (H) → X. By definition, its sheaf of holomor-
phic sections is given by (F0ȞO)∨/HZ, where Ȟ = H∨(1) again denotes the
(normalized) dual variation.

Now let M be the Hodge module on X̄, obtained from the variation H by
intermediate extension via the inclusion map j : X ↪→ X̄ [32, Theorem 3.21].
Then M is a polarizable Hodge module of weight n − 1 with strict support
equal to all of X̄. Its underlying perverse sheaf ratM is simply the intersec-
tion complex of the local system HZ ⊗ Q. Let (M,F ) be the filtered left
D-module underlying M . This means that M is a filtered holonomic DX̄-
module, and F = F•M is an increasing filtration of M by OX̄-coherent sub-
sheaves that is good in the sense of [2, Chap. II, Sect. 4]. The condition on the
strict support implies that M is the minimal extension of the flat vector bun-
dle (HO,∇) from X to X̄. The coherent sheaves Fp M are natural extensions
of the Hodge bundles, because j∗(Fp M) = Fp HO .

To extend J (H) to an analytic space over X̄, we attempt to generalize the
formula J (H) = (F0ȞC)∨/HZ, again by using duality. So let

M̌ = DX̄(M)(1 − n)

be the (normalized) dual Hodge module; it is the intermediate extension of Ȟ
and again has weight n−1. Let (M̌,F ) be the underlying filtered D-module.
Then T (F0M̌), constructed in Sect. 2.3 below, is an analytic space whose
sheaf of holomorphic sections is (F0M̌)∨. On the other hand, we may let TZ

be the étalé space of the sheaf j∗HZ; this is an analytic space over X̄ with
sheaf of sections j∗HZ. It is then very natural to try to define the desired
extension of J (H) as the quotient

J̄ (H) = T (F0M̌)/TZ.

To make this idea work, we have to do several things. Firstly, we construct in
Sect. 2.4 a holomorphic mapping ε : TZ → T (F0M̌) that generalizes the em-
bedding of the local system HZ into the vector bundle T (F0ȞO). Secondly,
we prove that the ε is a closed embedding, and that the fiberwise quotient
T (F0M̌)/TZ is an analytic space (in particular, Hausdorff), provided that the
following condition is satisfied.

Condition 2.4 The mapping ε : TZ → T (F0M̌) is injective, and ε(TZ) is a
closed analytic subset of T (F0M̌).

Thirdly—and most importantly—we show that Condition 2.4 is always
true. We reduce the general problem to the case when D is a normal crossing
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divisor and HZ has unipotent local monodromy, using methods from Saito’s
theory (in particular, an analysis of how the Hodge filtration on a mixed
Hodge module behaves under pullback). Finally, we establish Condition 2.4
by a local analysis, using results and methods from the theory of degenerating
variations of Hodge structure [10]. A valuable consequence is that the con-
struction of J̄ (H) works without any assumptions on the divisor D = X̄ − X

or on the local monodromy of HZ.

2.3 The analytic space associated to a coherent sheaf

Let X be an analytic space, and F a coherent analytic sheaf on X. In this sec-
tion, we describe how to associate to F an analytic space T (F ) → X, rel-
atively Stein, whose sheaf of holomorphic sections is F∨ = Hom(F ,OX).
The construction of T (F ) is extremely simple: let SymOX

(F ) be the sym-
metric algebra in F , and define

T (F ) = SpecX

(
SymOX

(F )
)

as the analytic spectrum of this sheaf of algebras. When F = OX(E) is the
sheaf of sections of a holomorphic vector bundle E → X, we recover the dual
vector bundle since T (F ) = E∗. This leads to the following more concrete
description of T (F ). Let j : U ↪→ X be any open subset of X that is Stein.
Then j∗F can be written as a quotient of locally free sheaves on U ,

E1
ϕ−→ E0 → j∗F → 0.

Let E∗
i → U be the holomorphic vector bundle whose sheaf of sections is

E ∨
i . Then ϕ induces a map of vector bundles E∗

0 → E∗
1 , and T (j∗F ) ⊆ E∗

0
is the preimage of the zero section. The reason is that SymOX

(j∗F ) is the
quotient of SymOX

(E0) by the ideal generated by ϕ(E1).
From the local description, it follows that T (F ) → X is relatively Stein,

meaning that the preimage of every Stein open subset is again Stein; more-
over, every fiber is a linear space, and over any analytic subset of X where
the fiber dimension is constant, T (F ) is a holomorphic vector bundle. As an
analytic space, T (F ) has the following universal property.

Lemma 2.5 For any holomorphic mapping f : Y → X from an analytic
space Y ,

MapX

(
Y,T (F )

)� HomOY

(
f ∗F ,OY

)
.

Proof Holomorphic mappings Y → T (F ) over X are in one-to-one corre-
spondence with morphisms of OX-algebras SymOX

(F ) → f∗OY , hence with
morphisms of OX-modules F → f∗OY , and finally with morphisms of OY -
modules f ∗F → OY . �
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In particular, the sheaf of global holomorphic sections of T (F ) → X

is precisely the sheaf F∨. The next lemma shows that the construction of
T (F ) behaves well under pullback by arbitrary holomorphic mappings. It
follows that the fiber over a point x ∈ X is the dual of the vector space
F ⊗OX

OX,x/mx .

Lemma 2.6 For any holomorphic mapping f : Y → X, we have

Y ×X T (F ) � T (f ∗F ).

Proof This is true because f ∗ SymOX
(F ) � SymOY

(f ∗F ), by the universal
property of the symmetric algebra. �

Lemma 2.7 Let F →→ G be a surjective map of coherent sheaves. Then the
induced map T (G ) → T (F ) is a closed embedding.

Proof The statement is local on X, and so we may assume without loss of
generality that X is a Stein manifold. By writing F as the quotient of a locally
free sheaf E0, we can find compatible presentations

E1 E0 F 0

E2 E0 G 0

ϕ

ψ

Obviously, we now have T (G ) ⊆ T (F ) ⊆ E∗
0 , proving the assertion. �

Note Another analytic space with sheaf of sections F∨ would be T (F∨∨),
obtained by replacing F by its double dual. Since the sheaf F∨∨ is reflexive,
this may seem a more natural choice at first glance. But the problem is that
taking the dual does not commute with pullbacks by non-flat maps; this sec-
ond choice of space is therefore not sufficiently functorial for our purposes.

2.4 A lemma about holonomic modules

Here we recall a general result about holonomic D-modules. It is used twice
in the paper: to construct the morphism j∗HZ ↪→ (F0M̌)∨; and to study ex-
tensions of admissible normal functions.

Let M be a holonomic left D-module on a complex manifold X of di-
mension n. By Kashiwara’s theorem, the holomorphic de Rham complex (in
degrees −n, . . . ,0)

DR(N ) = [N → 
1
X ⊗ N → 
2

X ⊗ N → ·· · → 
n
X ⊗ N

][n]



18 C. Schnell

is constructible, and we let Hk(DR(N )) be its cohomology sheaf in degree k,
a constructible sheaf of complex vector spaces. Let

Ň = DX(N ) = ExtnDX

(
N , DX ⊗ ω−1

X

)

be the left D-module dual to N . The following result is certainly well-known,
but we include a proof for the sake of completeness.

Lemma 2.8 Let N be a holonomic D-module on a complex manifold X.

(1) We have ExtkDX
(Ň ,OX) � Hk−dX(DR(N )) for k ∈ Z, and in particular,

HomDX
(Ň ,OX) � ker

(∇ : N → 
1
X ⊗ N

)
.

(2) There is a canonical injective morphism

j∗j−1H−n
(
DR(N )

)
↪→ HomDX

(Ň ,OX)

for any open subset j : U ↪→ X such that j−1N is a flat vector bundle.

Proof Let n = dimX. The Spencer complex SpX(DX), with terms

Sp•
X(DX) = DX ⊗OX

∧−•
�X,

gives a natural resolution for OX as a left DX-module. A simple spectral
sequence argument, together with the vanishing of ExtkDX

(Ň , DX) for k �= n,
then shows that we must have

ExtkDX
(Ň ,OX) � Hk−n

(
ExtnDX

(
Ň ,SpX(DX)

))
.

On the other hand, we compute that

ExtnDX

(
Ň ,Sp•

X(DX)
)� ExtnDX

(Ň , DX) ⊗OX

∧−•
�X � Sp•

X

(
N ⊗ ωX

)
.

It is well-known that the Spencer complex of a right D-module is isomorphic
to the de Rham complex of the associated left D-module; therefore, SpX(N ⊗
ωX) � DR(N ), and so we obtain the desired isomorphism. All the remaining
assertions are simple consequences. �

2.5 Quotients of certain complex manifolds

In this section, we explain how conditions analogous to Condition 2.4 allow
one to prove that certain quotient spaces of holomorphic vector bundles are
again complex manifolds. The reasoning uses only very basic topology, but I
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have not been able to find a source where the results that we need are stated
in exactly this form.

In any case, situation that we are concerned with is the following. Let
p : E → X be a holomorphic vector bundle on a complex manifold X. Let
G be a sheaf of finitely generated abelian groups on X, and suppose that we
have a morphism of sheaves G → OX(E). It defines a holomorphic mapping
ε : G → E, where G is the étalé space of the sheaf G . We shall assume that
the following two conditions hold:

(i) The image ε(G) ⊆ E is a closed analytic subset of E.
(ii) The mapping ε is injective.

For a point x ∈ X, we let Ex = p−1(x) and Gx = ε−1(Ex) be the fibers.
The second condition is equivalent to the injectivity of the individual maps
Gx → Ex ; note that ε(Gx) is then automatically a discrete subset of E, being
both closed analytic and countable.

Lemma 2.9 For any point g ∈ G, there is an open neighborhood of ε(g) ∈ E

whose intersection with ε(G) is the image of a local section of G.

Proof As an analytic subset, ε(G) has a decomposition into (countably many)
irreducible components, and there is a small open neighborhood of e = ε(g)

that meets only finitely many of them. Shrinking that neighborhood, if neces-
sary, we can find an open set U containing e, such that ε(G) ∩ U has finitely
many irreducible components, each passing through the point e. Since ε is
injective by (ii), there can be only one such component Z; noting that ε(Gx)

is discrete in E, we may further shrink U and assume that Z ∩ Ex = {e}. For
dimension reasons, we then have dimZ = dimX. Now G is the étalé space
of the sheaf G , and so we can find a local section of G, defined in a suitable
neighborhood V of the point x = p(e) ∈ X, with the property that γ (x) = g.
It follows that Z = ε(γ (V )), as claimed. �

Lemma 2.10 The mapping ε : G → E is a closed embedding.

Proof First of all, ε is a proper map. To see this, let gn ∈ G be any sequence
of points in G such that ε(gn) converges to a point e ∈ E. By (i), the limit is
of the form e = ε(g) for some g ∈ G. By the preceding lemma, there is an
open neighborhood U containing e, and a local section γ : V → G, such that
U ∩ ε(G) = ε(γ (V )) and g = γ (x). We conclude that gn = γ (xn) for some
choice of xn ∈ V . But now xn = p(ε(gn)) → x, and therefore gn → g; this
establishes the properness of ε. Lemma 2.9 also shows that ε : G → ε(G) is
a local isomorphism. Since ε is in addition proper and injective, it has to be a
closed embedding. �
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The lemma justifies identifying G with its image in E; from now on, we
regard G as a closed submanifold of E. We are then interested in taking the
fiberwise quotient of E by G. Let ∼ be the equivalence relation on E defined
by

e ∼ e′ if and only if p(e) = p(e′) and e − e′ ∈ G.

Let q : E → E/ ∼ be the map to the quotient, endowed with the quotient
topology.

Lemma 2.11 The mapping q is open.

Proof Let U ⊆ E be any open set; we need to verify that q−1(q(U)) is
again open. It suffices to show that for any sequence of points en that con-
verges to some e ∈ q−1(q(U)), all but finitely many of the en also belong
to q−1(q(U)). Since q(e) ∈ q(U), there exists e′ ∈ U with e ∼ e′, hence
e′ − e ∈ G. Let γ : V → G be a local section such that e′ = e + γ (p(e)).
If we put e′

n = en + γ (p(en)), then e′
n → e′, and so e′

n ∈ U for large n. But
then en ∼ e′

n also belongs to q−1(q(U)). �

Lemma 2.12 The quotient E/ ∼ is Hausdorff.

Proof Since q is open, the quotient E/ ∼ is Hausdorff if and only if the
equivalence relation ∼ is closed in E × E. Suppose that we have a sequence
of points (en, e

′
n) with en ∼ e′

n, such that (en, e
′
n) → (e, e′) ∈ E × E. Since p

is continuous, we deduce that p(e) = p(e′). But then e′
n − en ∈ G converges

to e′ − e, and because G is closed, it follows that e′ − e ∈ G, and so e′ ∼ e.
This proves that ∼ is indeed a closed subset of E × E. �

Proposition 2.13 If the two conditions in 2.5(i) and 2.5(ii) are satisfied, then
the quotient space E/ ∼ is a complex manifold, and the mapping q is holo-
morphic.

Proof From Lemma 2.9 and the fact that q is open, it follows that any suf-
ficiently small open set in E is mapped homeomorphically onto its image in
E/ ∼, and thus can serve as a local chart for the quotient. Being Hausdorff,
E/ ∼ is then a complex manifold, and the quotient map q is holomorphic by
construction. �

2.6 The construction of the quotient

In this section, we define the holomorphic mapping ε : TZ → T (F0M̌), and
prove that the quotient T (F0M̌)/TZ is an analytic space, provided that Con-
dition 2.4 is satisfied.
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Let TZ → X̄ denote the étalé space of the sheaf j∗HZ; as a set, TZ is
the union of all the stalks of the sheaf, topologized to make every section
continuous. For every point in TZ, there is a unique local section of j∗HZ that
passes through that point. By using such local sections as charts, TZ acquires
the structure of a complex manifold, making the projection map and every
section of the sheaf holomorphic. Note that the map pZ : TZ → X̄ is locally
an isomorphism, and therefore flat.

We now explain how to embed TZ into the analytic space T (F0M̌). On X,
where we have a variation of Hodge structure of weight −1, it is clear how to
do this. To extend the embedding to all of X̄, we need to know that sections of
j∗HZ can act on arbitrary sections of the D-module M̌. Recall that M is the
intermediate extension of the variation of Hodge structure H. The underlying
D-module M is thus the minimal extension of the flat vector bundle HO =
HC ⊗C OX , which implies that

j∗HC � ker
(∇ : M → 
1

X̄
⊗ M

)
.

On the other hand, Lemma 2.8 provides us with an isomorphism

ker
(∇ : M → 
1

X̄
⊗ M

)� HomDX̄

(
M̌,OX̄

)
.

Now j∗HZ is a subsheaf of j∗HC, while F0M̌ is a subsheaf of M̌; after
restriction, we therefore get a canonical injective morphism

j∗HZ ↪→ (F0M̌)∨.

Since the projection pZ : TZ → X̄ is flat, the morphism determines a holomor-
phic section of p∗

Z
(F0M̌)∨ � (p∗

Z
F0M̌)∨ on TZ. By the universal property

of T (F0M̌) in Lemma 2.6, the section gives rise to a holomorphic mapping

ε : TZ → T (F0M̌) (2.2)

from the complex manifold TZ to the analytic space T (F0M̌). Our next task
is to show that the fiberwise quotient T (F0M̌)/TZ is an analytic space.

Proposition 2.14 Assume that Condition 2.4 is satisfied. Then the holomor-
phic mapping ε : TZ → T (F0M̌) is a closed embedding.

Proof The question is clearly local on X̄; thus we may assume that X̄ is a
Stein manifold. As explained in Sect. 2.3, we present F0M̌ as a quotient of
locally free sheaves,

E1 → E0 → F0M̌ → 0, (2.3)
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and let ϕ : E∗
0 → E∗

1 be the corresponding map of vector bundles; then

T (F0M̌) = ϕ−1(0) is a closed analytic subset of E∗
0 . Because of Condi-

tion 2.4, the holomorphic mapping from TZ to E∗
0 satisfies the two hypotheses

in Sect. 2.5; we can now apply Lemma 2.9 to conclude that TZ → E∗
0 , and

therefore also ε itself, is a closed embedding. �

From now on, we identify TZ with its image in T (F0M̌). Next, we de-
duce from the general results in Sect. 2.5 that the quotient T (F0M̌)/TZ is an
analytic space.

Proposition 2.15 Assume that Condition 2.4 is satisfied. Then the fiberwise
quotient T (F0M̌)/TZ is an analytic space over X̄.

Proof This is again a local problem, and so we continue to assume that X̄ is a
Stein manifold, and that F0M̌ has a presentation as in (2.3). Let p : E∗

0 → X̄

be the projection, and let ∼ be the equivalence relation on E∗
0 given by

e ∼ e′ if and only if p(e) = p(e′) and e′ − e ∈ TZ.

The quotient space Y = E∗
0/TZ = E∗

0/ ∼ is a complex manifold by Proposi-
tion 2.13, and the quotient map q : E∗

0 → Y is holomorphic. In particular, the
quotient is a Hausdorff space (see Lemma 2.12).

The mapping ϕ : E∗
0 → E∗

1 takes the submanifold TZ into the zero section
of E∗

1 . This implies that we have a factorization ϕ = ψ ◦ q , with ψ : Y → E∗
1

holomorphic. Remembering that T (F0M̌) = ϕ−1(0), we see that the quotient
T (F0M̌)/TZ may be naturally identified with the closed subset ψ−1(0) of Y ,
and is therefore an analytic space as well. �

2.7 The V-filtration and pullbacks of Hodge modules

In this section, we briefly review the V -filtration, and then study the behavior
of the Hodge filtration under pullbacks of mixed Hodge modules. This will
be used in Sect. 2.8 below to prove the functoriality of our construction.

Let X be a complex manifold, and Z ⊆ X a submanifold of codimension
one. We first look at the local setting where Z is the zero locus of a holo-
morphic function t ; set ∂ = ∂/∂t . Let IZ = t · OX be the corresponding ideal
sheaf. Then

V 0DX = {D ∈ DX

∣∣ D · IZ ⊆ IZ

}
.

Now let M be a left D-module on X. A decreasing filtration V = V •M,
indexed by Q, is called a V -filtration of M relative to the closed submanifold
Z if it satisfies the following six conditions:

(i) Each V α M is a coherent V 0DX-module.
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(ii) The filtration is exhaustive, meaning that M =⋃α V α M, and left con-
tinuous, meaning that V α M =⋂β<α V β M.

(iii) The filtration is discrete, meaning that any bounded interval contains
only finitely many α ∈ Q such that GrαV M = V α M/V >α M is nonzero.

(iv) One has t · V α M ⊆ V α+1M and ∂ · V α M ⊆ V α−1M.
(v) For α � 0, the filtration satisfies V α M = t · V α−1M.

(vi) The operator t∂ − α + 1 is nilpotent on GrαV M.

Elementary reasoning shows that there can be at most one such filtration;
M. Kashiwara [20] and B. Malgrange [27] have proved that, for M regular
and holonomic, the V -filtration always exists. It is easy to deduce from the
conditions that t : V α−1M → V α M is an isomorphism for α > 1, and that
∂ : Grα+1

V M → GrαV M is an isomorphism for α �= 0.
Now consider the case when (M,F ) is a filtered D-module. In that case,

the V -filtration is said to be compatible with F , and (M,F ) is called quasi-
unipotent and regular along Z [31, Sect. 3.2] if, in addition to the above:

(vii) For every p, and every α > 1, one has FpV α M = t · FpV α−1M.
(viii) For every p, and every α < 0, one has Fp GrαV M = ∂ ·Fp−1 Grα+1

V M.

When (M,F ) is the filtered D-module underlying a polarizable mixed
Hodge module, the V -filtration exists and is compatible with F ; moreover,
each GrαV M, with the induced filtration, again underlies a mixed Hodge mod-
ule on Z. In fact, this is built into M. Saito’s definition [32, Sect. 2.17] of the
category of mixed Hodge modules.

The V -filtration is essential for the construction of nearby cycles, vanish-
ing cycles, and the various pullback operations on mixed Hodge modules.
Suppose that M is a mixed Hodge module on X, with underlying filtered
D-module (M,F ). To begin with, let i : Z ↪→ X be the inclusion of a sub-
manifold that is defined by a single holomorphic equation t . In this situation,
one can associate to M two mixed Hodge modules on Z:

(a) The (unipotent) nearby cycles ψt,1M . Their underlying filtered D-module
is (Gr1

V M,F ), where the Hodge filtration is induced by that on M.
(b) The vanishing cycles φt,1M . Their underlying filtered D-module is given

by (Gr0
V M,F [−1]).

The two standard maps can : ψt,1M → φt,1M and Var : φt,1M → ψt,1M(−1)

are morphisms of mixed Hodge modules; on the level of D-modules, can is
multiplication by ∂ , and Var multiplication by t . The axioms imply that t∂ is
nilpotent on Gr1

V M; it corresponds to (2πi)−1N , where N is the logarithm
of the monodromy around Z on the nearby cycles ψt,1M .

The pullback i∗M is an object in the derived category Db MHM(Z); by
[32, Corollary 2.24], it is represented by the complex (in degrees −1 and 0)

i∗M =
[
ψt,1M

can−→ φt,1M
]
[1].
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Each cohomology module Hki∗M is again a mixed Hodge module on M ,
nonzero only for k = −1,0. Note that pulling back does not increase weights:
if M has weight ≤ w, then Hki∗M has weight ≤ w+k [32, Proposition 2.26].
Analogously, i!M is represented by the complex (in degrees 0 and 1)

i!M =
[
φt,1M

Var−→ ψt,1M(−1)
]
,

and Hki!M has weight ≥ w + k if M has weight ≥ w.
We now describe how the operation i! interacts with the Hodge filtration

on the underlying D-modules, first in the case of a closed embedding, then in
general.

Lemma 2.16 Let i : Z ↪→ X be the inclusion of a submanifold, defined by a
single holomorphic equation t . Let i!(M,F ) denote the complex of filtered
D-modules on Z underlying i!M ∈ Db MHM(Z).

(i) For every p ∈ Z, there is a canonical morphism

Fp−1 i!(M,F ) → Li∗(Fp M)[−1]
in the derived category Db Coh(Z).

(ii) When M is smooth, the morphism in (i) is an isomorphism.

Proof According to the discussion above, the complex of D-modules under-
lying the object i!M is

i!(M,F ) = [Gr0
V M t−→ Gr1

V M
]
,

with Hodge filtration given by

Fp−1i
!(M,F ) = [Fp Gr0

V M t−→ Fp Gr1
V M

]
.

We regard this complex of coherent sheaves on Z as an object in the derived
category Db Coh(Z). Now consider the following commutative diagram:

Fp Gr0
V M Fp Gr1

V M

FpV 0M FpV 1M

Fp M Fp M

t

t

t

(2.4)
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Because V and F are compatible, the multiplication map t : FpV α−1 →
FpV α is an isomorphism for α > 1; this implies that the morphism between
the complexes in the first two rows of (2.4) is a quasi-isomorphism. The com-
plex in the third row represents Li∗(Fp M)[−1], and so we obtain the desired
morphism in Db Coh(Z).

Now we prove (ii). When M is smooth, and hence a variation of mixed
Hodge structure on X, the underlying D-module M is a flat vector bun-
dle. In that case, V α M = I

�α�−1
Z M is essentially the IZ-adic filtration (with

the convention that V α M = M for α ≤ 0). In particular, Gr1
V M = i∗M

and Gr0
V M = 0, and so Fp−1i

!(M,F ) is nothing but the locally free sheaf
i∗(Fp M) in degree one. It is then immediate from the construction that the
morphism is an isomorphism. �

More generally, suppose that i : Z ↪→ X is the inclusion of a submanifold
of codimension d . If Z is defined by holomorphic equations t1, . . . , td , the
functors i∗ and i! may be obtained by iterating the construction above [32,
p. 263]; thus i∗M is the single complex associated to the d-fold complex of
mixed Hodge modules

((
ψt1,1

can−→ φt1,1
) ◦ · · · ◦ (ψtd,1

can−→ φtd ,1
)
(M)

)[d], (2.5)

and i!M is the single complex associated to the d-fold complex

(
φt1,1

Var−→ ψt1,1(−1)
) ◦ · · · ◦ (φtd,1

Var−→ ψtd,1(−1)
)
(M). (2.6)

The statement of Lemma 2.16 continues to hold in this setting, and can be
proved in a similar manner. It is, however, advantageous to keep the construc-
tion free of a choice of local equations for Z, and so we shall give a different
argument.

Lemma 2.17 Let i : Z ↪→ X be the inclusion of a submanifold of codimen-
sion d , and as before, let i!(M,F ) denote the complex of filtered D-modules
on Z underlying the object i!M ∈ Db MHM(Z).

(i) For every p ∈ Z, there is a canonical morphism

Fp−d i!(M,F ) → Li∗(Fp M)[−d]
in the derived category Db Coh(Z).

(ii) When M is smooth, the morphism in (i) is an isomorphism.

Proof The functor i! is the right adjoint of i∗, and since i is a closed embed-
ding, we have the adjunction morphism i∗i!M → M in Db MHM(X). Pass-
ing to filtered D-modules, we then get a morphism Fp(i∗i!(M,F )) → Fp M.
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Now i is a closed embedding of codimension d , and because of how the direct
image functor is defined in [31, 2.3], we have a canonical morphism

i∗
(
ωZ ⊗ Fp−d i!(M,F )

)→ ωX ⊗ Fp

(
i∗i!(M,F )

)
.

Let ωZ/X = ωZ ⊗ i∗ω−1
X . Composing the two morphisms, we obtain

i∗
(
ωZ/X ⊗ Fp−d i!(M,F )

)→ Fp M.

On the level of coherent sheaves, the functor Li! = ωZ/X[−d] ⊗ Li∗ is the
right adjoint of i∗; by adjunction, we therefore get the desired morphism

Fp−d i!(M,F ) → ω−1
Z/X ⊗ Li!(Fp M) = Li∗(Fp M)[−d]

in the derived category Db Coh(Z). When M is smooth, and hence a variation
of mixed Hodge structure, both complexes are isomorphic to the locally free
sheaf i∗(Fp M) in degree d; we leave the easy verification of (ii) to the care
of the reader. �

Note It is not hard to show that the two different constructions in Lemma 2.16
and Lemma 2.17 give rise to the same morphism when d = 1; since we do
not need this fact below, we omit the proof.

To conclude the discussion, we now consider the functor

f ! : Db MHM(X) → Db MHM(Y )

for an arbitrary holomorphic mapping f : Y → X between complex mani-
folds.

Proposition 2.18 Let f : Y → X be a holomorphic mapping between two
complex manifolds, and let M be a mixed Hodge module on X with underly-
ing filtered D-module (M,F ). Denote by f !(M,F ) the complex of filtered
D-modules underlying f !M ∈ Db MHM(Y ). Then for every p ∈ Z, we have
a canonical morphism

Fp+dY −dX
f !(M,F ) → Lf ∗(Fp M)[dY − dX]

in Db Coh(Y ), which is an isomorphism when M is smooth.

Proof Note that the argument used during the proof of Lemma 2.17 does
not work here (unless f is, say, quasi-projective), because the functor f∗ for
mixed Hodge modules cannot be defined in this generality. Instead, we argue
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by factoring f through its graph. Let r = dY − dX . To compute f !M , one
factors f as

Y W X
i q

with q smooth of relative dimension k, and i a closed embedding of codi-
mension k − r . Then we have f !M = i!N[k], where we set N = q !M[−k].
According to the definition of the pullback in [32, 2.17],

N = q !M[−k] = H−kq !M = Hkq∗M(k)

is a single mixed Hodge module; the underlying D-module is N = q∗M,
with the pullback taken in the category of quasi-coherent sheaves, and the
Hodge filtration is given by Fp N = q∗(Fp−k M). By Lemma 2.17, we have
a canonical morphism

Fp+r i!(N ,F ) → Li∗(Fp+k N )[r − k].
Since Li∗(Fp+k N ) = Li∗q∗(Fp M) = Lf ∗(Fp M), we therefore get a mor-
phism

Fp+rf
!(M,F ) = Fp+r i!(N ,F )[k] → Li∗(Fp+k N )[r] = Lf ∗(Fp M)[r],

as desired. For smooth M , it is an isomorphism because of the second asser-
tion in Lemma 2.17. It remains to prove that the morphism is independent of
the factorization f = q ◦ i; this is the content of the following lemma. �

Lemma 2.19 Let f = q1 ◦ i1 = q2 ◦ i2 be two factorizations of f : Y → X

into a closed embedding ij : Y ↪→ Wj and a smooth morphism qj : Wj → X.
Then the two resulting morphisms Fp+dY −dX

f !(M,F ) → Lf ∗(Fp M)[dY −
dX] are equal.

Proof Let W = W1 ×X W2 be the fiber product; both projections
pj : W → Wj are smooth. Because of the commutative diagram

W1

Y W X

W2

i

i 1

i2

q
1

q 2

q

p1

p2
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it suffices to show that the factorizations qj ◦ ij both produce the same mor-
phism as q ◦ i. The construction in Proposition 2.18 is obviously insensitive
to factorizing q = q1 ◦ p1 = q2 ◦ p2 since all five maps involved are smooth;
this reduces the problem to considering the closed embeddings ij = pj ◦ i,
for which the assertion is clear by Lemma 2.17. �

Corollary 2.20 Under the same assumptions as in Proposition 2.18, define
Nf = HdX−dY f !M(dX −dY ) ∈ MHM(Y ), and denote the underlying filtered
D-module by (N f ,F ). Then for every p ∈ Z, we have a canonical morphism

Fp N f → f ∗(Fp M),

which is an isomorphism if M is smooth.

2.8 Functoriality

In this section, we prove that our construction of the space J̄ (H) is functorial,
in a sense made precise below. Let f : Ȳ → X̄ be a holomorphic mapping be-
tween two complex manifolds, such that Y = f −1(X) is a dense Zariski-open
subset of Ȳ ; we also write f : Y → X for the induced mapping. As above, let
H be a polarizable variation of Hodge structure of weight −1 on X, let M be
the Hodge module on X̄ obtained by intermediate extension, and (M̌,F ) the
filtered D-module underlying M̌ = DX̄(M)(1 − dX). We denote the pullback
of the variation of Hodge structure by Hf = f ∗H, its intermediate extension
to Ȳ by Mf , and the filtered D-module underlying M̌f = DȲ (Mf )(1 − dY )

by (M̌f ,F ).

Lemma 2.21 We have a canonical morphism of coherent sheaves

F0M̌f → f ∗(F0M̌),

whose restriction to Y is the obvious isomorphism of Hodge bundles.

Proof Let n = dX and m = dY , and note that M̌ has weight n − 1. Since the
functor f ! does not decrease weights, the mixed Hodge module

Nf = Hn−mf !M̌(n − m)

has weight ≥ m − 1. The pure Hodge module Wm−1N
f is therefore a sub-

module of Nf . The restriction of Wm−1N
f to Y is canonically isomorphic

to the variation of Hodge structure Ȟf = f ∗Ȟ; in the decomposition by
strict support, the component with strict support Ȳ has to be isomorphic
to M̌f . Since the decomposition is canonical, we get a canonical morphism
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M̌f ↪→ Wm−1N
f ↪→ Nf . Passing to the Hodge filtrations on the underly-

ing D-modules, we thus have a canonical morphism of coherent sheaves
F0M̌f ↪→ F0N f . We compose this with the morphism F0N f → f ∗(F0M̌)

from Corollary 2.20 to get the first half of the assertion; since M̌ is smooth
over the open subset X, the second half of the assertion follows from Corol-
lary 2.20 upon restricting to Y . �

Proposition 2.22 Let f : Ȳ → X̄ be a morphism of complex manifolds, such
that Y = f −1(X) remains dense in Ȳ . If we let f ∗H denote the pullback
of the variation of Hodge structure H from X to Y , we have a canonical
holomorphic mapping

Ȳ ×X̄ J̄ (H) → J̄ (f ∗H)

over Ȳ , whose restriction to Y is the evident isomorphism between the two
families of intermediate Jacobians.

Proof Consider the two spaces T (F0M̌) and T (F0M̌f ) that appear in
the construction of J̄ (H) and J̄ (Hf ). By Lemma 2.6, Ȳ ×X̄ T (F0M̌) �
T (f ∗F0M̌). On the other hand, Lemma 2.21 provides us with a mapping
T (f ∗F0M̌) → T (F0M̌f ). Composing the two, we obtain a canonical holo-
morphic mapping

Ȳ ×X̄ T (F0M̌) → T (F0M̌f )

over Ȳ ; over Y , the left-hand side restricts to the pullback of the vector bundle
associated with (F0ȞO)∨, the right-hand side to the vector bundle associated
with (F0Ȟf

O)∨, and the map to the obvious isomorphism between them. Since

Ȳ ×X̄ TZ is easily seen to map into T
f

Z
, we get the assertion for the quotient

spaces as well. �

2.9 Restriction to points

In this section, we describe how T (F0M̌) behaves upon restriction to points,
by relating its fibers to Hodge-theoretic information. Let i : {x} ↪→ X̄ be
the inclusion of a point. Define the rational mixed Hodge structure H =
H−ni∗M , which has weight ≤ −1.

Lemma 2.23 The rational mixed Hodge structure H = H−ni∗M is naturally
defined over Z, with HZ isomorphic to the stalk of the sheaf j∗HZ at the
point x. Consequently, HZ embeds into the stalk of HZ at any nearby point
x0 ∈ X, and the quotient HZ,x0/HZ is torsion-free.
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Proof There is a natural linear map from the stalk of the sheaf j∗HC to HC,

(j∗HC)x = lim
U�x

H 0(U ∩ X, HC) → HC,

given as follows: Let t1, . . . , tn be local holomorphic coordinates centered at
x, and ∂j = ∂/∂tj ; then a local section of j∗HC is a section s ∈ H 0(U, M)

that satisfies ∂j s = 0 for every j = 1, . . . , n. On the other hand, if Vj de-
notes the V -filtration relative to the divisor tj = 0, then by (2.5), the vec-
tor space HC is a subspace of Gr1

V1
· · ·Gr1

Vn
M, consisting of those elements

h for which each ∂jh is zero in Gr1
V1

· · ·Gr0
Vj

· · ·Gr1
Vn

M. It is easy to see

from the axioms in Sect. 2.7 that ∂ns = 0 implies s ∈ V 1
n M; after iterat-

ing this argument, s defines a vector in the subspace HC of the vector space
Gr1

V1
· · ·Gr1

Vn
M The resulting homomorphism (j∗HC)x → HC is known to

be an isomorphism; this means that the mixed Hodge structure H is defined
over Z, with integral lattice HZ isomorphic to the stalk of the sheaf j∗HZ.

Now let U ⊆ X̄ be a small open ball around x, and x0 ∈ U ∩ X. The stalk
of j∗HZ at x is naturally identified with the subgroup of HZ,x0 consisting of
classes invariant under the action by the fundamental group π1(U ∩ X,x0).
Since HZ,x0 is torsion-free, it is then easy to deduce the second assertion. �

Recall that M̌ = DX̄(M)(1 − n); because the duality functor interchanges
the two operations i∗ and i!, we find that

D
(
i∗M

)� i! DX̄(M) � i!M̌(n − 1),

and therefore

Ȟ = H∨(1) � Hni!M̌(n).

This means that the rational mixed Hodge structure Hni!M̌(n), of weight
≥ −1, is actually defined over Z as well. Using the isomorphism Ȟ �
Hni!M̌(n), we obtain from Corollary 2.20 a linear map δ : F0ȞC →
i∗(F0M̌). On the other hand, Lemma 2.8 shows that elements of HC �
(j∗HC)x induce linear functionals on the vector space i∗(F0M̌). The fol-
lowing compatibility result will be useful below.

Lemma 2.24 The following diagram is commutative:

HC HomC

(
i∗(F0M̌),C

)

HC/F0HC HomC

(
F0ȞC,C

)
δ∗

�
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Proof Fix an element h ∈ HC � (j∗HC)x ; by Lemma 2.8, it induces a mor-
phism of D-modules M̌ → OX over some open neighborhood of the point x.
The linear functional ϕh ∈ HomC(i∗(F0M̌),C) is obtained by restricting to
the subsheaf F0M̌ and applying i∗. To see what happens to this functional un-
der δ∗, let Vj denote the V -filtration relative to the divisor tj . Morphisms be-
tween D-modules automatically respect the V -filtration, and so h : M̌ → OX

induces a linear map

Gr1
V1

· · ·Gr1
Vn

M̌ → Gr1
V1

· · ·Gr1
Vn

OX.

By (2.6), ȞC is a quotient of the vector space on the left; as
Gr1

V1
· · ·Gr1

Vn
OX = C, it is not hard to see that we get an induced linear func-

tional

ȞC → C,

which is of course still given by h. Now δ∗(ϕh) is the restriction of that func-
tional to F0ȞC, and this proves the commutativity of the diagram. �

The following result explains how the fiber of the Néron model J̄ (H) over
the point x ∈ X̄ is related to the mixed Hodge structure H . We are going
to use it in two places: once to reduce the proof of Condition 2.4 from the
general case to the normal crossing case (in Sect. 2.11); and, much later, to
construct a mapping from J̄ (H) to the Néron model of [7] (in Sect. 4.6).

Lemma 2.25 Let i : {x} ↪→ X̄ be the inclusion of a point, and set H =
H−ni∗M , which implies that Ȟ � Hni!M̌(n). Then the linear map F0ȞC →
i∗(F0M̌) defined in Corollary 2.20 induces a surjective mapping of complex
Lie groups

J̄ (H)x →→ J (H),

where J (H) is the generalized intermediate Jacobian of H (see Sect. 2.1).

Proof Corollary 2.20 gives us a map of vector spaces

F0ȞC → i∗(F0M̌). (2.7)

By Lemma 2.6, the fiber of T (F0M̌) at the point x is exactly (i∗F0M̌)∨, and
so (2.7) induces a linear map

T (F0M̌)x � (i∗F0M̌)∨ → (F0ȞC)∨.

We observe that this map is surjective: indeed, the composition HC →→
HC/F0HC � (F0ȞC)∨ is obviously surjective, and by Lemma 2.24, it fac-
tors through T (F0M̌)x . If we now take the quotient by TZ,x � HZ, we arrive
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at a surjective mapping

T (F0M̌)x/TZ,x →→ (F0ȞC)∨/HZ

between the two complex Lie groups, as asserted. �

2.10 Restriction to curves

In this section, we investigate how T (F0M̌) behaves upon restriction to
curves, and use the result to show that the subset TZ is closed under limits
along analytic arcs. Throughout, we let f : � → X̄ be a holomorphic map-
ping such that f (�∗) ⊆ X, and set x = f (0); the most interesting case, of
course, is when x ∈ X̄ − X is a boundary point.

We define Hf to be the pullback of the variation of Hodge structure H
to �∗. Its intermediate extension Mf is a polarizable Hodge module of
weight 0 on �; as usual, we shall denote the underlying filtered D-module by
(Mf ,F ). We also let M̌f = D�(Mf ), with underlying D-module (M̌f ,F ).
Finally, we need to introduce Nf = Hn−1f !M̌(n − 1), which is a mixed
Hodge module of weight ≥ 0. As in Lemma 2.21, decomposition by strict
support means that we have canonical morphisms M̌f ↪→ W0N

f ↪→ Nf ,
and consequently, a morphism of coherent sheaves F0M̌f → F0N f . Corol-
lary 2.20 gives us another morphism F0N f → f ∗(F0M̌), and so we end up
with two holomorphic mappings

� ×X̄ T (F0M̌) → T (F0N f ) → T (F0M̌f ) (2.8)

of analytic spaces over �.
We now study the fibers of those three spaces over 0 ∈ �. To begin with,

let i : {x} ↪→ X̄, and define the mixed Hodge structures H = H−ni∗M and
Ȟ = H∨(1) � Hni!M̌(n) as in Sect. 2.9. Recall that H is of weight ≤ −1
and defined over Z, with integral lattice HZ isomorphic to the stalk of j∗HZ

at the point x; on the other hand, Ȟ is of weight ≥ −1, and also defined
over Z. As in Lemma 2.25, we have a canonical mapping

T (F0M̌)x → (F0ȞC)∨ � HC/F0HC.

Similarly, let i0 : {0} ↪→ �, and define the two integral mixed Hodge struc-
tures Hf = H−1i∗0Mf (of weight ≤ −1) and Ȟ f � H 1i!0M̌f (1) (of weight
≥ −1); we then have a second mapping

T (F0M̌f )0 → H
f

C
/F0H

f

C
.
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To get information about the mixed Hodge module Nf , we note that i!0 ◦
f ! � i!. This means that there is a spectral sequence

E
p,q

2 = Hpi!0H
qf !M̌ =⇒ Hp+qi!M̌.

Because � is one-dimensional, Hpi!0 = 0 unless p = 0,1; therefore the spec-
tral sequence degenerates at E2, and we find that H 1i!0Hn−1f !M̌ � Hni!M̌ ,
using that Hnf !M̌ = 0 for dimension reasons. Consequently,

H 1i!0N
f (1) � H 1i!0H

n−1f !M̌(n) � Hni!M̌(n) = Ȟ ,

and as before, this leads to a linear map

T (F0N f )0 → HC/F0HC.

Since the various maps we produce are easily seen to be compatible with
each other, we arrive at the following commutative diagram that relates the
fibers of the analytic spaces in (2.8) to the mixed Hodge structures H and
Hf :

T (F0M̌)x T (F0N f )0 T (F0M̌f )0

HC/F0HC HC/F0HC H
f

C
/F0H

f

C

(2.9)

We can use the discussion above to show that ε(TZ) ⊆ T (F0M̌) is closed
under limits along analytic curves, in the following sense.

Lemma 2.26 Let g : � → T (F0M̌) be a holomorphic mapping with the
property that g(�∗) ⊆ ε(TZ) ∩ p−1(X), where p : T (F0M̌) → X̄ is the pro-
jection. Then we actually have g(�) ⊆ ε(TZ).

Proof Set f = p ◦ g, and let Hf = f ∗H be the pullback of the variation to
�∗; we also use the other notation introduced above. Since g(�∗) ⊆ ε(TZ), it
corresponds to an integral section

hf ∈ H
f

Z
� H 0(�∗, Hf

Z

)
.

Over �∗, the two spaces � ×X̄ T (F0M̌) and T (F0M̌f ) are isomorphic to
the dual of a Hodge bundle; the mapping g may be viewed as a holomorphic
section, which is actually given by evaluation against hf . By Lemma 2.8,
it extends to a holomorphic section of T (F0M̌f ) over the entire disk. The
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extended section projects to a point in H
f

C
/F0H

f

C
, which is simply the image

of hf (by Lemma 2.24).
Similarly, g(0) ∈ T (F0M̌)x projects to a point in the quotient HC/F0HC;

the commutativity of the diagram in (2.9) implies that

hf ∈ F0H
f

C
+ im

(
HC → H

f

C

)
.

Now H ↪→ Hf is a morphism of mixed Hodge structures; let H ′ = Hf /H

be the quotient, still a mixed Hodge structure of weight ≤ −1. The image of
hf in H ′ is both rational (because hf is rational) and in F0H

′
C

, and there-
fore equal to zero; consequently, hf ∈ HQ. Now Lemma 2.23 implies that

we automatically have hf ∈ HZ: indeed, HZ and H
f

Z
are both subgroups of

the stalk of HZ at some nearby point f (t0), and the quotient HZ,f (t0)/HZ is
torsion-free.

But then hf defines a holomorphic section of ε(TZ) ⊆ T (F0M̌) in a neigh-
borhood of the point x. Over f (�∗), this section is an extension of g; since
both are holomorphic, this means that g(�) ⊆ ε(TZ), as claimed. �

Note This result by itself is not sufficient to construct the Néron model over a
one-dimensional base, because in order to show that ε(TZ) is a closed analytic
subset of T (F0M̌), it is not enough to consider just limits along analytic arcs.

2.11 Reduction to the normal crossing case

This section is devoted to reducing the proof of Condition 2.4 to the following
special case.

Theorem 2.27 If Condition 2.4 is true whenever X̄ − X is a divisor with
normal crossings and HZ has unipotent local monodromy, then it is true in
general.

Evidently, the problem is local on X̄, and so we may assume that X̄ = �n

is a polydisk, and that X̄ − X is a divisor (possibly singular and with several
components). Let H be a polarizable variation of integral Hodge structure of
weight −1 on X. Recall that TZ is the étalé space of the sheaf j∗HZ, and that
we had constructed a holomorphic mapping ε : TZ → T (F0M̌) in (2.2).

We begin by showing that ε is injective. For this, it is clearly sufficient to
prove that the map on fibers, TZ,x → T (F0M̌)x , is injective.

TZ T (F0M̌)

X̄

ε

p
Z

p
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The results of Sect. 2.9 easily imply the injectivity on fibers, as follows.

Lemma 2.28 For x ∈ X, let TZ,x = p−1
Z

(x) and T (F0M̌)x = p−1(x) denote

the fibers of TZ and T (F0M̌), respectively. Then ε is injective, and embeds
TZ,x into T (F0M̌)x as a discrete subset.

Proof Let i : {x} ↪→ X be the inclusion of the point, and let H = H−ni∗M ,
which is an integral mixed Hodge structure of weight ≤ −1 with HZ � TZ,x .
Also define the mixed Hodge structure Ȟ = H∨(1) (of weight ≥ −1); it sat-
isfies Ȟ � Hni!M̌(n). According to the discussion in Sect. 2.9, have a sur-
jective linear map

T (F0M̌)x →→ (F0ȞC)∨ � HC/F0HC.

But since H has weight ≤ −1, the set of integral points HZ maps injectively
and hence discretely into HC/F0HC. Consequently, the map ε also embeds
TZ,x into T (F0M̌)x as a discrete subset, proving the assertion. �

For the remainder of this section, we assume that Condition 2.4 is satisfied
whenever X̄ − X is a divisor with normal crossings and HZ has unipotent
local monodromy. We show that it then holds in general.

Lemma 2.29 The closure of ε(TZ) in T (F0M̌) is an analytic subset.

Proof Since the underlying local system HZ is defined over Z, the local
monodromy is at least quasi-unipotent by a theorem due to A. Borel [37,
Lemma 4.5]. Taking a finite branched cover, unbranched over X, and resolv-
ing singularities, we construct a proper holomorphic mapping f : Ȳ → X̄

from a complex manifold Ȳ of dimension n, with the following properties:
Y = f −1(X) is dense in Ȳ ; the restriction of f to Y is finite and étalé; the
complement Ȳ − Y is a divisor with normal crossings; and the pullback of
HZ to Y has unipotent monodromy.

Let Hf = f ∗H, let Mf be its intermediate extension to a polarizable
Hodge module on Ȳ , and (M̌f ,F ) the filtered D-module underlying M̌f =
DȲ (Mf )(1 − n). By Lemma 2.21, we have a commutative diagram of holo-
morphic mappings

TZ Ȳ ×X̄ TZ T
f

Z

T (F0M̌) Ȳ ×X̄ T (F0M̌) T (F0M̌f )

ε εfid×ε

�
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Assuming Condition 2.4 for the variation of Hodge structure Hf , we know
that W = εf (T

f

Z
) is a closed analytic subset of T (F0M̌f ). Then �−1(W)

is a closed analytic subset of Ȳ ×X̄ T (F0M̌). The projection to T (F0M̌) is
proper, since f is a proper mapping, and so the image of �−1(W) in T (F0M̌)

is again a closed analytic subset by Grauert’s theorem. The part of it that lies
over X is equal to ε(TZ) ∩ p−1(X), and so the closure of ε(TZ) must be an
analytic subset (and, in fact, a countable union of irreducible components of
the image). �

To conclude the reduction to the normal crossing case, we use the results
about restriction to curves from Sect. 2.10 to show that taking the closure
does not actually add any points to ε(TZ).

Lemma 2.30 ε(TZ) is a closed analytic subset of T (F0M̌).

Proof The restriction of ε(TZ) to X clearly has the same closure as ε(TZ)

itself. Since the closure is analytic, any of its points belongs to the image of
a holomorphic mapping g : � → T (F0M̌), such that g(�∗) is contained in
ε(TZ) ∩ p−1(X). Lemma 2.26 shows that g(�) ⊆ ε(TZ), and this proves that
ε(TZ) is itself closed. �

3 Local analysis of the construction

3.1 Introduction

Our construction of the Néron model is based on the fact that the quotient
T (F0M̌)/TZ is an analytic space. As explained in Sect. 2.6, this is the case,
provided that Condition 2.4 is satisfied; in Sect. 2.11, we had further reduced
the problem to the case when X̄ − X is a divisor with normal crossings, and
the local monodromy of the variation of Hodge structure H is unipotent. In
this part of the paper, we complete the proof by showing that Condition 2.4
is true when X̄ = �n is a polydisk with coordinates s1, . . . , sn, X = (�∗)n is
the complement of the divisor defined by s1 · · · sn = 0, and H is a polarizable
variation of Hodge structure of weight −1 on X with unipotent monodromy.

Note Both here and in Part 5, the theory of mixed Hodge modules is not used.
This may be reassuring for the reader who is only interested in the case of a
normal crossing divisor or in the proof of Conjecture 1.1 (which only needs
to be proved in that case).

Before going into details, a brief summary of the argument may be in place.
Under the above assumptions on X̄ and H, the filtered D-module (M̌,F )
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underlying M̌ can be described explicitly in terms of Deligne’s canonical
extension Ȟe

O . In particular, we have

F0M̌ =
∑

k≥0

Fk D · F−k Ȟe
O,

and so F0M̌ consists of all sections in F0Ȟe
O = F 0Ȟe

O , all first-order deriva-

tives of sections in F−1Ȟe
O = F 1Ȟe

O , and so on. This means that we have a
natural holomorphic mapping

T (F0M̌) → T (F0Ȟe
O).

It is known that the image of TZ in the vector bundle T (F0Ȟe
O) is not well-

behaved (the quotient is the so-called “Zucker extension”, which is not gen-
erally a Hausdorff space). But we shall see that T (F0M̌), which only maps
to a very restricted subset of T (F0Ȟe

O), solves this problem in a very natural
way.

If we pull H back to the universal covering space H
n, it can be viewed as

family of Hodge structures �̃(z) on a fixed vector space HC. Let σ1, . . . , σr

be a collection of sections that generate F0M̌ over �n, and let Q denote the
natural pairing between HC and sections of M̌. At each point z ∈ H

n, we
define

B(z,h) = sup
j=1,...,r

∣∣Q(h,σj (z))
∣∣,

noting that it gives a norm on HR because the Hodge structures in question
have weight −1. On the other hand, we may fix a norm ‖−‖ on HR; since HR

is finite-dimensional, the two norms can then be compared by an inequality
of the form

‖h‖ ≤ C(z) · B(z,h),

where C(z) is a constant that depends only on z. The main idea is to show
that, even as the imaginary parts of z1, . . . , zn tend to infinity, C(z) remains
bounded. This will allow us to control the limit of any sequence of points in
TZ, and in the end, to show that TZ is closed in T (F0M̌).

Note It is illustrative to compare this with the situation for the canonical ex-
tension. Of course, we could similarly define a quantity B0(z, h), using only
sections of F0Ȟe

O , and have a second inequality B0(z, h) ≤ C0(z) · ‖h‖. It
is then not hard to see that B0(z, h) is equivalent to the Hodge norm in the
Hodge structure �̃(z). The norm estimates of [10] and [21] show that C0(z)

need not be bounded: it will typically grow like a certain polynomial in the
imaginary parts of z1, . . . , zn.
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This leads to an interesting analogy, which was pointed out to me by
H. Clemens. Namely, in the definition of B(z,h), we are controlling not just
the various holomorphic functions

fσ (z) = Q
(
h,σ (z)

)
,

for σ ∈ F0Ȟe
O , but also some of their derivatives. Indeed, the additional sec-

tions in F0M̌ arise precisely as derivatives of sections of F0Ȟe
O , and since h

is flat, we have

∂

∂zj

fσ (z) = Q
(
h,∇∂j

σ (z)
)

and so on. If we now think of the Hodge norm as an L2-norm, and of B(z,h)

as a kind of Sobolev norm, then the fact that ‖h‖ is bounded by a fixed mul-
tiple of B(z,h) resembles the classical Sobolev inequality. It would be inter-
esting to know whether this is more than a mere analogy.

3.2 The normal form of a period map

In this section, we set up some basic notation, and describe how to represent
the period map �̃(z) in terms of the limit mixed Hodge structure coming
from the SL2-Orbit Theorem. All the results cited here can be found in [10,
Sect. 4].

We consider a variation of polarizable Hodge structure of weight −1 on
(�∗)n. Let s = (s1, . . . , sn) be the standard holomorphic coordinates on �n.
Throughout, we shall make the assumption that the monodromy of the vari-
ation around each divisor sj = 0 is unipotent. As usual, let H

n → (�∗)n be
the universal covering space, with sj = e2πizj . Let Nj be the logarithm of the
monodromy transformation around the divisor sj = 0.

The pullback of the variation to H
n can be viewed as a varying Hodge fil-

tration �̃ : H
n → D on a fixed vector space HC, where D is a suitable period

domain. Since the variation is integral, there is a fixed underlying integral
lattice HZ ⊆ HC. Furthermore, we may choose once and for all a polariza-
tion, that is, a nondegenerate alternating bilinear form Q : HZ ⊗ HZ → Z.
As usual, we denote by GR = Aut(HR,Q) the real Lie group determined by
the pairing, and by gR its Lie algebra. By the Nilpotent Orbit Theorem [37,
Theorem 4.12], we have

e−∑ zjNj �̃(z) = �(s),

with � : �n → Ď holomorphic. Let W(n) = W(N1, . . . ,Wn) be the mon-
odromy weight filtration for the cone C(n) = C(N1, . . . ,Nn), and set W• =
W

(n)
•+1. Then (W,�(0)) is a mixed Hodge structure, polarized by Q and any
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element of C(n), in the sense of [10, Definition 2.26]. Let δ ∈ L
−1,−1
R

(W,�(0))

be the unique real element for which (W, e−iδ�(0)) is R-split [10, Proposi-
tion 2.20], and define F = e−iδ�(0) ∈ Ď. Note that δ commutes with ev-
ery Nj . Let

Ip,q = Ip,q(W,F ) = Wp+q ∩ Fp ∩ Fq

be Deligne’s canonical decomposition of the R-split mixed Hodge structure
(W,F ).

The Lie algebra g inherits a decomposition

g =
⊕

p,q

g
p,q,

with gp,q consisting of those X that satisfy XIa,b ⊆ I a+p,b+q . Then we have

g = g
F ⊕ q = g

F ⊕
⊕

p<0

g
p,q,

and q is a nilpotent Lie subalgebra of g. This decomposition makes it possible
to write e−iδ�(s) = e�(s)F for a unique holomorphic map � : �n → q with
�(0) = 0. We can therefore put the period map into the standard form

�̃(z) = eiδe
∑

zjNj e�(s)F = eX(z)F, (3.1)

with X(z) ∈ q and hence nilpotent.
The horizontality of the period map implies the following relationship be-

tween �(s) and the nilpotent operators Nj . A proof can be found in [9, Propo-
sition 2.6]; we include it here to make the discussion more concrete.

Lemma 3.1 Let �̃(z) = eiδe
∑

zjNj e�(s)F be the normal form of a period
map.

(1) We have

d
(
e
∑

zjNj e�(s)
)= e

∑
zjNj e�(s)

(

d �−1(s) +
n∑

j=1

Njdzj

)

.

(2) For every j = 1, . . . , n, the commutator

[
Nj, e

�(s)
]= Nje

�(s) − e�(s)Nj

vanishes along sj = 0.
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Proof Since �(s), all the Nj , and δ belong to the nilpotent Lie algebra q, we
can write

eiδe
∑

zjNj e�(s) = eX(z)

for a unique holomorphic X : H
n → q. From the definition of q, we have

X(z) = X−1(z) + X−2(z) + · · · , with Xp(z) ∈⊕q gp,q . Note that

X−1(z) = �−1(s) +
n∑

j=1

zjNj + iδ−1.

Horizontality of the period map eX(z)F is equivalent to the condition that

e−X(z) · d(eX(z)
)= dX−1(z),

which gives the first assertion (because δ is constant). Writing the condition
out explicitly, we get

e−�(s)

n∑

j=1

Njdzj · e�(s) + e−�(s) · d(e�(s)
)= d �−1(s) +

n∑

j=1

Njdzj .

Now dsj = 2πisj · dzj ; thus if we evaluate the identity on the tangent vector
field ∂/∂zj , we get

Nje
�(s) − e�(s)Nj = 2πisj ·

(
e�(s) ∂

∂sj
�−1(s) − ∂

∂sj
e�(s)

)
.

We then obtain the second assertion by setting sj = 0. �

The fact that the commutator [Nj, e
�(s)] vanishes along the divisor sj = 0

has the following highly useful consequence.

Lemma 3.2 Let yj = Im zj , and suppose that y1 ≥ · · · ≥ yn ≥ 1 and 0 ≤
Re zj ≤ 1. Define the nilpotent operator N = y1N1 + · · · + ynNn. Then there
is a constant C > 0 and an integer m, both independent of z, such that

∥∥(adN)ke�(s)
∥∥≤ C ·

n∑

j=1

ym
j e−2πyj

for any k ≥ 1.

Proof Since �(s) is holomorphic in s = (s1, . . . , sn), and �(0) = 0, we can
write
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e�(s) − id = (e�(s1,...,sn) − e�(0,s2,...,sn)
)+ · · · + (e�(0,...,0,sn) − id

)

= s1B1(s) + · · · + snBn(s),

where each Bj(s) is an operator that depends holomorphically on s. More-
over, Bj(s) commutes with N1, . . . ,Nj−1, and ‖Bj(s)‖ is uniformly bounded,
independent of s. We then compute that (for k ≥ 1)

(adN)ke�(s) = (adN)k
n∑

j=1

sjBj (s) =
n∑

j=1

sj
(
ad(yjNj +· · ·+ynNn)

)k
Bj (s).

Now each Nj is nilpotent, yj ≥ · · · ≥ yn, and |sj | = e−2πyj , and so the asser-
tion follows by taking norms. �

3.3 The minimal extension

Now let M be the intermediate extension of the variation of Hodge structure
H to a Hodge module on �n. In this section, we review Saito’s description
of the underlying filtered left D-module (M̌,F ). Let HO be the holomor-
phic vector bundle on (�∗)n underlying the variation H, and let ∇ be the flat
connection on HO . Since the local monodromies are unipotent, HO can be
canonically extended to a vector bundle He

O on �n, such that the connection
has logarithmic poles along s1 · · · sn = 0 with nilpotent residues [13, Proposi-
tion 5.2]. More explicitly, for each v ∈ HC, the map

H
n → HC, z = (z1, . . . , zn) �→ e

∑
zjNj v

descends to a holomorphic section of HO on (�∗)n, and He
O is the locally

free subsheaf of j∗HO generated by all such sections. Using the standard
form of the period map in (3.1), the maps

H
n → HC, z �→ eX(z)v = eiδe

∑
zjNj e�(s)v (3.2)

also induce a collection of sections that generate He
O . The Nilpotent Orbit

Theorem implies that the Hodge bundles Fp HO extend uniquely to holomor-
phic subbundles Fp He

O of the canonical extension. Each Fp He
O is generated

by all those sections in (3.2) for which v ∈ FpHC.
Now M, the minimal extension of (HO,∇) to a holonomic D-module on

�n, is simply the D-submodule of j∗HO generated by He
O . Moreover, the

Hodge filtration on M is given by

Fp M =
∑

k≥0

Fk D · Fk−p He
O .
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It satisfies Fk D · Fp M ⊆ Fk+p M, and each Fp M is a coherent sheaf on
�n whose restriction to (�∗)n is F−p HO . For the purposes of our construc-
tion, the important point is that Fp M has more sections than F−p He

O ; the
following lemma exhibits the ones that we will use.

Lemma 3.3 For any subset I ⊆ {1, . . . , n} of cardinality m, and for any vec-
tor v ∈ F−p , the formula

σI,v(z) = eX(z)
∏

j∈I

Nj

sj
· v

defines a holomorphic section of the coherent sheaf Fp+mM on �n.

Proof We work by induction on the cardinality m of the set I . Then case
m = 0 is clear from the definition of Fp M. We may therefore suppose that
the assertion has been proved for all subsets of cardinality at most m, and
consider I ⊆ {1, . . . , n} with |I | = m + 1. Let k = max I and J = I − {k}.
Then

σJ,w(z) = eX(z)
∏

j∈J

Nj

sj
· w

is a section of Fp+mM for every w ∈ F−p .
Using that k �∈ J , the first identity in Lemma 3.1 shows that

∂

∂sk
σJ,v(z) = eX(z)

(
Nk

2πisk
+ ∂�−1

∂sk

)
·
∏

j∈J

Nj

sj
v

= σI,v(z)

2πi
+ eX(z) ∂�−1(s)

∂sk

∏

j∈J

Nj

sj
· v.

The second half of Lemma 3.1, applied recursively, implies that

C(s) =
[
�−1(s),

∏

j∈J

Nj

sj

]
and

∂C(s)

∂sk
=
[
∂�−1(s)

∂sk
,
∏

j∈J

Nj

sj

]

are holomorphic on �n; as operators, they map F−p to F−p−m−1. In

∂

∂sk
σJ,v(z) = σI,v(z)

2πi
+ eX(z)

(
∂C(s)

∂sk
v +

∏

j∈J

Nj

sj

∂�−1(s)

∂sk
v

)
,

the left-hand side defines a holomorphic section of Fp+m+1M; by induction,
the same is true for the second term on the right-hand side. We conclude that
σI,v(z) is itself a section of Fp+m+1M, thus completing the induction. �
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3.4 The main estimate

Now let Ȟ = H∨(1) be the (normalized) dual variation of Hodge struc-
ture. Let M̌ be its intermediate extension to a Hodge module on �n, and
let (M̌,F ) be the underlying filtered D-module. Our choice of polarization
determines a morphism

H → Ȟ, h �→ 2πi · Q(h,−),

which is an isomorphism of rational variations of Hodge structure. It gives
rise to an isomorphism (M,F ) � (M̌,F ) of filtered D-modules. In par-
ticular, we have F0M̌ � F0M, and under this isomorphism, the morphism
j∗HC → (F0M̌)∨ constructed in Lemma 2.8 becomes

j∗HC → (F0M)∨, h �→ 2πi · Q(h,−).

We use the isomorphism F0M̌ � F0M mostly because it simplifies the nota-
tion.

Now fix a norm ‖−‖ on the vector space HC. Let σ1, . . . , σm be a collection
of sections that generate the coherent sheaf F0M over �n. To prove that
ε(TZ) is closed inside of T (F0M), our strategy is to show that the norm
of any vector h ∈ HR is bounded uniformly by the values of Q(h,σj (z)),
provided that the imaginary parts of z1, . . . , zn are sufficiently large. As a
matter of fact, we will prove a stronger statement that involves only the special
sections σI,v from Lemma 3.3. Given a real vector h ∈ HR, and a point z ∈
H

n, we thus introduce the quantity

B(z,h) = sup
{ ∣∣Q(h,σI,v(z))

∣∣
∣∣
∣ I ⊆ {1, . . . , n} and v ∈ F |I | with ‖v‖ ≤ 1

}
,

which gives a norm on HR for every z ∈ H
n. Since we are trying to control

the size of h in terms of B(z,h), we also let N = y1N1 + · · · + ynNn, and
define

Z(y,h) = max
k≥0

‖Nkh‖,

which is finite because N is nilpotent. Note that we have ‖h‖ ≤ Z(y,h) by
definition. After a few preliminary results on decompositions in R-split mixed
Hodge structures in Sect. 3.6, the following key estimate will be proved in
Sect. 3.7.

Theorem 3.4 Let �̃(z) = eiδe
∑

zjNj e�(s)F be the normal form of a variation
of polarizable Hodge structure of weight −1 on (�∗)n. Fix a norm ‖−‖ on
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the underlying vector space HC, and a polarization Q of HZ. Then there are
constants C > 0 and α > 0, such that we have

‖h‖ ≤ Z(y,h) ≤ C · B(z,h)

for every h ∈ HR and every z ∈ H
n with yj = Im zj ≥ α and 0 ≤ Re zj ≤ 1.

Note Since the theory of [10] already applies to polarized real variations, it
would suffice to assume that H is a variation of real Hodge structure, and that
Q is a polarization of HR. Except for Sect. 3.5, all of our proofs work in this
generality.

3.5 The closure of the set of integral points

Granting Theorem 3.4 for the time being, we shall now show that Condi-
tion 2.4 is true: the map ε : TZ → T (F0M) is injective and has closed image.
(Recall that T (F0M̌) � T (F0M), using the polarization.) The first result is
that any sequence of points in TZ over (�∗)n that converges in T (F0M) has
to be eventually constant and invariant under monodromy. This is the only
point in the proof where we use the integral structure.

Theorem 3.5 Let z(m) ∈ H
n be a sequence of points with Im zj (m) → ∞

and Re zj (m) ∈ [0,1] for j = 1, . . . , n. Let h(m) ∈ HZ be a corresponding
sequence of integral classes, such that

Q
(
h(m),σI,v(z(m))

)

is convergent for every I ⊆ {1, . . . , n} and every v ∈ F |I |. Then the sequence
h(m) is eventually constant, and its constant value satisfies Nkh(m) = 0 for
k = 1, . . . , n.

Proof The first step is to show that Nkh(m) = 0 for all k = 1, . . . , n, and
all sufficiently large m. We begin by finding a subsequence of h(m) along
which this is true. By assumption, the quantity B

(
z(m),h(m)

)
is bounded,

and so the inequality in Theorem 3.4 implies that ‖h(m)‖ is bounded. Since
h(m) ∈ HZ, the sequence can take on only finitely many distinct values; let
h ∈ HZ be one of them. The inequality also implies that

∑
zj (m)Njh(m) is

bounded; according to Lemma 3.6 below, h ∈ W
(n)
0 = W−1, and we can find

a subsequence along which

n∑

j=1

zj (m)Njh(m) →
n∑

j=1

wjNjh,
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for some w ∈ H
n with Imw large. We then have e−∑ zj (m)Nj h(m) →

e−∑wjNj h; by taking I = {k} and v ∈ F 1 arbitrary, it follows that

0 = lim
m→∞ sk(m) · Q(h(m),σ{k},v(z(m))

)= Q
(
h, eiδe

∑
wjNj Nkv

)

= −Q
(
Nkh, eiδe

∑
wjNj v

)
.

(3.3)

Now (W, eiδe
∑

wjNj F ) is a mixed Hodge structure; because the vector Nkh

is rational and belongs to W−3, we easily conclude from (3.3) that Nkh = 0.
The argument above actually proves that Nkh(m) = 0 for all sufficiently

large m—otherwise, we could find a subsequence along which Nkh(m) �= 0,
leading to a contradiction. Consequently, h(m) ∈ W−1 for m � 0; moreover,
we now have e−∑ zj (m)Nj h(m) = h(m), from which it follows that

lim
m→∞Q

(
h(m),σ∅,v(z(m))

)= lim
m→∞Q

(
h(m), eiδv

)
(3.4)

for every v ∈ F 0. Now consider the mixed Hodge structure (W, eiδF ) on HC.
Since eiδF 0 ∩ W−1 ∩ HR = {0}, we deduce from the existence of the limit
in (3.4) that the sequence of vectors h(m) ∈ HZ must be a Cauchy sequence,
and hence that it must be eventually constant. �

Lemma 3.6 Let h ∈ HR, and suppose that z1(m)N1h + · · · + zn(m)Nnh re-
mains bounded for m → ∞. Then h ∈ W

(n)
0 . Moreover, for any α > 0, there

is a point w ∈ C
n with max1≤j≤n Imwj ≥ α, such that

n∑

j=1

zj (m)Njh →
n∑

j=1

wjNjh

is true along a subsequence.

Proof We borrow a technique introduced by E. Cattani, P. Deligne, and
A. Kaplan [8, p. 494]. Let xj (m) = Re zj (m), and yj (m) = Im zj (m). Af-
ter passing to a subsequence, we can find constant vectors θ1, . . . , θr ∈ R

n,
whose components satisfy the inequalities 0 ≤ θ1

j ≤ θ2
j ≤ · · · ≤ θr

j , such that

yj (m) = t1(m)θ1 + · · · + tr (m)θr + η(m),

where the ratios t1(m)/t2(m), . . . , tr−1(m)/tr (m), and tr (m) are tending to
infinity, and the remainder term η(m) is convergent. We can take every
Imηj (m) ≥ α; moreover, we may clearly assume that the bounded sequence
x(m) is also convergent. Let w(m) = x(m) + iη(m). Along the subsequence



46 C. Schnell

in question, we then have

n∑

j=1

zj (m)Njh =
n∑

j=1

wj(m)Njh + i

r∑

k=1

tk(m)

n∑

j=1

θk
j Njh.

This expression can only be bounded if
∑

θk
j Njh = 0 for every k; it follows

that h ∈ W
(n)
0 , because

∑
θr
j Nj ∈ C(n). We now obtain the second assertion

with w = limm→∞ w(m). �

Corollary 3.7 The map ε : TZ → T (F0M) is injective, and ε(TZ) is a closed
analytic subset; therefore Condition 2.4 is true for polarizable variations of
Hodge structure of weight −1 on (�∗)n with unipotent monodromy.

Proof The map ε is injective because the induced map TZ → T (F 0He
O) is

injective. Its image is a closed analytic subset because of Theorem 3.5. �

3.6 Decompositions in R-split mixed Hodge structures

The limit mixed Hodge structure of a variation of Hodge structure determines
two natural decompositions of the underlying vector space HC. The first is
Deligne’s decomposition HC =⊕p,q Ip,q of the limit mixed Hodge struc-
ture. The second is the Lefschetz decomposition of the associated represen-
tation of sl2(C). In this section, we relate both decompositions to the Hodge
decomposition in the associated nilpotent orbit, under the assumption that the
limit mixed Hodge structure is split over R. This is a preparation for the proof
of Theorem 3.4 in Sect. 3.7 below.

Throughout, we let (W,F ) be an R-split mixed Hodge structure, polarized
by a nondegenerate bilinear form Q and a nilpotent operator N , such that the
weight filtration of the mixed Hodge structure satisfies W• = W(N)•−m. Let

HC =
⊕

p,q

Ip,q

be Deligne’s decomposition; since the mixed Hodge structure is split over R,
we have Ip,q = Wp+q ∩ Fp ∩ Fq . The operator Y , which acts as multiplica-
tion by p + q − m on Ip,q , is then a real splitting of the filtration W(N); let
N+ be the real operator making (N,Y,N+) into an sl2(C)-triple.

There are two natural decompositions of the vector space HC, and one
purpose of this section is to relate the two. The first one is Deligne’s decom-
position by the Ip,q , the second one the primitive decomposition determined
by the nilpotent operator N+. The reason for using N+ instead of N will be-
come apparent below. We define the primitive subspaces for the operator N+
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as

I
p,q

0 = Ip,q ∩ kerN.

Given a vector h ∈ HC, we denote by hp,q its component in the space Ip,q ,
and then h =∑p,q hp,q . We can also write h uniquely in the form

h =
∑

p,q

m−p−q∑

b=0

(N+)bhp,q(b)

where each vector hp,q(b) ∈ I
p,q

0 is primitive for N+, meaning that
Nhp,q(b) = 0.

Lemma 3.8 There are constants C(p,q, b, j) ∈ Q, depending only on the
Hodge numbers of the R-split mixed Hodge structure (W,F ), such that

hp,q(b) =
∑

j≥0

C(p,q, b, j)(N+)jNb+jhp+b,q+b.

Proof Since N+ is a morphism of type (1,1), a short computation shows that

Nahp+a,q+a =
∑

j≥0

R(a, a + j,m − p − q + 2j)(N+)jhp−j,q−j (a + j),

where the constants are as in Lemma 3.9 below. Since R(a, a,m−p−q) �= 0
for 0 ≤ a ≤ m − p − q , we can solve those equations for the hp,q(b) by
descending induction on b to arrive at the stated formulas. �

Lemma 3.9 Let v �= 0 be a vector satisfying Nv = 0 and Yv = −�v (and
therefore � ≥ 0). Then Na(N+)bv = R(a, b, �)(N+)b−av, with

R(a, b, �) = b!(� + a − b)!
(� − b)!(b − a)!

for 0 ≤ a ≤ b ≤ �, and R(a, b, �) = 0 in all other cases.

Proof This is well-known; but since the proof is short, we include it here. We
have

Na+1(N+)bv = N · R(a, b, �)(N+)b−av

= R(a, b, �)R(1, b − a, �)(N+)b−a−1v,

from which the identity R(a +1, b, �) = R(a, b, �)R(1, b−a, �) follows. We
also have
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N(N+)b+1v = (N+N − Y) · (N+)bv

= (R(1, b, �) − (2b − �)
)
(N+)bv,

from which one sees that R(1, b+1, �) = R(1, b, �)+(�−2b). Together with
the evident condition that R(1,0, �) = 0, the two equations suffice to prove
the formula for R(a, b, �) by induction. �

The formula in Lemma 3.8 shows how the size of the primitive components
depends on the two operators N+ and N . Since we will need this fact in
Sect. 3.7, we state it as a corollary.

Corollary 3.10 Fix a norm on the vector space HC, and define Z(N,h) =
maxk≥0‖Nkh‖. Then there is a constant C > 0 and an integer d ∈ N, both
depending only on the Hodge numbers of (W,F ), such that

max
p,q,b

‖hp,q(b)‖ ≤ C‖N+‖d · Z(N,h)

for every h ∈ HC.

We now specialize to the case m = −1. Then eiNF is a point of the period
domain D by [10, Lemma 3.12], and therefore defines a polarized Hodge
structure of weight −1 on HC. In particular, we have the decomposition

HC = eiNF 0 ⊕ e−iNF 0. (3.5)

Any vector h ∈ HC can therefore be written uniquely as h = eiNv + e−iNw,
with

v ∈ F 0 =
⊕

p≥0

Ip,q and w ∈ F 0 =
⊕

q≥0

Ip,q .

The uniqueness of the decomposition has a useful consequence that we shall
now explain. Let w =∑(N+)bwp,q(b) be the primitive decomposition of
the vector w ∈ F 0; note that

wp,q =
∑

b≥0

(N+)bwp−b,q−b(b),

which implies that wp,q(b) = 0 unless q + b ≥ 0. Set g = e−iNh, and
similarly write g =∑(N+)bgp,q(b). The decomposition in (3.5) becomes
g = v + e−2iNw, and since v ∈ F 0, the vector w is uniquely defined by the
condition that

gp,q = (e−2iNw
)p,q
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for every p ≤ −1 and every q . The right-hand side can be expanded as

(
e−2iNw

)p,q

=
∑

k,a≥0

(−2i)k

k! Nk(N+)awp−a+k,q−a+k(a)

=
∑

k,b≥0

(−2i)k

k! R(k, k + b,2b − 1 − p − q)(N+)bwp−b,q−b(k + b).

By equating primitive components, we obtain the set of equations

gp,q(b) =
∑

k≥0

(−2i)k

k! R(k, k + b,−1 − p − q)wp,q(k + b) (3.6)

for p + b ≤ −1. We point out one more time that wp,q(b) = 0 unless
q + b ≥ 0.

We now consider (3.6) as a system of linear equations for the vectors
wp,q(b) ∈ I

p,q

0 with q + b ≥ 0. Since the decomposition g = v + e−2iNw

is unique, the system must have a unique solution, which means that its
coefficient matrix has to be invertible. It follows that there are constants
�(p,q, b, a) ∈ Q(i) such that

wp,q(b) =
−1−p∑

a=0

�(p,q, b, a)gp,q(a);

the upper limit for the summation stems from the condition p + a ≤ −1.
Since the proof of Theorem 3.4 in Sect. 3.7 is entirely based on the solution
to the system of equations in (3.6), we summarize the result in the following
proposition.

Proposition 3.11 Consider the system of equations (for p + b ≤ −1)

yp,q(b) =
∑

k≥0

(−2i)k

k! R(k, k + b,−1 − p − q) · xp,q(k + b)

in the unknowns {xp,q(b)}q+b≥0. Given any collection of vectors
{yp,q(b)}p+b≤−1, the unique solution to the system is given by the formula

xp,q(b) =
−1−p∑

a=0

�(p,q, b, a) · yp,q(a),
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where �(p,q, a, b) ∈ Q(i) are certain constants that depend only on the
Hodge numbers dim Ip,q of the R-split mixed Hodge structure (W,F ).

3.7 Proof of the main estimate

After the preliminary work in the previous section, we now come to the
proof of the estimate from Theorem 3.4. Given a point y ∈ H

n, we set
N = y1N1 + · · · + ynNn; note that the weight filtration W(N) is indepen-
dent of y. Together with the bilinear form Q, the nilpotent operator N po-
larizes the R-split mixed Hodge structure (W,F ), where W• = W(N)•+1.
Let Y be the real splitting of W(N) determined by Deligne’s decomposition
HC =⊕ Ip,q , and let (N,Y,N+) be the corresponding sl2(C)-triple. An im-
portant observation is that the operator N+ is of order 1/yn; this is a simple
consequence of the SL2-Orbit Theorem of [10].

Lemma 3.12 There are constants C > 0 and α > 0 such that ‖N+‖ ≤ C/yn

holds for all y1 ≥ · · · ≥ yn ≥ α.

Proof Since ynN
+ = (N/yn)

+, it follows from [10, Theorem 4.20] that
the operator ynN

+ has a power series expansion in non-positive pow-
ers of y1/y2, . . . , yn−1/yn, convergent in a region of the form y2/y1 >

β, . . . , yn/yn−1 > β for some β > 0. The assertion follows from this via de-
pendence on parameters. More precisely, we argue as follows.

Suppose to the contrary that ynN
+ was not bounded. Since ynN

+ =
(N/yn)

+ depends only on the ratios y1/y2, . . . , yn−1/yn, we can then find
a sequence of points y(m) with y1(m) ≥ · · · ≥ yn(m) and yn(m) → ∞, along
which ‖ynN

+‖ diverges. After passage to a subsequence, we can arrange that

y1(m)N1 + · · · + yn(m)Nn = t1(m)M1(m) + · · · + tr (m)Mr(m)

where t1(m)/t2(m), . . . , tr−1(m)/tr (m), and tr (m) = yn(m) are going to in-
finity, and each Mj(m) is a linear combination of N1, . . . ,Nn with coeffi-
cients that lie in a bounded interval [1,K]. By [8, Remark 4.65], the data in
the SL2-Orbit Theorem depend real analytically on these coefficients; we can
therefore use the convergence of the series as above to conclude that

ynN
+ =

(
t1(m)

tr (m)
M1(m) + · · · + tr−1(m)

tr (m)
Mr−1(m) + Mr(m)

)+

remains bounded as m → ∞. But this clearly contradicts our original as-
sumption, and so the lemma is proved. �
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Recall that N = y1N1 + · · · + ynNn, and that our goal is to bound the
quantity

Z(y,h) = max
k≥0

‖Nkh‖.

Also recall that eiδeiNe�(s)F = e−∑xjNj �̃(z) defines a Hodge structure of
weight −1 on HC. We may therefore write any vector h ∈ HC uniquely in the
form

h = eiδeiNe�(s)u + e−iδe−iNe�(s)v (3.7)

with u ∈ F 0 and v ∈ F 0. We can use the boundedness of ynN
+, together with

the analysis in Sect. 3.6, to prove the following important estimate.

Proposition 3.13 There are two constants α ≥ 1 and C > 0, such that we
have

Z(y, v) ≤ C · Z(y,h) (3.8)

for every h ∈ HC and every y1 ≥ · · · ≥ yn ≥ α, where v ∈ F 0 is defined by
(3.7).

Proof We let g = e−�(s)e−iNe−iδh, where sj = e2πizj , and observe that
Z(y,g) is bounded by a constant multiple of Z(y,h) because of Lemma 3.1.
Let

g =
∑

(N+)bgp,q(b)

be the primitive decomposition of g determined by N+, with gp,q(b) ∈
I

p,q

0 in the notation of Sect. 3.6. According to Corollary 3.10, the quantity
maxp,q,b‖gp,q(b)‖ is still bounded by a fixed multiple of Z(y,h).

Similarly write the primitive decomposition of the vector v as

v =
∑

(N+)bvp,q(b),

keeping in mind that v ∈ F 0 means that vp,q(b) = 0 unless q +b ≥ 0. We will
prove the estimate in (3.8) by showing that maxp,q,b‖vp,q(b)‖ is bounded by
a constant multiple of maxp,q,b‖gp,q(b)‖, and hence by Z(y,h); this clearly
suffices because ‖N+‖ is bounded due to Lemma 3.12.

The vector v in the decomposition is uniquely determined by the condition
that

g − e−�(s)e−2iNe−2iδe�(s)v ∈ F 0.

If we set w = e2iNe−�(s)e−2iN · e−2iδe�(s)v, then we can use Deligne’s de-
composition HC =⊕ Ip,q to recast that condition into the form

gp,q = (e−2iNw
)p,q for any p ≤ −1 and any q .
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We will show that this system of equations is a perturbation (of order 1/yn)
of a triangular system. The following convention greatly simplifies the book-
keeping:

Notation For two vectors h1, h2 ∈ HC, we shall write h1 ≡ h2 to mean that

h1 − h2 =
∑

p,q,b

P (p, q, b)vp,q(b)

for linear operators P(p,q, b) that are allowed to depend on z (but not on v),
and have to satisfy max‖P(p,q, b)‖ ≤ B/yn for a constant B that is inde-
pendent of z. It is easy to see that if X is a linear operator such that ‖X‖ is
bounded independently of z, then h1 ≡ h2 implies Xh1 ≡ Xh2.

We begin our analysis by observing that the operator δ is nilpotent, since it
belongs to L

−1,−1
R

(W,F ). Let � = e−2iδ ; then we have

e−2iδ = id+
∑

p,q≥1

�−p,−q,

where �−p,−q maps I a,b into I a−p,b−q .
Next, we look more carefully at the relationship between w and v. To begin

with, the boundedness of ynN
+, proved in Lemma 3.12, implies that

Nbv =
∑

p,q,a

Nb(N+)avp,q(a)

=
∑

p,q,a

R(b, a,−1 − p − q)(N+)a−bvp,q(a)

≡
∑

p,q

R(b, b,−1 − p − q)vp,q(b).

According to the formula in Lemma 3.8,

wp,q(b) =
∑

j≥0

C(p,q, b, j)(N+)jNb+jwp+b,q+b;

to connect this with the primitive decomposition for the vector v, we compute

Nb+jw = Nb+j e2iNe−�(s)e−2iNe−2iδe�(s)v ≡ e−2iδNb+j v,
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using Lemma 3.2 to neglect the terms that arise when commuting Nb+j past
the two operators e−�(s) and e�(s). Consequently,

Nb+jw ≡ e−2iδ
∑

p,q

R(b + j, b + j,−1 − p − q)vp,q(b + j).

Again using the boundedness of ynN
+, this shows that we are allowed to

write

wp,q(b) ≡ C(p,q, b,0)Nbwp+b,q+b = C(p,q, b,0)
(
Nbw

)p,q
.

Combining the various pieces of information, and remembering that
C(p,q, b,0) · R(b, b,−1 − p − q) = 1, we find that there are constants
D(p,q, b, j, k) ∈ Q with the property that

wp,q(b) ≡ vp,q(b) +
∑

j,k≥1

D(p,q, b, j, k) · �−j,−kv
p+j,q+k(b). (3.9)

Since we have gp,q = (e−2iNw)p,q for p ≤ −1, the primitive compo-
nents of g and w are related by the equations in (3.6). Using the constants
�(p,q, b, a) ∈ Q(i) introduced in Proposition 3.11, we define

Gp,q(b) =
−1−p∑

a=0

�(p,q, b, a)gp,q(a).

It follows that we can express each wp,q(b) with q + b ≥ 0 as a linear combi-
nation of Gp,q(b) and the vectors {wp,q(a)}q+a<0. For q + b ≥ 0, we there-
fore have

wp,q(b) = Gp,q(b) +
∑

a<−q

E(p, q, b, a)wp,q(a)

with certain constants E(p,q, b, a) ∈ Q(i) that again depend on nothing but
the Hodge numbers of (W,F ). Now we observe that for q + a < 0, the rela-
tion in (3.9) simplifies to

wp,q(a) ≡
∑

j,k≥1

D(p,q, a, j, k) · �−j,−kv
p+j,q+k(a),

due to the fact that vp,q(a) = 0. When we combine the two formulas for
wp,q(b) from above, we obtain for q + b ≥ 0 an equation of the form

vp,q(b) ≡ Gp,q(b) +
∑

j,k≥1

∑

a≥−q−k

D(p,q, a, j, k)�−j,−kv
p+j,q+k(a).
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Recalling the definition of the symbol ≡, this means that there are linear
operators Pj,k(b, c), mapping Ip,q to Ip+j,q+k , and of size ‖Pj,k(b, c)‖ ≤
B/yn for a suitable constant B > 0, such that

Gp,q(b) = vp,q(b) −
∑

j,k≥1

∑

a≥−q−k

D(p,q, a, j, k)�−j,−kv
p+j,q+k(a)

+
∑

j,k

∑

c≥−q+k

Pj,k(b, c)vp−j,q−k(c). (3.10)

Once again, we view this as a system of linear equations relating the primitive
components {vp,q(b)}q+b≥0 to the vectors {Gp,q(b)}q+b≥0.

Here comes the crucial point: Consider the system of equations (for q +
b ≥ 0)

Gp,q(b) = vp,q(b) −
∑

j,k≥1

∑

a≥−q−k

D(p,q, a, j, k)�−j,−kv
p+j,q+k(a)

in the vectors {vp,q(b)}q+b≥0. It is evidently triangular; written in ma-
trix form, the matrix of coefficients has determinant equal to 1. Since
‖Pj,k(b, c)‖ ≤ B/yn, we can now choose α ≥ 1 sufficiently large to guarantee
that the coefficient matrix of the system in (3.10) has determinant close to 1
for yn ≥ α. The system can then be solved for the vp,q(b), in such a way that
maxp,q,b‖vp,q(b)‖ is bounded by a constant multiple of maxp,q,b‖Gp,q(b)‖.
It follows that there is a large constant K > 0 (depending on the Hodge num-
bers of (W,F ) and on B) such that

∑

p,q,b

‖vp,q(b)‖ ≤ K · Z(y,h).

The decomposition v =∑(N+)bvp,q(b) implies that each Nkv can again
be written as a combination of vectors of the form (N+)bvp,q(b + k). Since
Lemma 3.12 bounds the size of N+, it is then easy to see that we have
Z(y, v) ≤ C · Z(y,h) for a suitable constant C > 0, as long as yn ≥ α. �

Note If we look more carefully at the calculation above, we find that each
Pj,k(b, c) is one of the Hodge components of an operator that is built up
from δ, N , N+, �(s), and �(s). What the proof actually shows is that v can
be expressed by a very complicated formula in the Hodge components of
those operators and the hp,q . Similar reasoning can be used to prove that the
entire Hodge decomposition of h in the Hodge structure eiδe

∑
zjNj e�(s)F is

given by formulas of this type.

Having completed the main technical step, we can now prove Theorem 3.4.
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Proof Fix a real vector h ∈ HR, and let z ∈ H
n be any point with xj = Re zj ∈

[0,1]. Without loss of generality, we may assume that y1 ≥ · · · ≥ yn ≥ α,
where yj = Im zj . We will specify shortly how large α needs to be to ob-
tain the asserted inequality between Z(y,h) and B(z,h). By definition, the
various pairings

Q

(
h, eiδe

∑
zjNj e�(s)

∏

j∈I

Nj

sj
v

)

are bounded by B(z,h) for v ∈ F |I | with ‖v‖ ≤ 1. Since 0 ≤ xj ≤ 1 for
each j , we may replace h by e−∑xjNj h without affecting the statement we
are trying to prove. For the same choices of I and v as above, we then have

∣∣∣∣Q
(

h, eiδeiNe�(s)
∏

j∈I

Nj

sj
v

)∣∣∣∣≤ B(z,h).

Let us introduce the auxiliary vector w = e−�(s)e−iNe−iδh. Since N =∑
yjNj and |sj | = e−2πyj , it is easy to deduce that

Q(Nkw,v) = (−1)kQ
(
h, eiδeiNe�(s)Nkv

)

is bounded by a constant times B(z,h), for any v ∈ Fk with ‖v‖ ≤ 1. The
fact that the pairing is nondegenerate and compatible with the decomposition
HC =⊕ Ip,q now implies that the norm of each vector Nkwp,q with p ≤ −1
is bounded by a constant multiple of B(z,h). To exploit this information, we
define

h′ = eiδeiNe�(s)
∑

p≤−1

wp,q = eiδ · eiNe�(s)e−iN ·
∑

p≤−1

eiNwp,q,

and observe that, as a consequence of Lemma 3.2, Z(y,h′) ≤ C1 ·B(z,h) for
some constant C1 > 0.

By construction, h = h′ + r , where r belongs to eiδeiNe�(s)F 0. Because h

is real, it follows that h′ − h′ = r − r . This is a partial Hodge decomposition
for the vector h′ − h′ ∈ HC, relative to the Hodge structure of weight −1
defined by the point eiδeiNe�(s)F = e−∑xjNj �̃(z) ∈ D. Proposition 3.13,
applied to h′ − h′, shows that we have Z(y, r) ≤ C2 · Z(y,h′) for another
constant C2 > 0. The asserted bound on Z(y,h) is now a consequence of the
identity h = h′ + r and the inequality Z(y,h′) ≤ C1 · B(z,h). �
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4 Admissible normal functions

4.1 Extending admissible normal functions without singularities

We now look at the problem of extending admissible normal functions with
no singularities to holomorphic sections of the space J̄ (H) → X̄.

Let ν be a normal function on X for the variation H, admissible relative
to X̄. By [34, p. 243], it corresponds to a mixed Hodge module Nν on X̄, with
Wn−1Nν = M , and GrWn Nν the trivial Hodge module of weight n. On X, we
have an extension of integral local systems

0 → HZ → VZ → ZX → 0, (4.1)

and therefore a cohomology class [ν] ∈ H 1(X, HZ). Using the Leray spectral
sequence for the inclusion j : X ↪→ X̄, we obtain an exact sequence

0 → H 1(X̄, j∗HZ

)→ H 1(X, HZ) → H 0(X̄,R1j∗HZ

)
.

The following concept has been introduced by M. Green and P. Griffiths [15].

Definition 4.1 The image of [ν] in the space H 0(X̄,R1j∗HZ) is called the
singularity of the normal function ν. When the image is zero, we shall say
that [ν] is locally trivial, or that ν has no singularities.

When ν has no singularities, we evidently have [ν] ∈ H 1(X̄, j∗HZ). The
relationship of these definitions with (4.1) is the following: Taking direct im-
ages, we have a long exact sequence

0 → j∗HZ → j∗VZ → ZX̄

δ−→ R1j∗HZ → ·· · ,

and local triviality of [ν] is equivalent to the vanishing of the connecting
homomorphism δ. Thus if the normal function has no singularities, we obtain
from it an extension of sheaves of abelian groups on X̄, namely

0 → j∗HZ → j∗VZ → ZX̄ → 0. (4.2)

On the other hand, the mixed Hodge module Nν is part of an extension

0 → M → Nν → Q
H

X̄
[n] → 0,

with Q
H

X̄
[n] the trivial Hodge module of weight n on X̄. Let DX̄(−) denote

the duality functor on the category of mixed Hodge modules on X̄. Recall that
M̌ = DX̄(M)(1 − n) is isomorphic to the intermediate extension of the (nor-
malized) dual variation Ȟ = H∨(1). We also have DX̄(QH

X̄
[n]) � Q

H

X̄
[n](n).
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Dualizing the extension above, and applying a Tate twist, we thus get an exact
sequence

0 → Q
H

X̄
[n](1) → Ňν → M̌ → 0,

with Ňν = DX̄(Nν)(1−n). Let (Ňν,F ) be the underlying filtered D-module;
then we have an extension of filtered D-modules

0 → (
OX̄,F [1])→ (

Ňν,F
)→ (

M̌,F
)→ 0. (4.3)

Morphisms of mixed Hodge modules are strictly compatible with the Hodge
filtrations on the underlying D-modules; because F−1OX̄ = 0, the exact se-
quence above induces an isomorphism F0Ňν � F0M̌.

Just as in Sect. 2.1, we can now compare the two extensions in (4.2) and
(4.3) to obtain a section of J̄ (H) = T (F0M̌)/TZ. But note that this has to be
done carefully, since F0M̌ is in general not locally free near points of X̄ −X.

Proposition 4.2 Any admissible normal function ν : J (H) → X without
singularities can be canonically extended to a holomorphic section of
J̄ (H) → X̄.

Proof Since ν has no singularities, it gives rise to an extension of sheaves
of abelian groups as in (4.2). Now cover the space X̄ by open subsets Ui ,
such that (4.2) is locally split. This means that we have vi ∈ H 0(Ui, j∗VZ),
mapping to the constant section 1 ∈ H 0(Ui,Z); it follows that hij = vj −vi ∈
H 0(Ui ∩ Uj , j∗HZ). Note that vi is well-defined up to a section of j∗HZ

over Ui .
Write ji : Ui ↪→ X̄ for the various open inclusions. Because of Lemma 2.8,

each local section vi defines a morphism of D-modules φi : j−1
i Ňν → OUi

.

Restricting to the subsheaf j∗
i (F0Ňν) � j∗

i (F0M̌), we thus have local holo-
morphic sections

ψi ∈ H 0(Ui, (F0M̌)∨
)

satisfying ψj − ψi = hij .

By definition of the analytic structure on T (F0M̌)/TZ, this means exactly
that we have produced a global holomorphic section of the Néron model
J̄ (H) → X̄. It is clear from the construction that this section is independent
of the choices made. That we recover the original normal function on X is a
straightforward consequence of Lemma 2.2. �

From now on, let us write ν̄ for the section of J̄ (H) → X̄ constructed in
Proposition 4.2; we refer to it as the extension of the original normal func-
tion ν.
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Note It would be interesting to know the set of points in J̄ (H) that can lie on
the graph of an extended normal function.

4.2 The horizontality condition

It is clear that the extension ν̄ constructed in Proposition 4.2 is far from being
an arbitrary section of the quotient. In fact, the proof shows that there are
local liftings ψ : F0M̌|U → OU that are compatible with differentiation: for
any k ≥ 0, any differential operator D ∈ H 0(U,Fk DU), and any section s ∈
H 0(U,F−k M̌), the lifting satisfies ψ(Ds) = Dψ(s). This appears to be the
correct notion of horizontality for sections of J̄ (H) → X̄.

Definition 4.3 A holomorphic section of J̄ (H) → X̄ is said to be hori-
zontal if it admits local holomorphic liftings ψ : F0M̌|U → OU with the
property that ψ(ξs) = dξ (ψ(s)) for any holomorphic tangent vector field
ξ ∈ H 0(U,�U) and any section s ∈ H 0(U,F−1M̌).

It follows that ψ(Ds) = Dψ(s) for D ∈ H 0(U,Fk DU) and s ∈
H 0(U,F−k M̌) as above. Over X, the definition clearly recovers the usual
definition of horizontality. We now prove the converse to Proposition 4.2.

Proposition 4.4 Let μ : X̄ → J̄ (H) be a holomorphic section that is hori-
zontal. Then μ is the extension of an admissible normal function on X with
locally trivial cohomology class.

Proof The restriction of μ to X is a horizontal and holomorphic section of
J (H), and therefore a normal function ν. We have to prove that it is admis-
sible, and that its cohomology class is locally trivial. To begin with the latter,
consider the exact sequence of sheaves

0 → j∗HZ → (F0M̌)∨ → (F0M̌)∨/j∗HZ → 0,

and recall that the quotient is the sheaf of sections of J̄ (H). Via the connect-
ing homomorphism, the section μ determines an element in H 1(X̄, j∗HZ),
whose image in H 1(X, HZ) is the class of the normal function. By construc-
tion, [ν] goes to zero in H 0(X̄,R1j∗HZ); this means that ν has no singulari-
ties.

Since admissibility is defined by a curve test [22], we let f : � → X̄ be
an arbitrary holomorphic curve with f (�∗) ⊆ X, such that Hf = f ∗H has
unipotent monodromy. By Proposition 2.22, we have a holomorphic mapping

� ×X̄ J̄ (H) → J̄ (Hf )
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over �, and so μ induces a holomorphic section of J̄ (Hf ) whose restriction
to �∗ is the pullback of the normal function. Since it suffices to prove the
admissibility of the latter, we have reduced the problem to the case of a disk,
where we can apply the following lemma. �

Lemma 4.5 Let H be a polarizable variation of integral Hodge structure
of weight −1 on �∗, whose monodromy is unipotent. Then any holomorphic
and horizontal section of J̄ (H) → � is the extension of an admissible normal
function.

Proof Let X̄ = � and X = �∗. Shrinking the radius of the disk, if necessary,
we may assume that the section can be lifted to a morphism ψ : F0M̌ → OX̄

that satisfies the condition in the definition of horizontality. As before, the
morphism defines a normal function with trivial cohomology class on X. Let

0 → H → V → ZX(0) → 0

be the corresponding extension of variations of mixed Hodge structure on
X; we need to show that V is admissible. As a practical matter, it is more
convenient to prove the admissibility of V̌ = V ∨(1), which is part of to the
dual extension

0 → ZX(1) → V̌ → Ȟ → 0.

The first condition in the definition of admissibility, namely existence of the
relative weight filtration, is trivially satisfied in our case, because the under-
lying local system V̌Z = ZX(1) ⊕ ȞZ is a direct sum.

Now let Ȟe
O be Deligne’s canonical extension of the flat vector bundle

(ȞO,∇); it is naturally a subsheaf of the minimal extension M̌. Evidently,
the canonical extension of V̌O is given by OX̄ ⊕ Ȟe

O ↪→ OX̄ ⊕ M̌. It remains
to verify the second condition in the definition of admissibility, namely that
the Hodge bundles FpV̌O extend to holomorphic subbundles of the canonical
extension. In fact, we shall give a formula for these subbundles in terms of ψ .

At this point, we do not know that V̌ can be extended to a mixed Hodge
module on X̄—in fact, this is equivalent to admissibility by [34, p. 243]. Nev-
ertheless, we can use ψ to reconstruct the Hodge filtration on the underlying
filtered D-module OX̄ ⊕ M̌. Guided by the exact sequence in (4.3), we define

Fp

(
OX̄ ⊕ M̌

)=
{

im
(
(ψ, id) : Fp M̌ → OX̄ ⊕ M̌

)
for p ≤ 0,

OX̄ ⊕ Fp M̌ for p > 0.

The horizontality condition on ψ ensures that the filtration is good, and there-
fore that OX̄ ⊕ M̌ is a filtered D-module. Now any coherent subsheaf of
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OX̄ ⊕ Ȟe
O is locally free (because X̄ is one-dimensional); consequently,

Fp

(
OX̄ ⊕ Ȟe

O

)=
{

im
(
(ψ, id) : Fp Ȟe

O → OX̄ ⊕ Ȟe
O

)
for p ≤ 0,

OX̄ ⊕ Fp Ȟe
O for p > 0,

extends the Hodge bundle FpV̌O to a holomorphic subbundle of the canonical
extension. This concludes the proof that V̌ , and hence ν, is admissible. �

4.3 Graphs of admissible normal functions

In this section, we consider admissible normal functions on X with possibly
nontrivial singularities. By Proposition 4.4, such a normal function cannot be
extended to a section of J̄ (H) → X̄. Nevertheless, the following surprising
result is true.

Theorem 4.6 Let ν : X → J (H) be a normal function, admissible relative to
X̄. Then the topological closure of the graph ν(X) is an analytic subset of
J̄ (H).

Proof This follows from the corresponding statement in the normal crossing
case, contained in Corollary 5.7, by the same argument as in Sect. 2.11. �

One consequence is an alternative proof for Conjecture 1.1. It is quite dif-
ferent from the existing proof by P. Brosnan and G. Pearlstein [6], but similar
in spirit to the treatment of the one-variable case in M. Saito’s paper [35].

Corollary 4.7 If a normal function ν : X → J (H) is admissible relative to X̄,
then the closure of its zero locus Z(ν) is an analytic subset of X̄. In particular,
when X is an algebraic variety, the zero locus Z(ν) is an algebraic subvariety.

Proof The closure of Z(ν) is contained in the intersection of the closure of
the graph of ν with the zero section of J̄ (H), and is therefore analytic as well.
When X is an algebraic variety, we take X̄ to be projective—admissibility is
independent of the choice of compactification in that case—and the algebraic-
ity of Z(ν) follows by Chow’s Theorem. �

We also note the following property of normal functions with torsion sin-
gularities, suggested by P. Brosnan. In the statement, p : J̄ (H) → X̄ is the
projection map, and ν(X) ⊆ J (H) is the graph of ν.

Proposition 4.8 Suppose that ν : X → J (H) is an admissible normal func-
tion, whose singularity at a point x ∈ X̄ − X is torsion. If the topological
closure of ν(X) intersects the fiber p−1(x), then ν extends to a holomorphic
section of J̄ (H) in a neighborhood of x.



Complex analytic Néron models 61

Proof This follows from Lemma 5.8, by a similar argument as in Sect. 2.10.
Namely, let

0 → M → Nν → Q
H

X̄
[n] → 0

be the extension of mixed Hodge modules on X̄ corresponding to the normal
function ν, let i : {x} ↪→ X̄ be the inclusion, and set V = H−ni∗Nν and H =
H−ni∗M . Then both H and V are mixed Hodge structures, defined over Z,
and since the singularity of ν at x is torsion, we get VQ/HQ � Q. Also note
that HC/F0HC → VC/F0VC is an isomorphism by strictness.

Now suppose that the closure of ν(X) meets p−1(x). Let Tν ⊆ T (F0M̌)

be the preimage of the graph. Since the closure of Tν is analytic, we can find a
holomorphic curve f : � → T (F0M̌) with f (�∗) ⊆ Tν , such that f (0) lies
over the point x. Let f ∗ν denote the pullback of ν to �∗; it is an admissible
normal function without singularities on �, and the corresponding extension
of mixed Hodge modules

0 → Mf → Nf → Q
H
� [1] → 0

splits over Z. If we let i0 : {0} ↪→ �, Hf = H−1i∗0Mf , and V f = H−1i∗0Nf ,

we have V
f

Z
� H

f

Z
⊕ Z. As in Sect. 2.10, we obtain a commutative diagram

with exact rows.

0 HZ VZ Z · · ·

0 H
f

Z
V

f

Z
Z 0

Let vf ∈ V
f

Z
be a lifting of 1 ∈ Z. It determines a point in T (F0M̌)0, and

hence in the quotient H
f

C
/F0H

f

C
� V

f

C
/F0V

f

C
. As before, the fact that we

have f (0) ∈ T (F0M̌)x , together with the compatibility of the maps, implies
that

vf ∈ F0V
f

C
+ im

(
VC → V

f

C

)
.

Since the singularity of ν is a torsion class, the quotient V f /V is a mixed
Hodge structure of weight ≤−1. We again conclude that vf ∈ VQ, and hence
vf ∈ VZ. But then VZ � HZ ⊕Z, and so ν has no singularity at the point x. �

4.4 A Néron model for torsion singularities

The analytic space J̄ (H) has all the properties that are expected for the iden-
tity component of the Néron model. In this section, we extend the construction
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to produce an analytic space that graphs admissible normal functions with tor-
sion singularities. This generalizes work by M. Saito [35] in the case where
dim X̄ = 1.

Theorem 4.9 There is an analytic space J̄tor(H) → X̄, whose horizontal and
holomorphic sections are precisely the admissible normal functions with tor-
sion singularities.

We obtain the space J̄tor(H) by a gluing construction as in [7, Sect. 2.3];
local models are given by locally defined admissible normal functions with
torsion singularities. To introduce the appropriate notation, suppose that we
have an open subset U ⊆ X̄, and an admissible normal function ν on U ∩ X

with only torsion singularities. Then ν defines a section of p : J̄ (H) → X̄

over U ∩ X. By Proposition 4.8, there is a maximal open subset U(ν) ⊆ U

to which this section can be extended; the important fact is that the graph of
ν : U(ν) → p−1(U) is a closed analytic subset. For every such pair, we let
Y(U, ν) be a copy of p−1(U) ⊆ J̄ (H), and write p : Y(U, ν) → U for the
projection map.

Let Y be the disjoint union of all the spaces Y(U, ν), and define an equiv-
alence relation on the topological space Y by setting

y ∼ y′ if and only if

{
x = p(y) = p(y′) lies in U(ν) ∩ U ′(ν′),

and y + ν(x) = y′ + ν′(x)

for y ∈ Y(U, ν) and y′ ∈ Y(U ′, ν′).

Lemma 4.10 The quotient map q : Y → Y/ ∼ is an open map, and the topol-
ogy on Y/ ∼ is Hausdorff.

Proof To prove that q is an open map, it suffices to show that the image
of each Y(U, ν) is an open subset of the quotient. One easily sees that the
preimage of q(Y (U, ν)) intersects Y(U ′, ν′) in the open subset p−1(U(ν) ∩
U ′(ν′)); this implies the first assertion.

For the second, it is again enough to prove that ∼ defines a closed subset
of Y × Y . So suppose that we have two sequences of points yn ∈ Y(U, ν)

and y′
n ∈ Y(U ′, ν′) with yn ∼ y′

n for all n ∈ N, such that (yn, y
′
n) → (y, y′).

Letting xn = p(yn) = p(y′
n), we obtain xn → x, where x = p(y) = p(y′).

Since the graphs of ν and ν′ are closed by Proposition 4.8, we have x ∈
U(ν) ∩ U ′(ν′). The continuity of ν and ν′ now implies that y + ν(x) = y′ +
ν′(x), proving that y ∼ y′. �

Here is the proof of Theorem 4.9.
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Proof In the notation from above, let J̄tor(H) = Y/ ∼, with the obvious pro-
jection map to X̄. Evidently, no two distinct points of Y(U, ν) are identified
by the equivalence relation, and so Y(U, ν) is isomorphic to its image in the
quotient. Since the quotient is Hausdorff, it follows that it is an analytic space,
with local analytic charts given by the Y(U, ν). It is clear from the construc-
tion that any admissible normal function ν on X with torsion singularities
extends to a holomorphic section of J̄tor(H): the extension is given by the
zero section of Y(X̄, ν) → X̄, followed by the inclusion into the quotient. �

Let G = ker(R1j∗HZ → R1j∗HQ) be the sheaf of torsion sections in
R1j∗HZ; if the singularity of an admissible normal function on X is torsion,
then it is an element of H 0(X̄,G ). Note that G is a constructible sheaf of
finite abelian groups, with support contained in X̄ − X.

Lemma 4.11 For a point x ∈ X̄, let Gx denote the stalk of the sheaf G at x.
Then every element of Gx is the singularity of an admissible normal function
that is defined in a neighborhood of x.

Proof Fix an element g ∈ Gx . After replacing X̄ by a small open neighbor-
hood of x, if necessary, we may assume that g belongs to H 1(X, HZ) and
therefore corresponds to an extension of local systems

0 → HZ → VZ → ZX → 0

on X. The extension splits over Q because g is torsion. Since VQ � HQ ⊕
Q, it follows that VZ underlies the variation of mixed Hodge structure V =
H ⊕ QX(0). Now V is clearly admissible, and therefore corresponds to an
admissible normal function, whose singularity equals the original element
g ∈ H 1(X, HZ). �

4.5 Impossibility of a general analytic Néron model

We now describe the implications of Theorem 4.6 for the construction of
the full Néron model. As mentioned in the introduction, it should have the
property that its sections are the admissible normal functions.

Lemma 4.12 Let X ⊆ X̄ be a Zariski-open subset, and let H be a polarizable
variation of Hodge structure of weight −1 on X. Suppose that there is a
topological space Y with the following three properties:

(i) The topology on Y is Hausdorff, and there is a continuous map Y → X̄.
(ii) There is a continuous injective map J̄ (H) ↪→ Y over X̄ that is a homeo-

morphism over X.
(iii) Admissible normal functions on X extend to a continuous sections of Y .
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Then the closure of the graph of an admissible normal function inside J̄ (H)

can meet every fiber of p : J̄ (H) → X̄ in at most one point.

Proof Let ν : X → J (H) be an admissible normal function. By assumption,
it extends to a continuous section μ : X̄ → Y , and since Y is Hausdorff, its
graph μ(X̄) has to be closed. It follows that the preimage of μ(X̄) in J̄ (H) is
also closed, and therefore contains the closure of ν(X). But this implies that
ν(X) intersects each fiber p−1(x) in at most one point. �

Now the problem is that, for a general admissible normal function with
non-torsion singularities, the closure of the graph typically has fibers of pos-
itive dimension over X̄. This can happen even in the simplest of examples:
Sect. 6.3 exhibits a family of elliptic curves over (�∗)2, where the cen-
tral fiber of J̄ (H) → �2 is a copy of C

∗. One can then easily write down
an admissible normal function on (�∗)2 that extends holomorphically to
�2 − {(0,0)}, but such that the closure of its graph has a one-dimensional
fiber over the origin.

In my eyes, examples of this kind make the existence of a Néron model
that is Hausdorff as a topological space very unlikely, for the following rea-
son: For a family of elliptic curves on (�∗)2 with unipotent monodromy, any
reasonable candidate for the Néron model should have J̄ (H) as its identity
component, since the latter agrees with the classical construction [28]. By
Lemma 4.12, this means that the normal function in the example cannot be a
continuous section of a Néron model that is also Hausdorff. Thus it appears
that one cannot do any better than Theorem 4.9 in general.

4.6 Comparison with Brosnan-Pearlstein-Saito

We now make the comparison of our construction with the Néron model de-
fined by P. Brosnan, G. Pearlstein, and M. Saito in their preprint [7]. We
denote the identity component of their model by J̄BPS(H).

We begin by constructing a map on fibers. Let i : {x} ↪→ X̄ be the in-
clusion of an arbitrary point; as in Sect. 2.9, define the two integral mixed
Hodge structures H = H−ni∗M and Ȟ = H∨(1) � Hni!M̌(n). Lemma 2.25
provides us with a surjection from J̄ (H)x to the generalized intermediate Ja-
cobian J (H). As explained in Sect. 2.1, J (H) � Ext1MHS(Z(0),H) is exactly
the fiber of J̄BPS(H) over the point x. In this way, we obtain for every point
x ∈ X̄ a surjective map of complex Lie groups

J̄ (H)x →→ J̄BPS(H)x.

It gives rise to a map of sets π : J̄ (H) → J̄BPS(H). In the case dim X̄ = 1,
a very precise description of the map π as a composition of blowups with
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specified centers has been given in [36]. Here, we shall content ourselves
with showing that π is continuous.

Lemma 4.13 The resulting map of sets π : J̄ (H) → J̄BPS(H) is continuous.

Proof Because of how the topology on J̄BPS(H) is defined in [7], and be-
cause of the functoriality of our construction, it suffices to prove the state-
ment in the case when X̄ − X is a divisor with normal crossings and the local
monodromy of HZ is unipotent. Let He

O be Deligne’s canonical extension of

HO , and Ȟe
O that of ȞO ; then Ȟe

O ↪→ M̌. The Hodge bundles extend to lo-

cally free subsheaves Fp Ȟe
O = Ȟe

O ∩ Fp M̌. Let E → X̄ be the holomorphic
vector bundle corresponding to the locally free sheaf He

O , and F0E ⊆ E the
subbundle corresponding to F0He

O . We then have a holomorphic mapping

T (F0M̌) → T (F0Ȟe
O); since (F0Ȟe

O)∨ � He
O/F0He

O , this means that we
get a holomorphic mapping

T (F0M̌) → E/F0E

from the analytic space on the left to the vector bundle on the right. Since the
topology on J̄BPS(H) is induced from that on E/F0E, and topology on J̄ (H)

from that on T (F0M̌), the continuity of J̄ (H) → J̄BPS(H) is immediate. �

Note The map J̄ (H)x → J̄BPS(H)x constructed in Sect. 2.9 has a splitting: in
fact, by Lemma 2.8, we have a map HC → T (F0M̌)x , and the composition

HC/F0HC → T (F0M̌)x → (F0ȞC)∨

is an isomorphism. This circumstance is useful for proving the surjectivity
of π , but otherwise turns out to be something of a red herring, because the re-
sulting mapping J̄BPS(H) → J̄ (H) is typically neither continuous, nor com-
patible with normal functions (as pointed out to me by M. Saito).

Now let ν be an admissible normal function on X with locally trivial coho-
mology class. We can also show that its extension ν̄ to a holomorphic section
of J̄ (H) → X̄ is mapped to the extension constructed in [7].

Lemma 4.14 Let ν̄ : X̄ → J̄ (H) be the extension of an admissible normal
function ν without singularities. Then the induced section π ◦ ν̄ of J̄BPS(H)

agrees with the extension of ν defined in [7].

Proof Associated to the normal function, we have an extension of variations
of mixed Hodge structure

0 → H → V → ZX(0) → 0.
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Because of admissibility, V can be extended to a mixed Hodge module Nν

on X̄ with Wn−1Nν � M and GrWn Nν � Q
H

X̄
[n].

Fix a point i : {x} ↪→ X̄, and let H = H−ni∗M and V = H−ni∗Nν . Also
define Ȟ = H∨(1) � Hni!M̌(n). Since the cohomology class of ν is trivial
near x, it is easy to see that we obtain an extension of mixed Hodge structures

0 → H → V → Z(0) → 0, (4.4)

and therefore a point in Ext1MHS(Z(0),H) � J (H); it is the value of the ex-
tended normal function in J̄BPS(H)x . According to Sect. 2.1, this point is
obtained by choosing a lifting vZ ∈ VZ for 1 ∈ Z, and restricting it to a linear
operator on F0ȞC. If we take v equal to the value at x of a locally defined flat
section of VZ splitting the extension of local systems, then it follows that this
prescription is compatible with the definition of the extended normal function
ν̄ in Proposition 4.2. This means that π(ν̄(x)) gives the same point in J (H),
as claimed. �

Note A shorter proof is the following: Both the extension of ν constructed in
[7] and π ◦ ν̄ are continuous sections of J̄BPS(H). Since they agree over X,
and since X is dense in X̄, it follows that they agree everywhere.

5 Local analysis of admissible normal functions

5.1 Introduction

This part of the paper is devoted to a local analysis of admissible normal func-
tions with possibly nontrivial singularities, and to the proof of Theorem 4.6.
One might expect that this would be considerably more difficult, but in fact,
the methods of Sect. 3.7 extend to this case with little additional effort.

Let H be a polarizable variation of Hodge structure of weight −1 on X =
(�∗)n, and let ν be a normal function, admissible relative to X̄ = �n. We
represent ν by an admissible variation of mixed Hodge structure V , in the
form of an extension

0 → H → V → ZX(0) → 0.

Since HZ has unipotent monodromy, the same is clearly true for VZ. Let
V̌ = V ∨(1) denote the (normalized) dual variation of mixed Hodge structure.
As in Sect. 2.1, we have the dual extension

0 → ZX(1) → V̌ → Ȟ → 0,

and therefore an isomorphism F0V̌O � F0ȞO . It gives rise to a morphism of
sheaves VZ → (F0ȞO)∨ on (�∗)n. Let Tν be the subset of the étalé space of
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VZ, consisting of those points that map to 1 ∈ Z. We then have a holomorphic
embedding

ϕ : Tν ↪→ T (F0ȞO)

over X, and the goal of this section is to prove that the topological closure of
ϕ(Tν) inside the larger analytic space T (F0M̌) is an analytic subset.

Note As in Sect. 3.2, we choose once and for all a polarization on H. It
induces isomorphisms F0ȞO � F0HO and F0M̌ � F0M, and because it
simplifies the notation, we shall use the mapping ϕ : Tν ↪→ T (F0HO) instead
of the original one.

5.2 A technical result

Just as in the pure case, we let VC denote the fiber of the pullback of V
to H

n. Let W be the resulting weight filtration on VZ, with W−1 = HZ and
GrW0 � Z. Let N1, . . . ,Nn ∈ End(VQ) be the logarithms of the monodromy
operators; note that imNj ⊆ HQ. Likewise, most of the notation introduced
in Sect. 3.2 will now be used for VC in place of HC.

Notation It will be convenient to let VC,1 ⊆ VC denote the subset of elements
that map to 1 ∈ C � VC/HC. We similarly define VR,1 and VZ,1.

The lifting of the period map will be denoted by �̃ : H
n → D, where

D is now a period domain for mixed Hodge structures. Since the origi-
nal variation is admissible, we have e−∑ zjNj �̃(z) = �(s) with � holo-
morphic on �n. In addition, the relative monodromy weight filtration M =
M(N1, . . . ,Nn;W) exists and is constant on the open cone C(N1, . . . ,Nn),
and the pair (M,�(0)) is a mixed Hodge structure [22, Proposition 5.2.1].
Let δ ∈ L

−1,−1
R

(M,�(0)) be the unique element for which (M,F ) is R-split,
where F = e−iδ�(0). As in Sect. 3.2, we can put the period map for the
variation of mixed Hodge structure into the standard form [30, Proof of The-
orem 6.13]

�̃(z) = eiδe
∑

zjNj e�(s)F,

where � is holomorphic and satisfies �(0) = 0. Since the period map is again
horizontal, Lemma 3.1 extends to this setting. Obviously, the restriction of
� or δ to the subspace HC gives back the operators that were introduced in
Sect. 3.2.

In the remainder of this section, we prove the following generalization of
Theorem 3.5; note the similarity with the main result of E. Cattani, P. Deligne,
and A. Kaplan [8, Theorem 2.16]. By a slight abuse of notation, we also let Q
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denote the pairing between VC and sections (of the pullback to H
n) of F0HO ,

induced by the morphism VC → (F0HO)∨ described above.

Theorem 5.1 Let z(m) ∈ H
n be a sequence of points with Im zj (m) → ∞

and Re zj (m) ∈ [0,1] for j = 1, . . . , n. Let v(m) ∈ VZ,1 be a corresponding
sequence of integral classes, such that Q(v(m),σI,u(z(m))) converges for ev-
ery I ⊆ {1, . . . , n} and every u ∈ F |I | ∩HC (see Sect. 3.3). Then the following
four things are true:

(i) The sequence v(m) is bounded, hence takes only finitely many values.
(ii) Let v ∈ VZ,1 be a point of accumulation. Then there are positive integers

a1, . . . , an with the property that a1N1v + · · · + anNnv = 0.
(iii) There is a vector w ∈ C

n such that

e−�(s(m))e−∑ zj (m)Nj e−iδv(m) → e−∑wjNj e−iδv

along a subsequence of the original sequence.
(iv) For each k = 1, . . . , n, we have

e−∑wjNj e−iδNkv = e−∑RewjNj Nkv
0,0 = Nkv

0,0,

which implies that the vector Nkv is a rational Hodge class of type
(−1,−1) in the mixed Hodge structure (M ∩ H,e

∑
wjNj �(0)).

5.3 Proof of the technical result

The proof proceeds through a sequence of lemmas. In analogy with the no-
tation used in Sect. 3.4, we define N = y1N1 + · · · + ynNn, and observe that
M = M(N,W) is the relative weight filtration for N . Consequently, we have
M−1 ⊆ W−1 and M0 + W−1 = W0, and M ∩ H = W(N)[−1] is the shifted
monodromy weight filtration for N on H .

Lemma 5.2 There is a unique element v0 ∈ M0 ∩ F 0 ∩ VR,1 with Nv0 = 0.

Proof The uniqueness of such an element is clear; indeed, kerN ∩ H is a
mixed Hodge structure of weight ≤ − 1, which implies that F 0 ∩ kerN ∩
HR = {0}. It remains to show that a suitable element v0 always exists. Since
M0 + HQ = VQ, we can certainly find an element v ∈ M0 ∩ VQ that lifts
1 ∈ Q. Since (M,F ) is R-split, we can replace v by its component in the
space I 0,0(M,F ) and assume that v is real and lies in I 0,0(M,F ). Then Nv

belongs to I−1,−1(M ∩ H,F ∩ H) and hence to W(N)−1, and so there is an
element h ∈ HR with Nv = Nh. Again replacing h by one of its components,
we may assume that h ∈ I 0,0(M ∩ H,F ∩ H). But now v0 = v − h satisfies
all the required conditions. �
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Fix a norm ‖−‖ on the vector space VC. As in Sect. 3.7, the analysis in
this section depends mostly on a single difficult statement, namely that ‖v0‖
remains bounded as y1, . . . , yn → ∞. This is a special case of a more general
theorem due to P. Brosnan and G. Pearlstein [6], and as in their work, relies on
the SL2-Orbit Theorem of K. Kato, C. Nakayama, and S. Usui [23]. Observe
that the pair (W, eiNF ) defines an R-split mixed Hodge structure, due to the
fact that (M,F ) splits over R. Since Nv0 = 0, it is obvious that v0 is the
unique real element in I 0,0(W, eiNF ) that maps to 1 ∈ GrW0 ; said differently,
v0 is the image of 1 ∈ GrW0 under the canonical splitting of (W, eiNF ) [23,
Sect. 1.2].

Lemma 5.3 There are constants C > 0 and α > 0, such that ‖v0‖ ≤ C for
all y1, . . . , yn ≥ α.

Proof Without loss of generality, we may suppose that y1 ≥ · · · ≥ yn ≥ α.
[23, Theorem 0.5] implies that the canonical splitting of (W, eiNF ) has
a power series expansion in non-positive powers of y1/y2, . . . , yn−1/yn,
and yn; the series converges provided that y1/y2 > β, . . . , yn−1/yn > β , and
yn > β . Arguing as in the proof of Lemma 3.12, we conclude that the canon-
ical splitting is uniformly bounded for all y1, . . . , yn ≥ α, once we take α

sufficiently large. The same is therefore true for the image of 1 ∈ GrW0 under
the canonical splitting; but this image is precisely v0. �

For v ∈ VC, define Z(y, v) = maxk≥0‖Nkv‖. As before, we have to show
that the norm ‖v‖ of a real vector v ∈ VR,1 is controlled by the size of the
pairings Q(v,σI,u(z)), once y1, . . . , yn are sufficiently large.

Lemma 5.4 Let B(z, v) denote the supremum of |Q(v,σI,u(z))|, taken over
I ⊆ {1, . . . , n} and u ∈ F |I | ∩ HC with ‖u‖ ≤ 1. Then there are constants
C > 0 and α > 0, such that

Z(y, v) ≤ C · B(z, v)

for every v ∈ VR,1 and every z ∈ H
n with yj = Im zj ≥ α and 0 ≤ Re zj ≤ 1.

Proof Given a vector v ∈ VC, we let vp,q ∈ Ip,q(M,F ) denote its compo-
nents relative to Deligne’s decomposition. As in Sect. 3.7, we may replace v

by e−∑xjNj v without affecting the statement we are trying to prove. Setting
w = e−�(s)e−iNe−iδv, we easily see that the norm of each vector Nkwp,q

with p ≤ −1 is bounded by a constant times B(z, v). We again define

v′ = eiδeiNe�(s)e−iN ·
∑

p≤−1

eiNwp,q,
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and observe that Z(y, v′) is bounded by a fixed multiple of B(z,h) by a
version of Lemma 3.2. A useful observation is that v′ ∈ HC; this is be-
cause GrW0 is of type (0,0) at every point z ∈ H

n. By construction, we have
v − v′ ∈ eiδeiNe�(s)F 0; since v ∈ VR,1, it is therefore possible to write

v = v′ + eiδeiNe�(s)(v0 + h)

for a unique choice of h ∈ F 0 ∩ HC.
To continue, we let g = v′ + eiδeiNe�(s)v0 − v0; note that this vector be-

longs to HC. Since Nv0 = 0, and since ‖v0‖ is uniformly bounded due to
Lemma 5.3, we still have Z(y,g) bounded by a constant multiple of B(z, v).
We can now rewrite the equation from above as v − v0 = g + eiδeiNe�(s)h.
Remembering that v − v0 is a real vector, we obtain the relation

g − g = eiδeiNe�(s)h − e−iδe−iNe�(s)h.

From Proposition 3.13, we deduce that Z(y,h) is bounded by a constant
times Z(y,g), and hence by a constant multiple of B(z, v), provided that
y1, . . . , yn ≥ α. But now the formula v = v0 + g + eiδeiNe�(s)h, together
with Lemma 5.3, shows that the same is true for Z(y, v). �

Once again, this single inequality is all that one needs to prove Theorem 5.1

Proof By the inequality in Lemma 5.4, ‖v(m)‖ remains bounded as m → ∞.
Since v(m) ∈ VZ,1, the sequence can take only finitely many values, proving
Theorem 5.1(i). We can then pass to a subsequence, and assume for the re-
mainder of the argument that v(m) = v for some v ∈ VZ,1. Arguing as in the
proof of Lemma 3.6, we conclude from the boundedness of

∑
yj (m)Njv

that v satisfies Theorem 5.1(ii). We also see that there is a further subse-
quence along which

∑
zj (m)Njv =∑wj(m)Njv, where the sequence of

w(m) ∈ C
n converges to a vector w ∈ C

n. This implies Theorem 5.1(iii).
Finally, we need to establish Theorem 5.1(iv). From the convergence of

Q(v,σ{k},u(z(m))) for u ∈ F 1 ∩ HC, we deduce as in the proof of Theo-
rem 3.5 that

Nkv ∈ e
∑

wjNj eiδ(F−1 ∩ HC).

This means that the vector e−∑RewjNj Nkv is a real Hodge class of type
(−1,−1) in the mixed Hodge structure (M ∩ H,eiδ+i

∑
ImwjNj (F ∩ H)).

Lemma 5.5 implies that Nkv lies in the kernel of the operator δ+∑ ImwjNj ,
and that

e−∑wjNj e−iδNkv = e−∑RewjNj Nkv = Nkv
0,0.

This gives Theorem 5.1(iv) and concludes the proof. �
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Lemma 5.5 Let (W,F ) be an R-mixed Hodge structure, and let v ∈ W2p ∩
Fp be a real Hodge class of type (p,p). Let δ ∈ L

−1,−1
R

(W,F ) be the unique
element for which (W, e−iδF ) splits over R. Then δv = 0, and consequently
v ∈ Ip,p(W, e−iδF ).

Proof Since v defines a morphism of R-mixed Hodge structures R(−p) →
(W,F ), the functoriality of δ (see [23, Lemma 1.6] for a proof) implies
that δv = 0. It follows that v is also a real Hodge class of type (p,p) in
(W, e−iδF ). �

5.4 Graphs of admissible normal functions

Recall that we defined Tν as the subset of the étalé space of VZ, consisting of
those points that map to 1 ∈ Z. Theorem 5.1 is strong enough to conclude that
Tν has an analytic closure inside of T (F0M). Note that Corollary 3.7, to the
effect that ε(TZ) ⊆ T (F0M) is closed analytic, can be viewed as the special
case ν = 0.

Theorem 5.6 The topological closure of Tν inside T (F0M) is an analytic
subset.

Proof We shall use both the space T (F0M), as well as the space T (F0He
O)

coming from the canonical extension; since F0He
O ⊆ F0M, they are re-

lated by a holomorphic mapping g : T (F0M) → T (F0He
O). We also have

holomorphic mappings ϕ : Tν → T (F0M) and ψ : Tν → T (F0He
O) with

ψ = g ◦ ϕ. Let Tν(v) denote the connected component of Tν containing a
given vector v ∈ VZ,1. It suffices to show that the image of each Tν(v) un-
der the holomorphic mapping ϕ has an analytic closure; this is because (i) in
Theorem 5.1 assures us that only finitely many of these image closures can
meet at any given point of T (F0M).

Fix a vector v ∈ VZ,1. We may clearly assume for the remainder of the
argument that v satisfies (ii)–(iv) in Theorem 5.1, for otherwise, the im-
age of Tν(v) is already closed in a neighborhood of 0 ∈ �n and there is
nothing to prove. In particular, we have a1N1v + · · · + anNnv = 0, and
e−∑wjNj e−iδNkv = Nkv

0,0 for some w ∈ C
n. Replacing v by e−∑RewjNj v,

we arrange that w = 0, at the cost of having v ∈ VR,1.
We can use this information to show that the image of Tν(v) un-

der ψ has an analytic closure inside T (F0He
O). Let D = �n − (�∗)n,

let p : T (F0He
O) → �n denote the projection map, and set E = p−1(D).

Clearly, ψ(Tν(v)) is a closed analytic subset of T (F0He
O) − E, of pure di-

mension n. To prove that its closure remains analytic, it suffices to show that
the intersection of the closure with E is contained in a countable union of im-
ages of complex manifolds of dimension at most n − 1. Indeed, this implies
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that the intersection has 2n-dimensional Hausdorff measure equal to zero,
and we conclude by a result of E. Bishop’s [1, Lemma 9].

By construction of the canonical extension, the mapping ψ : Tν(v) →
T (F0He

O) is given in coordinates by the formula

ψ : H
n → �n × Hom(F 0HC,C), (z1, . . . , zn) �→ (

e2πiz1, . . . , e2πizn, fz

)

where fz : F 0HC → C is the linear functional

u �→ fz(u) = Q
(
v, eiδe

∑
zjNj e�(s)u

)
.

Now we compute that

e−�(s)e−∑ zjNj e−iδv

= e−�(s)e−iδv +
∞∑

k=1

(−1)ke−�(s)(z1N1 + · · · + znNn)
kv0,0,

and hence we have

fz(u) = Q
(
e−�(s)e−∑ zjNj e−iδv, u

)

= Q
(
e−�(s)e−iδv, u

)

+
∞∑

k=1

(−1)kQ
(
e−�(s)(z1N1 + · · · + znNn)

kv0,0, u
)

for every u ∈ F 0HC. In particular, remembering that �(s) ∈ q, we find that
when u belongs to the subspace I 1,1(M ∩ H,F ∩ H), then

fz(u) = Q
(
e−�(s)e−iδv, u

)− Q
(
z1N1v

0,0 + · · · + znNnv
0,0, u

)
. (5.1)

It is now easy to determine the points in the closure. Fix a subset I ⊆
{1, . . . , n} of size k, and consider the stratum DI ⊆ D of points with sj �= 0
for j ∈ I and sj = 0 for j �∈ I ; note that dimDI = k. Suppose that z(m) ∈ H

n

is a sequence of points for which ψ(z(m)) converges to a point over s0 ∈ DI .
We have Njv = 0 for j ∈ I , and since a1N1v + · · · + anNnv = 0, the span
of N1v, . . . ,Nnv has dimension at most n − k − 1. Using the convergence
of fz(m)(u) in (5.1) and arguing as in the proof of Lemma 3.6, we see that∑

zj (m)Njv
0,0 converges to

∑
wjNjv

0,0 for some vector w ∈ C
n. Thus

every limit point over s0 ∈ DI is of the form (s0, f ), where f : F 0HC → C

is given by the formula
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f (u) = Q
(
e−�(s0)e−iδv, u

)

+
∞∑

k=1

(−1)kQ
(
e−�(s0)(w1N1 + · · · + wnNn)

kv0,0, u
)

for some choice of w ∈ C
n. Evidently, such points are parametrized by a

linear space of dimension at most n− k + 1. It follows that the intersection of
p−1(DI ) with the closure of Tν(v) is contained in a complex-analytic subset
of dimension at most dimDI + (n − 1 + k) = n − 1; as explained above, this
suffices to conclude that ψ(Tν(v)) has an analytic closure inside T (F0He

O).
To finish the proof, we observe that the preimage of ψ(Tν(v)) under g

is an analytic subset of T (F0M) whose intersection with T (F0HO) equals
ϕ(Tν(v)). By a well-known result in complex analysis, this implies that the
closure of ϕ(Tν(v)) inside T (F0M) is itself analytic, and thereby concludes
the proof. �

Similarly, the graph of the normal function ν : X → J (H) has an analytic
closure inside of J̄ (H).

Corollary 5.7 Let X = (�∗)n and X̄ = �n, and let ν : X → J (H) be a nor-
mal function that is admisible relative to X̄. Then the topological closure of
the graph ν(X) inside of J̄ (H) is an analytic subvariety.

Proof Since the quotient map T (F0M) → J̄ (H) is open by Lemma 2.11,
this follows immediately from Theorem 5.6. �

When the singularity of ν is a nonzero torsion class, then the graph of ν is
already closed (this observation is due to P. Brosnan).

Lemma 5.8 Suppose that the singularity of ν at 0 ∈ �n is a nonzero torsion
class. Then the closure of the graph of ν in J̄ (H) does not meet p−1(0).

Proof It suffices to show that if the singularity of ν is torsion, but the clo-
sure of Tν in T (F0M) contains a point over 0 ∈ �n, then ν actually has no
singularity. If there is such a point in the closure, then by Theorem 5.1, there
exists a class v ∈ VZ,1 that satisfies the conditions listed there; in particular,
a1N1v + · · · + anNnv = 0 for positive integers a1, . . . , an. Consider now the
complex

[
HQ →

⊕

j

Nj (HQ) →
⊕

j<k

NjNk(HQ) → ·· · → N1 · · ·Nn(HQ)
]

that computes the intersection cohomology of the local system HQ on the
polydisk �n [11, p. 219]. With rational coefficients, the singularity of ν is



74 C. Schnell

represented by the class of (N1v, . . . ,Nnv) in the first cohomology group of
the complex. Since the singularity is a torsion class, there is a vector h ∈ HQ

such that Njv = Njh for all j . Now a1N1h + · · · + anNnh = 0, and so we
have h ∈ M−1 ∩ HQ, which implies that Njv ∈ M−3 ∩ HQ. Assertion (iv)
in Theorem 5.1 then forces Njv = 0 for all j = 1, . . . , n, and so ν has no
singularities on �n. �

6 Examples

This is a collection of three examples that illustrates various properties of our
Néron model. Note that the variations of Hodge structure considered here are
naturally polarized, and so we have F0M̌ � F0M and T (F0M̌) � T (F0M).

6.1 Non-unipotent monodromy

In this section, we describe a simple one-parameter family of elliptic curves
in which the local monodromy is not unipotent. This illustrates the difference
between J̄ (H) and the identity component of the Néron model constructed
in [7]. Let E = C/(Z + τZ) be the elliptic curve with an automorphism of
order six; here τ = eiπ/3 satisfies τ 2 = τ − 1, and the automorphism is given
by multiplication by τ . We consider the trivial family E × �∗, as well as its
quotient by Z/6Z; a generator acts on � as multiplication by τ , and on E by
the automorphism. We denote the local system corresponding to the quotient
by H; our aim is to describe the structure of J̄ (H) → �.

We first work out the monodromy. Let α and β be the standard basis for
H1(E,Z); in the usual fundamental domain inside C, the cycle α is the image
of the line segment from 0 to 1, and the cycle β that of the segment from 0
to τ . Drawing a picture, it is clear that the automorphism acts by

α �→ β, β �→ β − α.

Letting α∗ and β∗ denote the dual basis for H 1(E,Z), we also have

α∗ �→ −β∗, β∗ �→ α∗ + β∗.

Thus the monodromy operator T is given by

T =
(

0 1
−1 1

)
,

and one easily checks that it has eigenvalues τ and τ̄ = −τ 2. Also, det(T −
id) = 1, and so the local system (over Z) has vanishing H 0 and H 1. It is clear



Complex analytic Néron models 75

from the construction that α∗ +τβ∗ is an eigenvector for τ (indeed, it restricts
to a holomorphic 1-form on each fiber).

Let s be the holomorphic coordinate on �. For our construction, we need
the minimal extension of the flat vector bundle with monodromy T ; accord-
ing to [31], this is given by the Deligne lattice on which the residues of the
connection lie in (−1,0]. Thus the correct extension is given by Oe1 ⊕ Oe2,
with connection

∇e1 = −e1 ⊗ ds

6s
, ∇e2 = −e2 ⊗ 5ds

6s
.

Let H → �∗, with s = e2πiz, be the universal covering space; on H,
a flat section σ(z) with σ(z + 1) = τσ (z) is then found by solving
f ′(z) − πif (z)/3 = 0, and so

σ(z) = eπiz/3e1.

Neglecting constants, we have σ(z) = α∗ + τβ∗; thus ω = e1 is a section of
F 0 of the canonical extension (since it gives a holomorphic 1-form on each
fiber), and

α∗ + τβ∗ = eπiz/3ω.

Thus we see that
∫

mα+nβ

ω = (m + τn) · e−πiz/3 = (m + τn) · eπy/3 · e−πix/3,

which goes to infinity with y unless m = n = 0. It follows that the closure of
the family of integral lattices inside the line bundle (whose dual is spanned by
ω) only adds one point; thus the fiber of the Néron model J̄ (H) over 0 ∈ � is
a copy of C. This is what it should be, given that we started from a family of
elliptic curves.

Next, we look at admissible normal functions and their extensions. By def-
inition, admissibility can be tested by pulling back along a branched cover
(s = t6 in our case) to make the monodromy unipotent [34]. Thus we only
need to consider the family E × �∗. Admissibility implies that the nor-
mal function extends to a holomorphic mapping � → E. Lifting this to
g : � → C, we have

g(τ t) − τg(t) ∈ Z + Zτ,

because the normal function is pulled back from the original family. It is easy
to see that we can choose g so that, in fact, g(τ t) = τg(t). This choice of
g represents the pullback of the extended normal function; its value over the
origin is g(0) = 0, and so the pullback of any admissible normal function to
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the family E × � has to go through the origin in C. This is consistent with
the Néron model constructed by P. Brosnan, G. Pearlstein, and M. Saito in
[7]: its fiber over the origin is a single point, because the local system H has
no nontrivial sections on �∗.

It should be noted, however, that there are no constraints on the graphs of
normal functions in our Néron model J̄ (H) → �. In fact, as shown in Propo-
sition 4.4, any holomorphic section of J̄ (H) → � is an admissible normal
function; the reason why the pullback of such a section to E × � has to pass
through the origin is that the image of J̄ (H)0 → E is a point.

6.2 A singular Néron model

The example in this section was suggested by M. Saito; it shows that the
analytic space J̄ (H) may be singular if dimX ≥ 2. We let HZ = Z

4, with
polarization given by the matrix

Q =

⎛

⎜⎜
⎝

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞

⎟⎟
⎠ .

The monodromy action is given by the two nilpotent operators

N1 = N2 =

⎛

⎜
⎜
⎝

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ .

Let ω ∈ C be such that Imω > 0. Then HZ carries an R-split mixed Hodge
structure HC = I 1,−1 ⊕ I−1,1 ⊕ I 0,−2 ⊕ I−2,0, where we set

I 1,−1 = C

⎛

⎜⎜
⎝

0
0
1
ω

⎞

⎟⎟
⎠ , I−1,1 = C

⎛

⎜⎜
⎝

0
0
1
ω

⎞

⎟⎟
⎠ ,

I 0,−2 = C

⎛

⎜⎜
⎝

1
ω

0
0

⎞

⎟⎟
⎠ , I 0,−2 = C

⎛

⎜⎜
⎝

1
ω

0
0

⎞

⎟⎟
⎠ .

These data define an R-split nilpotent orbit on (�∗)2, by the rule (z1, z2) �→
ez1N1+z2N2F , where F is given by the Ip,q . Evidently, it is the pullback of a
nilpotent orbit from �∗, by the map (z1, z2) �→ z1z2.
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We now describe the sheaf F0M and the analytic space T (F0M) over �2.
Let the coordinates on �2 be (s1, s2). The Deligne extension is a trivial vec-
tor bundle of rank 4, with Hodge filtration given by the Ip,q . Thus F0M is
spanned by three sections,

e0 =

⎛

⎜⎜
⎝

0
0
1
ω

⎞

⎟⎟
⎠ , e1 = 1

s1

⎛

⎜⎜
⎝

1
ω

0
0

⎞

⎟⎟
⎠ , e2 = 1

s2

⎛

⎜⎜
⎝

1
ω

0
0

⎞

⎟⎟
⎠ .

This gives a presentation for F0M in the form

O

( 0
−s1
s2

)

−−−→ O3 → F0M → 0,

and so T (F0M) is the subset of �2 × C
3 given by the equation s1v1 = s2v2,

using coordinates (s1, s2, v0, v1, v2). Thus T (F0M) is a vector bundle of rank
2 outside the origin, while the fiber over the origin is C

3. Moreover, the ana-
lytic space T (F0M) is clearly singular along the entire line C(0,0, v0,0,0).

Next, we look at the embedding of the set of integral points TZ. Let h ∈ Z
4

be any integral vector. We compute that

Q
(
e0, e

−(z1N1+z2N2)h
)= (z1 + z2)(h3 + h4ω) − (h1 + h2ω),

Q
(
ej , e

−(z1N1+z2N2)h
)= −h3 + h4ω

sj
(for j = 1,2).

This means that ε(TZ) ⊆ T (F0M) is the closure of the image of the holomor-
phic mapping H

2 × Z
4 → �2 × C

3, which sends the point (z, h) to

(
e2πiz1, e2πiz2, (z1 + z2)(h3 + h4ω) − (h1 + h2ω),

− h3 + h4ω

e2πiz1
,−h3 + h4ω

e2πiz2

)
.

Over s1s2 = 0, the points in the closure are of the form (s1, s2,−(h1 +
h2ω),0,0). Let J0 = C/(Z + Zω) be the torus corresponding to the mono-
dromy-invariant part of the mixed Hodge structure. The quotient T (F0M)/TZ

has the following structure: over (�∗)2, the fibers are the two-dimensional
intermediate Jacobians; over (0,0), the fiber is J0 × C

2; over the remaining
points with s1s2 = 0, the fiber is J0 × C. Moreover, T (F0M)/TZ is singular
along the torus J0 × {(0,0)} over the origin.



78 C. Schnell

Note In this case, the Zucker extension is not Hausdorff. In fact, the integral
points are embedded into the ambient space �2 × C

2 via the holomorphic
mapping H

2 × Z
4 → �2 × C

2, which takes the point (z, h) to
(
e2πiz1, e2πiz2, (z1 + z2)(h3 + h4ω) − (h1 + h2ω),−(h3 + h4ω)

)
.

The closure of the image is much bigger than just the set of monodromy-
invariant classes in HZ; to obtain the Zucker extension, therefore, one is tak-
ing a quotient by a non-closed equivalence relation, which can never produce
a Hausdorff space.

6.3 A normal function with non-torsion singularity

In this section, we shall look at a simple example of a normal function on
(�∗)2 with a non-torsion singularity at the origin in �2. The interesting point
here is that the closure of its graph has a one-dimensional fiber over the origin.

The example is a family of elliptic curves; the corresponding variation of
Hodge structure of weight −1 is a nilpotent orbit, which we describe by giv-
ing its limit mixed Hodge structure. So let HZ = Z

2, with nilpotent operators

N1 = N2 =
(

0 1
0 0

)
,

and define the limit mixed Hodge structure by letting I 0,0 = C(0,1) and
I−1,−1 = C(1,0). The period mapping of the associated variation of Hodge
structure is then given by �̃(z) = ez1N1+z2N2F , and so the vector (z1 + z2,1)

spans �̃(z)0.
We now introduce an admissible normal function through its variation of

mixed Hodge structure. Let VZ = HZ ⊕ Z, and extend the operators above to

N1 =
⎛

⎝
0 1 1
0 0 0
0 0 0

⎞

⎠ and N2 =
⎛

⎝
0 1 −1
0 0 0
0 0 0

⎞

⎠ ;

Thus the vector v = (0,0,1) belongs to VZ,1, and satisfies N1v + N2v = 0.
Let W−1 = HZ and W0 = VZ. The R-split mixed Hodge structure (M,F )

with I 0,0(M,F ) = C(0,1,0) ⊕ C(λ,0,1) and I−1,−1(M,F ) = C(1,0,0)

defines a mixed nilpotent orbit (W, ez1N1+z2N2F), and one can easily check
that it is admissible. Let ν denote the corresponding admissible normal func-
tion on (�∗)2.

We will now determine the closure of Tν inside T (F0M). In this situation,
F0M is a trivial line bundle on �2, whose pullback to H

2 is spanned by the
section (z1 + z2,1). The embedding Tν ↪→ T (F0M) now takes the form

H
2 × VZ,1 → �2 × C,
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and is given by the formula

(z1, z2, a, b,1) �→ (
e2πiz1, e2πiz2, a − b(z1 + z2) + (z2 − z1)

)
.

From this, it is easy to determine the closure of the graph. Over a point (s1,0)

with s1 �= 0, we only get points in the closure when b = 1, and so the fiber
consists of all points a − 2z1 with e2πiz1 = s1. Similarly, the fiber over (0, s2)

with s2 �= 0 is the discrete set of points a + 2z2 with e2πiz2 = s2. More inter-
esting is the fiber over (0,0) ∈ �2. By taking a = b = 0 and z2 = z1 +w with
w ∈ C arbitrary and Im z1 → ∞, we see that the fiber consists of all of C.

The quotient J̄ (H) = T (F0M)/TZ is a family of elliptic curves over
(�∗)2, with fibers over s1s2 = 0 copies of C

∗. The discussion above shows
that ν extends to an admissible normal function over �2 − {(0,0)}, but that
the closure of the graph of ν inside J̄ (H) contains the entire fiber C

∗ over
(0,0). As mentioned in Sect. 4.3, this is evidence that there can probably not
exist a Néron model (in the sense originally intended by P. Griffiths) for this
family that is Hausdorff as a topological space.
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