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Abstract. We generalize the finiteness theorem for the locus of Hodge classes
with fixed self-intersection number, due to Cattani, Deligne, and Kaplan, from

Hodge classes to self-dual classes. The proof uses the definability of period

mappings in the o-minimal structure Ran,exp.

A. Introduction

1. The purpose of this paper is to prove a rather unexpected new finiteness result for
polarized integral variations of Hodge structure, containing the theorem of Cattani,
Deligne, and Kaplan for the locus of Hodge classes [CDK95] as a special case.
Instead of integral Hodge classes, we consider integral classes that are “self-dual”,
meaning that they are preserved by the action of the Weil operator; the motivation
for this comes from considerations in theoretical physics. Analyzing such classes
using the methods in [CDK95] becomes rather complicated, so our main tool is
going to be the definability of period mappings in the o-minimal structure Ran,exp,
recently proved by Bakker, Klingler, and Tsimerman [BKT20]. This transforms
the problem into a pleasant set of exercises about certain algebraic groups.

2. We begin by describing a toy case of the problem, to set up the notation. Suppose
that H is a polarized integral Hodge structure of even weight 2k. We denote by

HC = HZ ⊗Z C =
⊕

p+q=2k

Hp,q

the Hodge decomposition, and by Q : HZ ⊗Z HZ → Z the symmetric bilinear form
giving the polarization. If we define the Weil operator by the formula

Cv = ip−qv for v ∈ Hp,q,

then C ∈ End(HR) and C2 = id, and the expression

〈−,−〉 : HR ⊗R HR → R, 〈v, w〉 = Q(v, Cw),

puts a positive definite inner product on HR = HZ ⊗Z R. We usually write the
resulting Hodge norm simply as ‖v‖2 = 〈v, v〉.

We shall be interested in integral vectors v ∈ HZ with the property that Cv = v.
Since C2 = id, any vector v ∈ HR can of course be decomposed uniquely as

v = v+ + v− with Cv+ = v+ and Cv− = −v−;

concretely, v+ is the sum of all the “even” components in the Hodge decomposition
of v, and v− the sum of all the “odd” ones. By analogy with the action of the
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Hodge ∗-operator on the cohomology of four-manifolds, we may call v+ and v− the
self-dual respectively anti-self-dual part of v. With this notation, we have

‖v‖2 = ‖v+‖2 + ‖v−‖2 ≥ ‖v+‖2 − ‖v−‖2 = Q(v, v),

with equality exactly when Cv = v. Among integral vectors with a fixed value of
Q(v, v), those with Cv = v therefore have the smallest possible Hodge norm ‖v‖2.
In this setting, we have the following completely trivial finiteness result: the set

H+
q =

{
v ∈ HZ

∣∣ Cv = v and Q(v, v) = q
}

of self-dual integral vectors with a given self-intersection number q ≥ 1 is finite.
Our main theorem is a generalization of this fact to arbitrary polarized integral
variations of Hodge structure of even weight.

3. We now turn to the main result. Let X be a nonsingular complex algebraic
variety, not necessarily complete, and let H be a polarized integral variation of
Hodge structure on X, of even weight 2k. Let p : E → X be the underlying complex
vector bundle, whose sheaf of holomorphic sections is isomorphic to OX⊗ZHZ; here
HZ denotes the underlying local system of free Z-modules. At each point x ∈ X,
the complex vector space Ex = p−1(x) is equipped with a polarized integral Hodge
structure of weight 2k; the set of integral vectors coincides with the stalk HZ,x. We
denote by Cx ∈ End(Ex) the Weil operator, and by Qx the polarization; it is the
stalk of the pairing Q : HZ ⊗Z HZ → ZX that defines the polarization on H. We
shall think of the points of E as pairs (x, v), where x ∈ X and v ∈ Ex.

Recall that E is actually an algebraic vector bundle; the algebraic structure is
uniquely determined by H. We shall give both E and X the Ran,exp-definable struc-
ture extending their algebraic structure; then the projection p : E → X becomes
a morphism of definable spaces. Our main result is that the set of all self-dual
integral classes with fixed self-intersection number is a definable subspace of E.

Theorem 3.1. Let H be a polarized integral variation of Hodge structure of even
weight on a nonsingular complex algebraic variety X. For each q ≥ 1, the set{

(x, v) ∈ E
∣∣ v ∈ Ex is integral, Cxv = v, and Qx(v, v) = q

}
is a definable, closed, real-analytic subspace of E, and the restriction of p : E → X
to this set is proper with finite fibers.

4. Several useful variants of the main result can be obtained by tensoring with
certain auxiliary Hodge structures. The first one is the analogue of Theorem 3.1
for integral classes that are anti-self-dual.

Corollary 4.1. Let H be a polarized integral variation of Hodge structure of even
weight on a nonsingular complex algebraic variety X. For each q ≥ 1, the set{

(x, v) ∈ E
∣∣ v ∈ Ex is integral, Cxv = −v, and Qx(v, v) = −q

}
is a definable, closed, real-analytic subspace of E, and the restriction of p : E → X
to this set is proper with finite fibers.

The second one is a generalization to polarized integral variations of Hodge
structure of arbitrary weight, where we now consider pairs of integral classes that
are related by the Weil operator.
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Corollary 4.2. Let H be a polarized integral variation of Hodge structure on a
nonsingular complex algebraic variety X. For each q ≥ 1, the set{

(x, v, w) ∈ E ×X E
∣∣ v, w ∈ Ex are integral, v = Cxw, and Qx(v, w) = q

}
is a definable, closed, real-analytic subspace of E ×X E, and the restriction of
p : E ×X E → X to this set is again proper with finite fibers.

Note that when H is an integral Hodge structure of odd weight, the Weil operator
C ∈ End(HR) satisfies C2 = − id, and so its eigenvalues are the two complex
numbers ±i. The condition v = Cw is equivalent to

C(v + iw) = i(v + iw),

which is saying that v+ iw ∈ HZ⊗ZZ[i] is an eigenvector of the Weil operator that
is integral with respect to the Gaussian integers Z[i].

5. Unlike in the case of Hodge classes, the locus of self-dual (or anti-self-dual)
classes is in general not a complex analytic subset of the vector bundle E, hence
in particular not algebraic. The reason is that the Weil operator Cx ∈ End(Ex)
depends real analytically – but not complex analytically – on the point x ∈ X, which
means that Cxv = ±v is not a holomorphic condition. We intend to discuss both
the local structure of the locus of self-dual classes, and its more precise behavior
near a divisor with normal crossing singularities, in a future paper. Here we only
give two examples to show what these loci can look like in practice.

6. Our first example concerns anti-self-dual classes on K3 surfaces; these show
up naturally in Verbitsky’s study of ergodic complex structures on hyperkähler
manifolds [Ver15, Ver17].

Example 6.1. Let S be a (not necessarily algebraic) K3 surface and let ΛZ =
H2(S,Z) together with the cup product pairing. By the Torelli theorem, the mod-
uli space is isomorphic to Γ\D, and has complex dimension 20. Concretely, if
H2,0(S) = Cσ, the period domain is the complex manifold

D =
{

[σ] ∈ PΛC ∼= P21
∣∣ Q(σ, σ) = 0 and Q(σ, σ̄) < 0

}
.

The set of points where a given integral class v ∈ ΛZ is anti-self-dual, of Hodge
type (2, 0) + (0, 2), is easily seen to be{

[σ] ∈ P21
∣∣ Q(σ, σ̄)v = Q(v, σ̄)σ +Q(v, σ)σ̄)

}
This is a totally real submanifold of real dimension 20.

Using Ratner theory, Verbitsky shows that for any finite index subgroup Γ ⊂
O(ΛZ), orbits Γp come in three flavors: closed orbits, dense orbits, and orbits whose
closures are the Γ-orbit of an anti-self-dual locus. The three behaviors correspond
to the three possibilities rk((H2,0 ⊕ H0,2) ∩ ΛZ) = 2, 0, 1, respectively, for the
Hodge structure associated to p. The same analysis holds more generally for the
period domain associated to the degree two cohomology of any (possibly singular)
hyperkähler variety, and is important for instance in the proof of the global Torelli
theorem in the singular case [BL18].
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7. Our second example is self-dual classes in certain nilpotent orbits. This is less
geometric, but provides us with a large family of examples. For the general theory,
see [CKS86, §3] and the survey paper [CK89, §3] by Cattani and Kaplan.

Example 7.1. Let HZ be a free Z-module of finite rank, and let Q : HZ⊗ZHZ → Z be
a nondegenerate symmetric bilinear pairing. Suppose that we have a representation
ρ : sl2(C)→ End(HC) of the Lie algebra sl2(C), such that

N = ρ

(
0 1
0 0

)
∈ End(HQ) and Y = ρ

(
1 0
0 −1

)
∈ End(HR)

satisfy Q(Nv,w) +Q(v,Nw) = 0 and Q(Y v,w) = Q(v, Y w) for all v, w ∈ HC, and
such that eN ∈ End(HZ). Let F be a decreasing filtration of HC such that

Y (F p) ⊆ F p and N(F p) ⊆ F p−1 for all p ∈ Z.

Further assume that F] = eiNF is the Hodge filtration of an integral Hodge struc-
ture of even weight on HZ, polarized by the pairing Q. Then it is known [CK89,
Prop. 3.9] that the nilpotent orbit

H→ D, z 7→ ezNF,

descends to a polarized integral variation of Hodge structure on ∆∗, whose mon-
odromy transformation is T = eN . Let us describe the locus of points in H where
a given integral class v ∈ HZ is self-dual. Write z = x + iy. Let C] ∈ End(HR)
denote the Weil operator of the Hodge structure F]. From the identity

ezNF = exNeiyNF = exNe−
1
2 log y Y eiNe

1
2 log y Y F = exNe−

1
2 log y Y F]

and the fact that both exponential factors are elements of the real Lie group G(R),
it follows that the Weil operator of the Hodge structure ezNF is

exNe−
1
2 log y Y C]e

1
2 log y Y e−xN .

The set of points z ∈ H where our integral class v ∈ HZ is self-dual is therefore
defined by the simple equation

(7.2) C]

(
e

1
2 log y Y e−xNv

)
= e

1
2 log y Y e−xNv.

At each point, the Hodge norm of v is of course equal to Q(v, v). If the set contains
points with y = Im z arbitrarily large, then necessarily v ∈W0(N). Since

W0(N) =
⊕
`≤0

E`(Y ),

we have a decomposition v = v0 + v−1 + · · · , where Y v` = `v`. Now the Weil
operator C] interchanges the two weight spaces E±`(Y ), because Y C] + C]Y = 0,

for example by [CKS86, (6.35)]. Since e
1
2 log y Y e−xNv ∈ W0(N), the identity in

(7.2) implies that e
1
2 log y Y e−xNv ∈ E0(Y ), and hence that

v = exNe−
1
2 log y Y v0 = exNv0.

Now there are two possibilities. Either Nv = 0 and v = v0, or Nv 6= 0. In the first
case, v is self-dual at every point z ∈ H; in the second case, the equation v = exNv0

uniquely determines the value of x ∈ R, and v is self-dual along the vertical ray
Re z = x. The connected components of the locus of self-dual classes are therefore
of two different kinds: one kind projects isomorphically to the entire punctured
disk ∆∗; the other to a single angular ray in ∆∗.
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B. Background on definability

9. The theory of o-minimal structures provides a precise notion of tameness for
subsets of euclidean space and functions on them. It is flexible enough to allow for
complicated constructions but restrictive enough to imply strong finiteness proper-
ties. A general reference for this section is [vdD98].

10. To formalize this notion, we first introduce a way to describe collections of
subsets of Rn which are closed under a variety of natural operations.

Definition 10.1. A structure S is a collection (Sn)n∈N where each Sn is a set of
subsets of Rn satisfying the following conditions:

(1) Each Sn is closed under finite intersections, unions, and complements;
(2) The collection (Sn) is closed under finite Cartesian products and coordinate

projections;
(3) For every polynomial P ∈ R[x1, . . . , xn], the zero set

(P = 0) := {x ∈ Rn | P (x) = 0} ⊂ Rn

is an element of Sn.

We refer to an element U ∈ Sn as an S-definable subset U ⊂ Rn. For U ∈ Sn, and
V ∈ Sm, we say a map f : U → V of S-definable sets is S-definable if the graph
is as a subset of Rm+n. When the structure S is clear from context, we will often
just refer to “definable” sets and functions.

11. For each n taking Sn to be the Boolean algebra generated by real algebraic
subsets (P = 0) of Rn, the resulting S is not a structure. For example, the algebraic
set (x2 − y = 0) ⊂ R2 projects to the semialgebraic set (y ≥ 0) ⊂ R. On the other
hand, if we take Sn to be the Boolean algebra generated by real semialgebraic
subsets (P ≥ 0) of Rn, then by the Tarski–Seidenberg theorem the resulting S =
Ralg is a structure.

Note. Tarski–Seidenberg is usually phrased as quantifier elimination for the real
ordered field. Indeed, the above axioms for a structure say that definable sets are
closed under first order formulas, as intersections, unions, and complements corre-
spond to the logical operators “and”, “or”, and “not”, while the projection axiom
corresponds to universal and existential quantifiers. For this reason, structures have
been studied extensively in model theory.

12. Surprisingly, a good notion of tame structure can be achieved by simply re-
stricting the definable subsets of the real line:

Definition 12.1. A structure S is said to be o-minimal if S1 = (Ralg)1—that is,
if the S-definable subsets of the real line are exactly finite unions of intervals.
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Sets and functions which are definable in an o-minimal structure have very nice
properties, including the following. Here we fix an o-minimal structure S and by
“definable” we mean “S-definable.”

• For any definable function f : U → V with finite fibers, the fiber size
|f−1(v)| is a definable function. In particular, it is uniformly bounded, and
for any n the set

{v ∈ V | |f−1(v)| = n}
is definable.
• Any definable subset U ⊂ Rn admits a definable triangulation: it is defin-

ably homeomorphic to a finite simplicial complex.
• Any definable subset U ⊂ Rn has a well-defined dimension, namely, the di-

mension as a simplicial complex for any definable triangulation. Moreover,
for any definable map f : U → V and any n the set

{v ∈ V | dim f−1(v) = n}

is definable.
• For any k and any definable function f : U → R, there is a definable

triangulation of U such that f is Ck on each simplex. As a consequence, any
definable U ⊂ Rn can be partitioned into finitely many Ck-submanifolds of
Rn.

13. We give some examples of o-miminal structures. As discussed above, the struc-
ture Ralg is o-minimal; in fact, it is the smallest o-minimal structure.

Given a collection Σ = (Σn)n∈N of subsets of Rn for each n, we say the structure
generated by Σ is the smallest structure in which each set in each Σn is definable.
It is the structure whose definable sets are given by first order formulas involving
real polynomials, inequalities, and the sets in Σ. The structure Rexp generated by
the graph of the real exponential exp : R → R is o-minimal by a result of Wilkie
[Wil99]. However, the function sin : R → R is not definable in any o-minimal
structure, as the definable set πZ = sin−1(0) is both discrete and infinite.

14. To get a much larger o-minimal structure, let Ran be the structure generated by
the graphs of all restrictions f |B(R), where f : B(R′)→ R is a real analytic functions
on a finite radius R′ <∞ open euclidean ball (centered at the origin) and B(R) ⊂
B(R′) is a ball of strictly smaller radius R < R′. Via the embedding Rn ⊂ RPn,
this is equivalent to the structure of subsets of Rn that are subanalytic in RPn. As
observed by van-den-Dries [vdD98], Gabrielov’s theorem of the complement implies
that Ran is o-minimal. Note that while the sine function is not Ran -definable, its
restriction to any finite interval is.

Finally, let Ran,exp be the structure generated by Ran and Rexp. Then Ran,exp is
o-minimal by a result of van-den-Dries–Miller [vdDM96]. Most of the applications
to algebraic geometry currently use the structure Ran,exp, and this will be the
default structure we work with.

15. For applications, we typically wish to discuss definability for manifolds that
don’t arise as subsets of Rn, and for this we need an appropriate notion of definable
atlas.

Definition 15.1. Let M be a topological space and S a structure.



FINITENESS FOR SELF-DUAL CLASSES 7

• A (S-)definable atlas {(Ui, φi)} consists of a finite open covering Ui of M ,
and homeomorphisms φi : Ui → Vi ⊂ Rni such that
(1) The Vi and the pairwise intersections Vij := φi(Ui ∩ Uj) are definable

sets;
(2) The transition functions φij := φj ◦ φ−1

i : Vij → Vji are definable.
• If M is equipped with a definable atlas {(Ui, φi)}, we say a subset Z ⊂M

is definable if each φi(Ui ∩ Z) is.
• If M,M ′ are equipped with definable atlases {(Ui, φi)}, {(U ′i′ , φ′i′)}, a map
f : M → M ′ is definable if each f−1(U ′i′) ⊂ M is definable and moreover
for each i, i′ the composition

(f ◦ φ−1
i )−1(U ′i′)

φ−1
i−−→ f−1(U ′i′)

f−→ U ′i′
φ′
i′−−→ V ′i′

is (S-)definable.
• We say two atlases {(Ui, φi)}, {(U ′i′ , φ′i′)} on M are equivalent if the identity

map is definable with respect to {(Ui, φi)} on the source and {(U ′i′ , φ′i′)} on
the target.
• A (S-)definable topological space is a topological space M equipped with

an equivalence class of definable atlases. A morphism of (S-)definable topo-
logical spaces is a continuous map f : M → M ′ which is definable for any
choice of atlases in the equivalence classes on the source and target.
• We likewise define (S-)definable manifolds (resp. (S-)definable complex

manifolds) by in addition requiring that the charts map to open subsets of
Rn (resp. Cn) and that the transition functions are smooth (resp. holo-
morphic). Here we make sense of definability in Cn via the identification
Cn ∼= R2n by taking real and imaginary parts.

Example 15.2. Any complex algebraic variety X naturally has the structure of a
S-definable topological space for any structure S. It admits a finite covering Ui by
affine algebraic varieties, each of which is a complex (hence real) algebraic subset of
some Cni , and the transition functions are given by algebraic functions. Likewise,
any nonsingular complex algebraic variety has a natural structure as a S-definable
complex manifold. We denote this definable complex manifold by Xdef .

16. One common method of producing interesting definable topological spaces is
by taking quotients of other definable topological spaces by definable group actions.

Definition 16.1. Let X be a locally compact Hausdorff definable topological space
and Γ a group acting on X by definable homeomorphisms. A definable fundamental
set for the action of Γ on X is an open definable subset F ⊆ X such that

(1) Γ · F = X,
(2) the set {γ ∈ Γ | γ · F ∩ F 6= ∅} is finite.

We shall require the following proposition:

Proposition 16.2 ([BBKT20, Prop 2.3]). If F is a definable fundamental set for
the action of Γ on X, then there exists a unique definable structure on Γ\X such
that the canonical map F → Γ\X is definable.

C. Background on Siegel sets

17. In this section, we give some background on Siegel sets for symmetric spaces
of the type that appear in the study of period mappings. We begin by recalling
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the definition of a Siegel set; a good general discussion is [BJ06, §2]. Let G be a
reductive Q-algebraic group. The set of real points G(R) is a real Lie group, and we
fix a maximal compact subgroup K ⊆ G(R). By [BS73, Prop. 1.6], this determines
a Cartan involution θ of the R-algebraic group GR, whose fixed point set is K. Let
P ⊆ G be a minimal parabolic Q-subgroup, and let U ⊆ P be its unipotent radical.
The dimension of any maximal split Q-torus in P is called the Q-rank of G; we
shall denote it by rkG. The Levi quotient P/U is isomorphic to the product of a
split Q-torus of dimension rkG and a maximal anisotropic Q-subgroup. According
to [BS73, Cor. 1.9], there is a unique Levi subgroup

L = S ×M ⊆ PR

that maps isomorphically to the Levi quotient PR/UR and is stable under the Cartan
involution θ. In particular, S is a split R-torus of dimension rkG that is conjugate
over GR to a maximal Q-split torus of G, such that θ(g) = g−1 for every g ∈ S(R);
compare [Orr18, Lem. 2.1]. Moreover, M is contained in the centralizer of S in GR.
The adjoint action of S on the Lie algebra of PR determines a root system, and we
write ∆ for the set of simple roots.

We use the definition of Siegel sets in [Orr18, §2.2]; for a discussion of how it
relates to the original definition in [Bor19, §12], see [Orr18, §2.3]. For our purposes,
a Siegel set in G(R), with respect to the maximal compact subgroup K and the
minimal parabolic Q-subgroup P , is any set of the form

S(Ω, t) = Ω ·At ·K ⊆ G(R),

where Ω ⊆ U(R)M(R)+ is a compact set, t > 0 is a positive real number, and

At =
{
g ∈ S(R)+

∣∣ χ(g) ≥ t for all simple roots χ ∈ ∆
}
.

We say that a Siegel set is subalgebraic if Ω ⊆ U(R)M(R)+ is subalgebraic.

Note. More generally, it is known that any set of the form S(Ω, t) with Ω ⊆ P (R)
compact is contained in a Siegel set in the above sense [Orr18, §2.3].

18. We are only going to be interested in Siegel sets with respect to a fixed maximal
compact subgroup. To emphasize this, we usually talk about Siegel sets for K,
meaning that the maximal compact subgroup K in the definition is fixed, whereas
the minimal parabolic Q-subgroup P is allowed to be arbitrary. For later use, let us
briefly recall how Siegel sets for different minimal parabolic Q-subgroups are related
to each other. Let K ⊆ G(R) be a fixed maximal compact subgroup, and P ⊆ G
be a minimal parabolic Q-subgroup. Since all minimal parabolic Q-subgroups are
conjugate to each other, any other choice P ′ ⊆ G has the form P ′ = gPg−1 for a
suitable element g ∈ G(Q). Write g = kp with k ∈ K and p ∈ P (R)+, so that

P ′(R) = gP (R)g−1 = kP (R)k−1.

Now suppose that S ⊆ G(R) is a Siegel set for K and P . By [Bor19, §12.4], the
translate pS is contained in a larger Siegel set ΩAtK ⊆ G(R) with respect to K
and P ; here Ω ⊆ U(R)M(R)+ is compact and t > 0. Consequently,

gS ⊆ kΩAtK = kΩk−1 · kAtk−1 ·K,

and the right-hand side is now a Siegel set with respect to K and P ′ = gPg−1.
This shows that any Siegel set for K is contained in a G(Q)-translate of a Siegel
set with respect to K and a fixed minimal parabolic Q-subgroup P .
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19. Now we specialize to the case that is of interest in the study of period mappings.
The general setting is as follows. Let HQ be a finite-dimensional Q-vector space, of
dimension n = dimHQ, equipped with a nondegenerate symmetric bilinear form

Q : HQ ⊗Q HQ → Q.

Further suppose that there is an endomorphism C ∈ End(HR) of the real vector
space HR = HQ ⊗Q R that satisfies C2 = id, such that

〈−,−〉C : HR ⊗R HR → R, 〈v, w〉 = Q(v, Cw),

is a positive definite inner product on HR. By analogy with the case of Hodge
structures, we shall say that C is a Weil operator for the pair (HQ, Q).

20. The orthogonal group G = O(HQ, Q) is a reductive Q-algebraic group, in
general not connected, whose set of real points is the real Lie group

G(R) =
{
g ∈ Aut(HR)

∣∣ Q(gv, gw) = Q(v, w) for all v, w ∈ HR
}
.

Evidently, C ∈ G(R). It is easy to see that an element g ∈ G(R) preserves the
inner product 〈−,−〉C if and only if gC = Cg; therefore the subgroup

K =
{
g ∈ G(R)

∣∣ gC = Cg
}

is compact. It is proved in [Sch73, (8.4)] that K is actually a maximal compact
subgroup of G(R), and that the associated Cartan involution is given by the simple
formula

θ : G(R)→ G(R), θ(g) = CgC.

The following result is well-known.

Lemma 20.1. The symmetric space G(R)/K parametrizes Weil operators for
(HQ, Q), with the coset gK corresponding to the Weil operator gCg−1 ∈ End(HR).

Proof. All elements in the coset gK give us the same operator gCg−1 ∈ End(HR),
which is a Weil operator for the pair (HQ, Q) because

Q(v, gCg−1w) = Q(g−1v, Cg−1w) = 〈g−1v, g−1w〉C

is positive definite. Conversely, suppose that C ′ ∈ End(HR) is another Weil opera-
tor for (HQ, Q). Let n = dimHR. Since Q has a fixed signature, we have

dimE1(C ′) = dimE1(C) = p and dimE−1(C ′) = dimE−1(C) = n− p.

Pick a basis e1, . . . , en ∈ HR that is orthonormal for the inner product 〈−,−〉C , in
such a way that e1, . . . , ep ∈ E1(C) and ep+1, . . . , en ∈ E−1(C). Pick a second basis
e′1, . . . , e

′
n ∈ HR that is similarly adapted to 〈−,−〉C′ and C ′, and let g ∈ Aut(HR)

be the unique automorphism such that gei = e′i for i = 1, . . . , n. Then

Q(ei, Cej) = Q(e′i, C
′e′j) = Q(gei, C

′gej) = Q(gei, gCej),

and therefore g ∈ G(R) by the nondegeneracy of Q. By construction, C ′g = gC,
which makes C ′ = gCg−1 equal to the image of the coset gK. �
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21. Now let us turn our attention to Siegel sets in G(R). The Q-rank of G and the
collection of minimal parabolic Q-subgroups P ⊆ G can be described concretely as
follows. Let r ≥ 0 be the Witt rank of Q, meaning the dimension of a maximal
Q-isotropic subspace of HQ. Let

{0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vr

be a maximal flag of isotropic subspaces, with dimVi = i. As explained in [Bor19,
§11.16], the stabilizer P of this flag is a minimal parabolic Q-subgroup of G, and
every minimal parabolic Q-subgroup arises in this way; moreover, the Q-rank of G is
equal to r. Since Q is nondegenerate, it is possible to choose vectors v′1, . . . , v

′
r ∈ HQ

with the property that

Q(vi, v
′
j) = [i = j] =

{
1 if i = j,

0 otherwise.

The 2r-dimensional subspace spanned by v1, . . . , vr, v
′
1, . . . , v

′
r is uniquely deter-

mined by Vr; so is its orthogonal complement with respect to Q. Let U ⊆ P denote
the unipotent radical; concretely, g ∈ U(Q) iff gvi − vi ∈ Vi−1 for i = 1, . . . , r.

22. The unique Levi subgroup S×M ⊆ PR that is stable under the Cartan involu-
tion can be described concretely as follows. Using the Gram-Schmidt process, con-
struct an orthonormal basis e1, . . . , er ∈ Vr relative to the inner product 〈−,−〉C ,
in such a way that

Vi ⊗Q R = Re1 ⊕ · · · ⊕ Rei

for i = 1, . . . , r. Since Vr is isotropic, the vectors e1, . . . , er, Cer, . . . , Ce1 are still
orthonormal, and we get an embedding

s : Gm,R × · · · ×Gm,R ↪→ PR

by letting s(λ1, . . . , λr) act as multiplication by λi on the vector ei, as multiplication
by λ−1

i on the vector Cei, and as the identity on the orthogonal complement of
e1, . . . , er, Cer, . . . , Ce1. The image of this embedding is the desired R-torus S.
The other factor of the Levi subgroup S ×M has as its set of real points

M(R) =
{
g ∈ G(R)

∣∣ gei = CgCei = ei for all i = 1, . . . , r
}
,

which is clearly stable under the Cartan involution θ(g) = CgC. Note in particular
that M(R) preserves the orthogonal complement of e1, . . . , er, Cer . . . , Ce1.

23. We also need to know the set of simple roots ∆ for the action of S on the
Lie algebra of PR. These are computed in [Bor19, §11.16]. There are two cases,
depending on the value of the integer n− 2r ≥ 0:

(1) If n = 2r, the simple roots are λ1/λ2, . . . , λr−1/λr and λr−1λr; this is the
case where (HQ, Q) is split, hence isomorphic to a sum of hyperbolic planes.

(2) If n > 2r, the simple roots are λ1/λ2, . . . , λr−1/λr and λr; this is the case
where (HQ, Q) has a nontrivial anisotropic summand.
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24. As in the case of the general linear group, Siegel sets in G(R) are closely
related to the reduction theory of positive definite quadratic forms. We are going
to make this idea precise by comparing Siegel sets for the two Q-algebraic groups
G = O(HQ, Q) and G̃ = GL(HQ). In G̃, we have the maximal compact subgroup

K̃ =
{
g ∈ G̃(R)

∣∣ 〈g−1v, g−1w〉C = 〈v, w〉C for v, w ∈ HR
}
.

The associated Cartan involution is g 7→ C(gt)−1C, where gt means the adjoint

of g with respect to the nondegenerate pairing Q. Clearly, K̃ ∩ G(R) = K. The

relevant minimal parabolic Q-subgroup P̃ ⊆ G̃ is obtained as follows. Complete
the given flag V1 ⊂ · · · ⊂ Vr of isotropic subspaces to a maximal flag

{0} ⊂ V1 ⊂ · · · ⊂ Vr ⊂ · · · ⊂ Vn−r ⊂ Vn−r+1 ⊂ · · · ⊂ Vn = HQ

by defining Vn−r = V ⊥r and Vn−r+i = V ⊥r ⊕ Qv′r ⊕ · · · ⊕ Qv′r+1−i for i = 1, . . . , r,

and then filling in the n − 2r steps in between Vr and V ⊥r . Let P̃ ⊆ G̃ be the

stabilizer of this maximal flag, and let Ũ ⊆ P̃ be its unipotent radical; then

P̃ ∩G ⊆ P and Ũ ∩G = U.

Using the Gram-Schmidt process, construct an orthonormal basis e1, . . . , en ∈ HR
with the property that Vi ⊗Q R = Re1 ⊕ · · · ⊕ Rei; a short calculation shows that

en−r+1 = Cer, en−r+2 = Cer−1, . . . , en = Ce1.

In this case, the Levi subgroup S̃×M̃ reduces to the split R-torus S̃ ⊆ P̃R consisting
of all diagonal matrices diag(λ1, . . . , λn) with respect to the basis e1, . . . , en; with a

little bit of work, one can show that S̃ ∩G(R) = S. The simple roots are computed
in [Bor19, §1.14] to be λ1/λ2, . . . , λn−1/λn.

25. We can now compare Siegel sets in G(R) = O(HR, Q) and G̃(R) = GL(HR).
The result is a more precise version of a general theorem by Orr [Orr18, Thm. 1.2],
with a small correction contained in [OS21].

Proposition 25.1. Any Siegel set in G(R) for the maximal compact subgroup K

is contained in at most two G(Q)-translates of a Siegel set in G̃(R) (for K̃).

Proof. We need to consider the two cases n > 2r and n = 2r separately. Let us first
deal with the easier case n > 2r (where HQ has a nontrivial anisotropic summand).
Without loss of generality, we can assume that the Siegel set in G(R) has the form

ΩU · ΩM ·At ·K,
where ΩU ⊆ U(R) and ΩM ⊆ M(R)+ are compact subsets and t > 0 is a positive
real number. From the description of the simple roots above, we know that

At =
{
s(λ1, . . . , λr)

∣∣ λ1/λ2 ≥ t, . . . , λr−1/λr ≥ t, and λr ≥ t
}
.

It will be convenient to write elements of G̃(R) as matrices with respect to our fixed
orthonormal basis e1, . . . , en ∈ HR. With this convention, the set At consists of all
diagonal matrices of the form

diag(λ1, . . . , λr, 1, . . . , 1, λ
−1
r , . . . , λ−1

1 )

with λ1/λ2 ≥ t, . . . , λr−1/λr ≥ t and λr ≥ t. The crucial point is that every such

matrix belongs to Ãt ⊆ S̃(R), because the number of 1’s in the middle is n−2r ≥ 1.
Consider an arbitrary element

u ·m · a · k ∈ ΩU · ΩM ·At ·K.
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As a matrix, u is upper triangular with all diagonal elements equal to 1, and m is
block-diagonal, with the first r and last r diagonal entries equal to 1; in particular,
we have ma = am. Since m ∈ ΩM varies in a compact set, the components of the
polar decomposition

m = p̃m · k̃m ∈ P̃ (R) · K̃
also belong to compact subsets of P̃ (R) and K̃; moreover, p̃m is again block-
diagonal, and therefore ap̃m = p̃ma. This gives

u ·m · a · k = up̃m · a · k̃mk ∈ P̃ (R) · Ãt · K̃.

The first factor lies in a compact subset of P̃ (R), and we have already noted that

a ∈ Ãt; consequently, our Siegel set is contained in a Siegel set in G̃(R).
The split case n = 2r is less straightforward. Here the subgroup M is trivial,

and therefore our Siegel set takes the form

S(Ω, t) = Ω ·At ·K ⊆ G(R),

where Ω ⊆ U(R) is compact. The simple roots for the action of S on the Lie algebra
of PR are now λ1/λ2, . . . , λr−1/λr, and λr−1λr; with respect to our orthonormal
basis e1, . . . , e2r ∈ HR, the set At consists of all diagonal matrices of the form

λ1

. . .

λr
λ−1
r

. . .

λ−1
1


with λ1/λ2 ≥ t, . . . , λr−1/λr ≥ t, and λr−1λr ≥ t. As long as λr ≥ 1, this matrix

belongs to Ãmin(1,t); but if λr ≤ 1, this only holds after we swap λr and λ−1
r , which

amounts to conjugating by the permutation matrix

σ =



1
. . .

0 1
1 0

. . .

1


∈ K̃.

In a nutshell, this is the reason why we need two translates of a Siegel set. Getting
down to the details, consider again an arbitrary element

u · a · k ∈ Ω ·At ·K.

If a ∈ At is such that λr ≥ 1, then a ∈ Ãmin(1,t), and we can argue as before to

show that this part of S(Ω, t) is contained in a Siegel set in G̃(R). Let us therefore
suppose that λr ≤ 1. We can rewrite our element in the form

u · a · k = σ · uσ · aσ · σk ∈ σ · uσ · Ãmin(1,t) · K̃,

where aσ = σaσ etc. Now the crucial point is that uσ ∈ Ũ(R), which puts this part

of S(Ω, t) into the translate by σ of a Siegel set in G̃(R).
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Here is the reason why uσ = σuσ ∈ Ũ(R). The matrix for u is upper triangular
with all diagonal entries equal to 1; in particular, there is some x ∈ R such that

uer+1 ≡ er+1 + xer mod 〈e1, . . . , er−1〉.

Because of the special shape of σ, having uσ ∈ Ũ(R) is now equivalent to

x = 〈uer+1, er〉C = Q(uer+1, Cer) = Q(uer+1, er+1) = 0.

As u ∈ G(R), we have Q(uer+1, er+1) = Q(u−1er+1, er+1), and therefore

〈uer+1, er〉C = 〈u−1er+1, er〉C .
From the relation uer+1 ≡ er+1 + xer, we deduce that

u−1er+1 ≡ er+1 − xer mod 〈e1, . . . , er−1〉,
and after taking the inner product with er, we get x = −x or x = 0.

It remains to argue that the translate is actually by an element of G(Q); note that

σ ∈ K̃ is not rational in general. To that end, we define an involution g ∈ G(Q) by
requiring that gvi = vi and gv′i = v′i for i = 1, . . . , r−1, and gvr = v′r and gv′r = vr.
Then it is easy to check that the matrix for gσ in the basis e1, . . . , e2r is upper
triangular, which means that gσ ∈ P̃ (R). Using [Bor19, §12.4], it follows that the

translate by σ of a Siegel set in G̃(R) with respect to K̃ and P̃ is contained in the

translate by g of a bigger Siegel set in G̃(R), which is enough for our purposes. �

26. Let us now relate Siegel sets in G(R) to reduction theory for quadratic forms.
Following [Kli90, I.2], we shall say that a positive definite inner product 〈−,−〉 on
the vector space HR is t-reduced relative to an ordered basis v1, . . . , vn ∈ HQ (where
t > 0 is a real number) if the following three conditions hold:

(a) For every 1 ≤ i ≤ n− 1, one has ‖vi‖2 ≤ t‖vi+1‖2.
(b) For every 1 ≤ i < j ≤ n, one has 2|〈vi, vj〉| ≤ t‖vi‖2.
(c) The matrix of the quadratic form satisfies the inequality

n∏
i=1

‖vi‖2 ≤ t · c1(n) det
(
〈vi, vj〉

)
i,j
,

where c1(n) the optimal constant in Minkowski’s inequality.

For a given basis v1, . . . , vn ∈ HQ and a given number t > 0, consider the set of
elements g ∈ GL(HR) such that the inner product

(v, w) 7→ 〈g−1v, g−1w〉C = Q(g−1v, Cg−1w)

is t-reduced relative to the basis v1, . . . , vn. It is known that every Siegel set in
GL(HR) for the maximal compact subgroup K̃ is contained in a set of this type;

conversely, every set of this type is contained in a Siegel set (for K̃).

27. To simplify the discussion, let us denote by

S(v1, . . . , vn, t)

the set of elements g ∈ G(R) such that the inner product

(v, w) 7→ 〈v, w〉gCg−1 = Q(v, gCg−1w)

is t-reduced relative to a given basis v1, . . . , vn ∈ HQ. Being defined by a collection
of inequalities, this is clearly a subalgebraic subset of G(R). It is easy to see that

gS(v1, . . . , vn, t) = S(gv1, . . . , gvn, t)
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for any g ∈ G(Q), which means that the collection of these sets is stable under
translation by elements in G(Q). The following theorem gives a useful criterion
for checking whether a given subset of G(R) is contained in finitely many G(Q)-
translates of a Siegel set for K.

Theorem 27.1. Any Siegel set in G(R) for the maximal compact subgroup K is
contained in a finite union of sets of the form S(v1, . . . , vn, t); conversely, any set
of the form S(v1, . . . , vn, t) is contained in a finite union of Siegel sets (for K).

Proof. The first assertion follows immediately from Proposition 25.1 and the dis-
cussion above. To prove the second assertion, observe that any set of the form
S(v1, . . . , vn, t) is contained in a Siegel set in GL(HR) (for K̃); moreover, the inter-
section of such a Siegel set with the subgroup G(R) is contained in finitely many
G(Q)-translates of a Siegel set in G(R) by Proposition 28.1 below. We then get the
desired result by recalling that any G(Q)-translate of a Siegel set for K is again a
Siegel set for K (with a possibly different minimal parabolic Q-subgroup). �

28. In this section, we prove a proposition concerning the intersection of a Siegel
set with a reductive subgroup. The result is similar to [BHC62, Lem.7.5], except
that we are working with Siegel sets for Q-algebraic groups (instead of with Siegel
domains for R-algebraic groups), and that we are making a different set of as-
sumptions about the subgroup. To simplify the notation, let G be an arbitrary
reductive Q-algebraic group, and H ⊆ G a reductive Q-algebraic subgroup. Fur-
ther, let KG ⊆ G(R) and KH ⊆ H(R) be maximal compact subgroups such that
KH = KG ∩ H(R). Note that the Cartan involutions on GR and HR are not
necessarily compatible with each other.

Proposition 28.1. Suppose that every Siegel set in H(R) for the maximal compact
subgroup KH is contained in finitely many G(Q)-translates of a Siegel set in G(R)
(for KG). Let SG ⊆ G(R) be any Siegel set for KG. Then there is a Siegel set
SH ⊆ H(R) for KH , and a finite set F ⊆ H(Q), such that

SG ∩H(R) ⊆ F ·SH .

Proof. This is an easy consequence of reduction theory, and all that is required is
collecting some results from [Bor19]. Let ΓG ⊆ G(Q) be an arithmetic subgroup; the
intersection ΓH = ΓG∩H(Q) is then an arithmetic subgroup of H(Q). According to
[Bor19, Thm. 15.5], there exists a Siegel set SH ⊆ H(R) for the maximal compact
subgroup KH , and a finite set CH ⊆ H(Q), such that

H(R) = ΓH · CH ·SH .

Since the intersection SG ∩H(R) is of course contained in ΓHCSH , it is therefore
enough to prove finiteness of the set

B =
{
γ ∈ ΓH

∣∣ SG intersects γCHSH

}
.

After enlarging SG, if necessary, our assumption about Siegel sets in H(R) implies
that there is a finite set A ⊆ G(Q) such that SH ⊆ ASG. Consequently, our set
B ⊆ ΓH is contained in the larger set{

γ ∈ ΓG
∣∣ SG intersects γCHASG

}
,

which is finite because SG has the Siegel property [Bor19, Thm. 15.4].
It remains to justify our claim that SH ⊆ ASG. By assumption, SH is contained

in many G(Q)-translates of a Siegel set in G(R), but probably with respect to a
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different minimal parabolic Q-subgroup. After translation by an element of G(Q),
we can assume that the minimal parabolic Q-subgroup is the same as for SG; and
then we can enlarge SG and assume that the Siegel set in question is actually SG.
This completes the proof. �

29. Let us return to the setting considered in §19, but add one additional piece of
data. We still assume that G = O(HQ, Q), and that we have a fixed Weil operator
C ∈ End(HR) for which (v, w) 7→ 〈v, w〉C = Q(v, Cw) is a positive definite inner
product on the R-vector space HR. Let us now assume in addition that we have a
nonzero element a ∈ HQ with the property that Ca = a. In particular,

Q(a, a) = 〈a, a〉C > 0.

The stabilizer of this vector is a reductive Q-subgroup Ga ⊆ G; concretely,

Ga(Q) =
{
g ∈ G(Q)

∣∣ ga = a
}
.

We are interested in Weil operators C ′ ∈ End(HR) with the property that C ′a = a.
The following result says that all such Weil operators are conjugate to C by elements
of the real group Ga(R).

Lemma 29.1. Let C ′ ∈ End(HR) be a Weil operator for (HQ, Q). If C ′a = a, then
there is an element g ∈ Ga(R) such that C ′ = gCg−1.

Proof. The proof is similar to that of Lemma 20.1. We have

‖a‖2C′ = Q(a, a) = ‖a‖2C ,

because C ′a = a = Ca. Let n = dimHR. Since Q has a fixed signature, we have

dimE1(C ′) = dimE1(C) = p and dimE−1(C ′) = dimE−1(C) = n− p.

The unit vector e1 = a/‖a‖C can be completed to a basis e1, . . . , en ∈ HR that is
orthonormal for the inner product 〈−,−〉C , in such a way that e1, . . . , ep ∈ E1(C)
and ep+1, . . . , en ∈ E−1(C). Choose a second basis e′1, . . . , e

′
n ∈ HR with e′1 =

a/‖a‖C′ that is similarly adapted to 〈−,−〉C′ and C ′, and let g ∈ Aut(HR) be the
unique automorphism such that gei = e′i for i = 1, . . . , n. Then obviously ga = a.
As in the proof of Lemma 20.1, one shows that C ′ = gCg−1 and g ∈ G(R), which
then implies that g ∈ Ga(R) because ga = a. �

30. The orthogonal complement of a relative to Q is the subspace

H ′Q =
{
v ∈ HQ

∣∣ Q(a, v) = 0
}

=
{
v ∈ HQ

∣∣ 〈a, v〉C = 0
}
.

Evidently, HQ = Qa ⊕H ′Q. It is also easy to see that C(H ′R) ⊆ H ′R; consequently,
the restriction of C to H ′Q is a Weil operator for the pair (H ′Q, Q). We denote by

Ka =
{
g ∈ Ga(R)

∣∣ gC = Cg
}

the resulting maximal compact subgroup; note that Ka = K ∩Ga(R).

Proposition 30.1. Any Siegel set in Ga(R) for the maximal compact subgroup Ka

is contained in finitely many G(Q)-translates of a Siegel set in G(R) (for K).

Proof. The criterion in Theorem 27.1 reduces the problem to the following concrete
statement: Suppose that g ∈ Ga(R) is an element with the property that

(v, w) 7→ 〈v, w〉gCg−1 = Q(v, gCg−1w)
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is t-reduced relative to an ordered basis v1, . . . , vn−1 ∈ H ′Q; then it is possible to
add the vector a to the basis (in one of the n possible places) and still keep the
inner product t-reduced. This is completely elementary. To simplify the notation,
let us agree to write 〈v, w〉 and ‖v‖ instead of 〈v, w〉gCg−1 and ‖v‖gCg−1 . Without
loss of generality, we may assume that t ≥ 1. Recall that ‖a‖2 = Q(a, a). Since

〈vi, a〉 = Q(vi, gCg
−1a) = Q(vi, a) = 0,

the second and third condition in the definition are trivially satisfied. For the first
condition, note that for every i = 1, . . . , n− 1, at least one of the inequalities

‖a‖2 ≤ t‖vi‖2 or ‖vi‖2 ≤ t‖a‖2

will be true (because t ≥ 1). Consequently, there is some value of i ∈ {1, . . . , n−1}
with the property that

‖vi‖2 ≤ t‖a‖2 and ‖a‖2 ≤ t‖vi+1‖2.

But this is saying exactly that our inner product is t-reduced relative to the ordered
basis v1, . . . , vi, a, vi+1, . . . , vn−1 ∈ HQ. �

D. Definable structures on flat bundles

31. Let X be a nonsingular complex algebraic variety, and let E be a locally free
OX -module of finite rank with a flat holomorphic connection ∇ : E → Ω1

X ⊗OX
E .

We denote by p : E → X the associated holomorphic vector bundle. Recall that
E is actually an algebraic vector bundle; the algebraic structure on E is uniquely
determined by the flat connection. Let us briefly review the construction. Choose
an embedding X ↪→ Y into a complete nonsingular variety, such that D = Y \X is

a simple normal crossing divisor. Let (Ẽ ,∇) be Deligne’s canonical extension of the
pair (E ,∇); up to isomorphism, it is determined by the following two conditions:

(1) Ẽ is a locally free OY -module with a flat logarithmic connection

∇ : Ẽ → Ω1
Y (logD)⊗OY

Ẽ ,

such that (Ẽ ,∇)
∣∣
X
∼= (E ,∇).

(2) For each irreducible component Dj of the divisor D, the pointwise eigen-
values of the residue operator

ResDj ∇ ∈ End
(
Ẽ
∣∣
Dj

)
are complex numbers whose real part is contained in the interval [0, 1).

The canonical extension has the following simple description in local coordinates.
Let U ∼= ∆n be an open neighborhood of a point y ∈ Y , with local holomorphic
coordinates t1, . . . , tn centered at y, such that the divisor D ∩ U is defined by the
equation t1 · · · tk = 0. Let V be the fiber of the vector bundle Ẽ at the point y.
Then there is a unique holomorphic trivialization

Ẽ
∣∣
U
∼= OU ⊗C V

that restricts to the identity on V at the point y, such that the logarithmic connec-
tion takes the form

∇(1⊗ v) =

k∑
j=1

dtj
tj
⊗Rjv
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for commuting operators R1, . . . , Rk ∈ End(V ), all of whose eigenvalues have real
part in [0, 1); here Rj is the residue operator along tj = 0. It is easy to see that

e−2πi
∑k

j=1 log tjRj (1⊗ v)

defines a multivalued flat section of (E ,∇) on U ∩ X. The monodromy transfor-
mation around the divisor tj = 0 is therefore described by the operator

e−2πiRj ∈ GL(V ).

In particular, the following two conditions are equivalent:

(a) The eigenvalues of the local monodromy transformations around the com-
ponents of D are complex numbers of absolute value 1.

(b) For each irreducible component Dj of the divisor D, the pointwise eigen-
values of the residue operators ResDj

∇ are real numbers.

Since Y is complete, the holomorphic vector bundle p : Ẽ → Y associated to
the locally free sheaf Ẽ has a unique algebraic structure; the algebraic structure on
the bundle E is obtained by restriction. As before, we give Y and Ẽ the structure
of Ran,exp-definable complex manifolds extending their algebraic structures; this
induces definable complex manifold structures on X and E. The former is the
canonical algebraic definable structureXdef onX and we call the latter the algebraic
definable structure on E. It is uniquely described as that for which any holomorphic
section s of p : Ẽ → Y over an open subset U ′ ⊂ Y restricts to a definable map on
any definable U ⊂ U ′ ∩X which has compact closure in U ′.

32. The holomorphic vector bundle E naturally comes equipped with another
Ran,exp-definable structure coming from the flat coordinates which we construct
as follows. The subsheaf E∇ ⊂ E of flat sections is a complex local system. By de-
finable triangulation, the definable topological space Xdef admits a definable atlas
{(Ui, φi)} with each Ui simply connected. Choosing a basis of flat sections s1, . . . , sr

of E∇|Ui , we therefore obtain a holomorphic trivialization ψi : Ui ×Cr
∼=−→ p−1(Ui)

via (u, z1, . . . , zr) 7→
∑
i zisi(u). Moreover, on intersections Uij := Ui∩Uj the tran-

sition functions are constant: there are gij ∈ GLr(C) such that ψi = ψj ◦ (id×gij).
The flat definable structure on E is then given by the definable complex manifold
atlas {(p−1(Ui), (φi× id) ◦ψ−1

i )}. It is uniquely characterized by the property that
any flat section s of p : E → X over a definable open subset U ⊂ X is definable.

33. From now on, we assume that the local monodromy transformations around
the components of D have eigenvalues of absolute value 1; in this case we say that
E has norm one eigenvalues at infinity. Under this assumption, the two definable
structures from the previous two paragraphs are equivalent.

Proposition 33.1 ([BM21, Theorem 1.2]). Let X be a nonsingular complex al-
gebraic variety and E a holomorphic flat vector bundle over X with norm one
eigenvalues at infinity in the above sense. Then the flat and algebraic definable
complex manifold structures on E are equivalent.

The idea of the proof can be seen from the construction of the Deligne canonical
extension as above. An algebraic frame for E extends to an algebraic frame for the
canonical extension Ẽ on the compactification Y . Thus, locally on the boundary
it is related by a matrix of restricted analytic functions to a basis of sections of

the form e−2πi
∑k

j=1 log tjRj (1 ⊗ v). This basis is in turn related to the flat basis
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by the matrix e−2πi
∑k

j=1 log tjRj , which is Ran,exp-definable on bounded angular
sectors. Indeed, the functions log tj are Ran,exp-definable on bounded angular sec-
tors in polydisk neighborhoods of the boundary in Xdef . If Rj = Rssj + Ruj is

the Jordan decomposition, then e−2πi
∑k

j=1 log tjR
u
j is polynomial in the log tj , while

e−2πi
∑k

j=1 log tjR
ss
j is Ran,exp-definable since the Rssj are real.

In particular, we have the following concrete corollary, which we will use:

Corollary 33.2. Let Z be a complex manifold, and let f : Z → X be a holomorphic
mapping that is Ran,exp-definable. Let σ ∈ Γ(Z, f∗E ) be a holomorphic section with
∇σ = 0. Then the resulting function σ : Z → E is Ran,exp-definable with respect to
the algebraic definable structure.

E. Proof of the main theorem

34. We now come to the proof of Theorem 3.1. Let X be a nonsingular complex
algebraic variety, H a polarized integral variation of Hodge structure on X, of even
weight 2k. Fix a base point x0 ∈ X and let HZ = HZ,x0

; this is a free Z-module of
finite rank, which comes with a symmetric bilinear pairing

Q = Qx0
: HZ ⊗Z HZ → Z.

As usual, we set HQ = HZ ⊗Z Q and HR = HZ ⊗Z R; for simplicitiy, we shall use
the notation C = Cx0

∈ End(HR) for the Weil operator of the Hodge structure at
the point x0. In particular,

(v, w) 7→ 〈v, w〉C = Q(v, Cw)

is a positive definite inner product on the vector space HR.

35. Let D be the period domain parametrizing integral Hodge structures of weight
2k on HZ that are polarized by Q. Since the statement of Theorem 3.1 only involves
the Weil operator (instead of the full Hodge structure), it makes sense to consider
not the period domain D, but rather the associated symmetric space (which is a
quotient of D). Consider the Q-algebraic group

G = O(HQ, Q),

whose set of real points is the real Lie group

G(R) =
{
g ∈ GL(HR)

∣∣ Q(gv, gw) = Q(v, w) for all v, w ∈ HR
}
.

Recall that G(R) acts transitively on the period domain D, and that D = G(R)/V ,
where V ⊆ G(R) is the stabilizer of the Hodge structure at x0. Clearly, the Weil
operator satisfies C ∈ G(R) and C2 = id. It is easy to see that

K =
{
g ∈ G(R)

∣∣ gC = Cg
}

is a maximal compact subgroup of G(R) containing the compact subgroup V ; by
Lemma 20.1, the points of the quotient G(R)/K can be identified with Weil oper-
ators for the pair (HQ, Q), with the coset gK corresponding to the Weil operator
gCg−1.
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36. Consider now the arithmetic subgroup

(36.1) Γ = O(HZ, Q) = G(Q) ∩GL(HZ).

Note that Γ is quite a bit larger than the monodromy group of the variation of
Hodge structure; this will be important in what follows. Instead of the usual period
mapping to Γ\D, we consider the (Weil operator) period mapping

(36.2) Φ: X → Γ\G(R)/K

to the arithmetic quotient of the symmetric space G(R)/K. It associates to ev-
ery point x ∈ X the Weil operator Cx ∈ Aut(Ex), viewed as an automorphism
of the fixed vector space HC by parallel transport; this is well-defined in the quo-
tient Γ\G(R)/K since Γ contains the monodromy group of the variation of Hodge
structure. According to [BKT20, Thm. 1.3], the mapping Φ in (36.2) is Ran,exp-
definable. The main result is stated for the usual period mapping into Γ\D, but
what is actually proved in [BKT20, Thm. 4.1] is the Ran,exp-definability of (36.2).

37. Let π : X̃ → X be the universal covering space of X. Since the period mapping
is locally liftable, there is a real-analytic mapping Φ̃ : X̃ → G(R)/K, unique up to
a choice of base point, making the following diagram commute:

X̃ G(R)/K

X Γ\G(R)/K

Φ̃

π

Φ

We now extend the definability result to the vector bundle p : E → X. On G(R)/K,
consider the trivial complex vector bundle G(R)/K × HC, where HC = HZ ⊗Z C.
The arithmetic group Γ acts on this bundle via the formula

γ · (gK, v) =
(
γgK, γ(v)

)
,

and the quotient gives us a “universal” complex vector bundle

Γ\
(
G(R)/K ×HC

)
→ Γ\G(R)/K

with fiber HC. The pullback π∗E has a canonical trivialization by ∇-flat sections,
hence π∗E ∼= X̃ ×HC. The trivial morphism of vector bundles

Φ̃× id : X̃ ×HC → G(R)/K ×HC

therefore descends to a morphism of complex vector bundles

E Γ\
(
G(R)/K ×HC

)
X Γ\G(R)/K.

ΦE

p

Φ

Proposition 37.1. The morphism of complex vector bundles

ΦE : E → Γ\
(
G(R)/K ×HC

)
is Ran,exp-definable.
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Proof. Let Y be a complete nonsingular variety containing X, such that X = Y \D
for a simple normal crossing divisor D. By the same argument as in [BKT20, §4.1],
the problem is local on Y , and so we may assume that Y = ∆n, with holomorphic
coordinates t1, . . . , tn, and that the divisor D is defined by the equation t1 · · · tk = 0.
Let H =

{
z ∈ C

∣∣ Im z > 0
}

and Σ =
{
z ∈ H

∣∣ 0 ≤ Re z ≤ 1
}

. By [BKT20,
Thm. 1.5], there is a subalgebraic Siegel set S ⊆ G(R) for the maximal compact
subgroup K, and a finite set A ⊆ G(Q), such that the image of

Φ̃ : Σk ×∆n−k → G(R)/K

is contained in A ·S. We get the following commutative diagram:

Σk ×∆n−k A ·S

Hk ×∆n−k G(R)/K

(∆∗)k ×∆n−k Γ\G(R)/K

Φ̃

π Φ̃

π

Φ

.

Now π : Σk ×∆n−k → (∆∗)k ×∆n−k is Ran,exp-definable, and so Proposition 33.2
implies that the isomorphism of complex vector bundles

π∗E ∼= Σk ×∆n−k ×HC

is actually Ran,exp-definable. Since the morphism of trivial bundles

Φ̃× id : Σk ×∆n−k ×HC → (A ·S)×HC

is obviously Ran,exp-definable, we get the desired result. �

38. We are ready to prove a first definability result for self-dual vectors in a single
Γ-orbit. Suppose that we have an integral vector a ∈ HZ such that Ca = a. We are
interested in self-dual classes in the orbit Γa ⊆ HZ. As noted after Lemma 20.1,
points of the symmetric space G(R)/K correspond to Weil operators for (HQ, Q);
we identity a coset gK with the Weil operator Cg = gCg−1.

Proposition 38.1. Let a ∈ HZ be a nonzero integral vector with Ca = a. The set{
Γ(gK, v) ∈ Γ\

(
G(R)/K ×HC

) ∣∣ v ∈ Γa and Cgv = v
}

is Ralg-definable.

Proof. We introduce the additional subgroups

Ka = Ga(R) ∩K and Γa = Ga(Q) ∩ Γ.

For the same reason as before, Ka is a maximal compact subgroup of Ga(R), and
Γa is an arithmetic subgroup of Ga(Q). Lemma 29.1 shows that the image of

Ga(R)/Ka ↪→ G(R)/K

consists of all cosets gK whose corresponding Weil operator Cg = gCg−1 satisfies
Cga = a. According to Proposition 30.1 and [BKT20, Thm. 1.2], the morphism of
arithmetic quotients

Γa\Ga(R)/Ka → Γ\G(R)/K

is Ralg-definable. This morphism has a well-defined lifting

i : Γa\Ga(R)/Ka → Γ\
(
G(R)/K ×HC

)
, ΓahKa 7→ Γ(hK, a),
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which is Ralg-definable for the same reason. In more detail, let S be an arbitrary
Siegel set in Ga(R) with respect to the maximal compact subgroup Ka. The formula

ĩ : S→ G(R)/K ×HC, ĩ(h) = (hK, a)

gives us an Ralg-definable local lifting of i. Because of Proposition 30.1, the com-

position of ĩ with the projection to Γ\(G(R)/K ×HC) is definable; it follows that
the mapping i is itself Ralg-definable.

Now the image of i is exactly the set we are interested in. Indeed, suppose that
Γ(gK, v) = Γ(hK, a) for some g ∈ G(R), h ∈ Ga(R), and v ∈ HC. Then there is an
element γ ∈ Γ such that g = γh and v = γa, and one easily deduces that v ∈ Γa
and Cgv = v. In fact, the mapping i is an embedding: if Γ(hK, a) = Γ(h′K, a)
for two elements h, h′ ∈ Ga(R), then there is some γ ∈ Γ and some k ∈ K such
that h′ = γhk and γa = a; but then γ ∈ Γa, and therefore k ∈ Ka, and so the
double cosets Γah

′Ka = ΓahKa are equal. The locus of self-dual classes in our
given Γ-orbit is therefore an Ralg-definable subset that is isomorphic to the smaller
arithmetic quotient Γa\Ga(R)/Ka. �

39. We now extend the above result to integral vectors v ∈ HZ with a fixed self-
intersection number Q(v, v).

Proposition 39.1. Let q ∈ N be a positive integer. Then the set{
Γ(gK, v) ∈ Γ\

(
G(R)/K ×HC

) ∣∣ v ∈ HZ, Q(v, v) = q, and Cgv = v
}

is Ralg-definable.

Proof. The crucial point is that Γ acts on the set
{
v ∈ HZ

∣∣ Q(v, v) = q
}

with only
finitely many orbits; this makes the result a direct consequence of Proposition 38.1.
The finiteness of the number of Γ-orbits follows from [Kne02, Satz 30.2]; since
Kneser works in much greater generality, let us briefly explain how to deduce the
statement we need. The quadratic form v 7→ Q(v, v) makes HZ into a lattice in
the Q-vector space HQ, and an integral vector v ∈ HZ with Q(v, v) = q defines
an isometry v : [q] → HZ, where [q] means the lattice Z with the quadratic form
n 7→ qn2. (Kneser calls this a “Darstellung” of [q] in HZ.) Now [`] is nondegenerate
because ` ≥ 1, and [Kne02, Satz 30.2] guarantees that there are only finitely many
equivalence classes of such isometries. But since Γ = O(HZ, Q), two vectors v, v′ ∈
HZ are in the same equivalence class, in the sense of [Kne02, Def. 30.1], exactly
when there is an element γ ∈ Γ such that v′ = γv. �

40. Finally, we assemble all the pieces and prove Theorem 3.1.

Proof of Theorem 3.1. The polarized integral variation of Hodge structure H on X
gives rise to a kind of period mapping

Φ: X → Γ\G(R)/K

that, up to the action by Γ, associates to every point x ∈ X the Weil operator Cx
of the corresponding Hodge structure. We already know that Φ is Ran,exp-definable
[BKT20, Thm. 1.2]. We also have a morphism of complex vector bundles

ΦE : E → Γ\
(
G(R)/K ×HC

)
from the algebraic vector bundle p : E → X to the “universal” vector bundle on
the right. We also know that ΦE is Ran,exp-definable (by Proposition 37.1). The
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two morphisms fit into the following commutative diagram:

E Γ\
(
G(R)/K ×HC

)
X Γ\G(R)/K.

ΦE

p

Φ

Fix a positive integer q ∈ N. By Proposition 39.1, the set{
Γ(gK, v) ∈ Γ\

(
G(R)/K ×HC

) ∣∣ v ∈ HZ, Q(v, v) = q, and Cgv = v
}

is Ralg-definable, and so its preimage under ΦE is an Ran,exp-definable subset of E.
Since it is easy to see that a point (x, v) ∈ E lies in the preimage exactly when
v ∈ Ex is integral and satisfies Qx(v, v) = q and Cxv = v, we get the result. �

F. Additional results

41. In this section, we prove the two variants of the main theorem stated in the
introduction. The idea is simple enough: we tensor a given integral variation of
Hodge structure by an auxiliary Hodge structure of weight 1 or 2, and then apply
Theorem 3.1. The first Hodge structure that we need is the following.

Example 41.1. Consider the Hodge structure on the first cohomology of the elliptic
curve C/(Z ⊕ Zi). Concretely, this is an integral Hodge structure of weight 1 on
the free Z-module Z⊕2, whose Hodge decomposition is given by

C⊕2 = C(1, i)⊕ C(1,−i).

The Hodge structure is polarized by the skew-symmetric bilinear form

Z⊕2 ⊗ Z⊕2 → Z,
(
(a1, a2), (b1, b2)

)
7→ a1b2 − a2b1,

and the Weil operator is easily seen to be the operator (a1, a2) 7→ (a2,−a1); note
that it happens to preserve the integral structure in this case.

Now suppose that H is a polarized integral Hodge structure of odd weight 2k−1.
Let Q : HZ⊗ZHZ → Z be the skew-symmetric bilinear form giving the polarization,
and let C ∈ End(HR) be the Weil operator (which now satisfies C2 = − id). After
taking the tensor product with the above Hodge structure of weight 1, we obtain a
polarized integral Hodge structure H̃ of weight 2k on

H̃Z = HZ ⊕HZ,

polarized by the symmetric bilinear form Q̃
(
(a1, a2), (b1, b2)

)
= Q(a1, b2)−Q(a2, b1),

and with Weil operator C̃(a1, a2) = (Ca2,−Ca1). Evidently,

H̃+
2q =

{
(a1, a2) ∈ HZ ⊕HZ

∣∣ a1 = Ca2 and Q(a1, a2) = q
}

;

for polarized integral variations of Hodge structure of odd weight, Corollary 4.2 is
therefore an immediate consequence of Theorem 3.1.
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42. The remaining assertions concern variations of Hodge structure of even weight.
We can deal with them by the same method, using the following Hodge structure.

Example 42.1. Consider now the symmetric square of the Hodge structure in Ex-
ample 41.1. Concretely, we get an integral Hodge structure of weight 2 on the free
Z-module Z⊕3, whose Hodge decomposition is

C⊕3 = C(1, 2i,−1)⊕ C(1, 0, 1)⊕ C(1,−2i,−1).

The Hodge structure is polarized by the symmetric bilinear form

Z⊕3 ⊗ Z⊕3 → Z,
(
(a1, a2, a3), (b1, b2, b3)

)
7→ a1b3 + a3b1 − a2b2,

and the Weil operator is easily seen to be the operator (a1, a2, a3) 7→ (a3,−a2, a1),
which again preserves the integral structure.

Suppose that H is a polarized integral Hodge structure of even weight 2k, with
polarization Q : HZ ⊗Z HZ → Z and Weil operator C ∈ End(HR). After taking the
tensor product with the Hodge structure in Example 42.1, we obtain a polarized
integral Hodge structure H̃ of weight 2k + 2 on

H̃Z = HZ ⊕HZ ⊕HZ,

polarized by the symmetric bilinear form

Q̃
(
(a1, a2, a3), (b1, b2, b3)

)
= Q(a1, b3) +Q(a3, b1)−Q(a2, b2),

and with Weil operator C̃(a1, a2, a3) = (Ca3,−Ca2, Ca1). This time around,

H̃+
q =

{
(a1, a2, a3) ∈ HZ ⊕HZ ⊕HZ

∣∣ a1 = Ca3, Ca2 = −a2, and

2Q(a1, a3)−Q(a2, a2) = q
}
.

We now obtain Corollary 4.2 for polarized integral variations of Hodge structure
of even weight by looking at triples of the form (a1, 0, a3), and Corollary 4.1 by
looking at triples of the form (0, a2, 0).

G. Motivation from string theory

43. A motivation for studying the locus of self-dual integral Hodge classes stems
from string theory. String theory is a candidate theory of quantum gravity that
unifies Einstein’s theory of general relativity and quantum field theory. Quantum
consistency forces the string to travel through a higher-dimensional space-time man-
ifold, extending beyond the four space-time dimensions that we currently observe
in our universe. In prominent variants of string theory this implies that either six
or eight extra dimensions need to be present. These extra dimensions are often
considered to be on a tiny compact manifold. Particularly well-studied choices
are Calabi-Yau manifolds, which are defined to be Kähler manifolds that admit
a Ricci-flat metric. While it is not known which Calabi-Yau manifold one should
pick, it has been studied intensively how the physical four-dimensional theory can
be determined after making a choice.
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44. We now describe one example from physics that originally suggested the result
in Theorem 3.1. Let Y be a compact polarized Calabi-Yau manifold of complex
dimension D, with D = 3, 4 being the cases most relevant in the string theory
application. One can associate a family of manifolds Yt to Y that is obtained
by deforming its complex structure. It is shown by the Bogomolov-Tian-Todorov
theorem [Tia, Tod89] that the Kuranishi space of Y is unobstructed. Hence Yt varies
over a finite-dimensional moduli space M if one demands that all Yt are Calabi-
Yau manifolds. For polarized Calabi-Yau manifolds of complex dimension D the
moduli space M is quasi-projective [Vie95] and of complex dimension hD−1,1 =
dimHD−1,1(Y ). The existence of such a moduli space leads to several physical
problems when using such Yt as backgrounds of string theory. In particular, one
finds modifications of Newton’s law or Einstein’s equations that are in contradiction
with observations. To avoid this immediate conclusion further ingredients known
as background fluxes can be introduced. These fluxes are integral classes in the
cohomology of Y . Compared with the general considerations above, we thus identify

X = M̂, where M̂ is the resolution of M [Hir64]. Furthermore, we set HZ =
HD(Y,Z) and Q =

∫
Y
v ∧ w. Introducing a Weil operator C acting on Hp,q(Yt)

with ip−q, we define a norm ‖w‖2 = Q(w̄, Cw).

45. The best understood string theory settings with integral fluxes are obtained
from Type IIB string theory [GVW00, GKP02]. Let us consider this ten-dimensional
theory on a Calabi-Yau manifold Y of complex dimension three. In this string
theory setting one is also free to chose in addition to Y two integral three-forms
F,H ∈ H3(Y,Z), which set the flux background. They naturally combine to a
complex three-form G = F − τH with τ ∈ C. The fluxes F,H are constrained by a
consistency condition

(45.1) Q(F,H) = ` ,

where ` is a fixed positive rational number that can be derived for a given setting.
This condition is known as a tadpole cancellation condition and plays a crucial
role in finding consistent solutions of string theory. Furthermore, the presence of G
impacts the physical four-dimensional theory by giving rise to an energy potential
V (G), which generally changes for different choices Yt within the family. Concretely,
it takes the form [GKP02]

(45.2) V (G) = κ‖G−‖2 ,
where CG− = −iG− and κ is τ -dependent but constant over M. The loci in M
that minimize this energy potential with G− = 0 have been shown to be consistent
background solutions of Type IIB string theory [GKP02]. It has been a long-
standing question of whether or not the number of distinct H,F with G− = 0 and
(45.1) is finite.

46. A more general setting that leads to a similar question arises in a geometric
higher-dimensional version of Type IIB string theory known as F-theory [Vaf96,
Den08]. In F-theory the extra dimensions are constrained to reside on an eight-
dimensional compact manifold to extract a four-dimensional physical theory. The
consistency equations for such twelve-dimensional string backgrounds admit solu-
tions that are (conformal) Calabi-Yau manifolds Y of complex dimension D = 4
that admit a four-form flux background. Let us consider v ∈ H4(Y,Z) and assume
that v is primitive with respect to the Kähler form J of Y . The condition (45.1)
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generalizes to Q(v, v) = `, which is the consistency condition every solution to F-
theory with a compact Y has to satisfy. A non-trivial v induces again an energy
potential

(46.1) V (v) = λ‖v−‖2 ,

where Cv− = −v− and λ is a constant. V (v) changes in the family Yt and hence is
a function on the moduli spaceM. The self-dual loci inM are by definition those
that satisfy Cv = v and hence minimize V (v). They comprise consistent solutions
to F-theory and are of central interest to some of the most prominent scenarios on
realizing our four-dimensional universe in string theory. Each choice of v satisfying
these consistency conditions can imply different values for physical observables. It
is thus of profound importance to know if there are infinitely many choices for v.

47. Finiteness statements about the set of self-dual v ∈ H4(Y,Z) with Q(v, v) = `
have been conjectured in [Dou03, AD06]. In order to provide evidence for these
statements and to estimate the number of distinct solutions it was suggested in
[AD04, DD04] to introduce a critical point density on the moduli space. Mathe-
matically rigorous proofs on estimating this density were given in [DSZ04, DSZ06a,
DSZ06b]. Strong finiteness results have been shown in [DL06, LD13] for a cer-
tain index counting solutions to the self-duality relations for Calabi-Yau manifolds
by applying a Gauss-Bonnet-Chern theorem on the moduli space. In this work
we have given an affirmative answer to the finiteness conjectures without using a
density function. We have also shown that in the complex structure moduli space
there is no need to introduce a refined notion of physically distinct vacua to ensure
finiteness as suggested in [AD06]. The finiteness statement is centrally based on
the definability of the period mapping which suffices to exclude the pathological
examples discussed in [AD06]. In dimension 1, it is possible to prove Theorem 3.1
along the lines of [CDK95], by using more details about the SL(2)-orbit theorem
[Sch20], see also [Gri21] for a sketch of the argument. In higher dimensions, this
kind of argument looks completely infeasible.
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Astérisque (1989), no. 179-180, 9, 67–96, Actes du Colloque de Théorie de Hodge
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