
Lecture 1: August 23

Introduction. Topology grew out of certain questions in geometry and analysis
about 100 years ago. As Wikipedia puts it, “the motivating insight behind topology
is that some geometric problems depend not on the exact shape of the objects
involved, but rather on the way they are put together. For example, the square
and the circle have many properties in common: they are both one dimensional
objects (from a topological point of view) and both separate the plane into two
parts, the part inside and the part outside.” In other words, topology is concerned
with the qualitative rather than quantitative aspects of geometric objects.

The fundamental objects in topology are “topological spaces” and “continuous
functions”; both were defined in more or less their current form by Felix Hausdorff
in 1914. Like the concept of a group in algebra, topological spaces are very useful
for unifying different parts of mathematics: they show up naturally in analysis,
geometry, algebra, etc. Most mathematicians therefore end up using both ideas and
results from topology in their research. On the other hand, topologist nowadays
do not study all possible topological spaces – instead, they focus on specific classes
such as 3-dimensional manifolds.

In the course, we will look at the most important definitions and results from
basic point set topology and elementary algebraic topology. Our textbook will be
the second edition of Topology by James Munkres, but I will not present things in
exactly the same order. Most of the homework questions, however, will be from
the textbook.

Metric spaces. The goal of today’s class is to define topological spaces. Since
it took people some time to find a good definition, let us try to retrace at least
a small portion of this process. One concern of 19th century mathematics was to
create rigorous foundations for analysis. This lead to the study of continuous and
differentiable functions on subsets of the real line R and of Euclidean space Rn.
Here the notion of “distance” between points plays an important role: for example,
a function f : R→ R is continuous if, for every x ∈ R and every real number ε > 0,
one can find another real number δ > 0 such that

|f(y)− f(x)| < ε for every y ∈ R with |y − x| < δ.

By abstracting from the properties of distance in Euclidean space, people arrived
at the idea of a “metric space”.

Definition 1.1. Let X be a set. A metric on X is a function d : X ×X → R with
the following three properties:

(a) One has d(x, y) ≥ 0 for every x, y ∈ X, with equality if and only if x = y.
(b) d is symmetric, meaning that d(x, y) = d(y, x).
(c) The triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for every x, y, z ∈ X.

The pair (X, d) is then called a metric space.

The name of the triangle inequality comes from the fact that, in a triangle in
Euclidean space, the length of each side is smaller than the sum of the lengths of
the two other sides. Drawing pictures in the plane can be useful to visualize what
is going on – but keep in mind that things like “straight line” or “triangle” do not
make actually make sense in a general metric space. The only notions that make
sense are those that can expressed in terms of distances between points. One such
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notion, which is also useful in Euclidean space, is that of an “open ball”: if x0 ∈ X
is a point, and r > 0 a positive real number, the open ball of radius r and center
x0 is the set

Br(x0) =
{
x ∈ X

∣∣ d(x0, x) < r
}
.

We can get some idea of what a given metric space looks like by visualizing open
balls of different radii. Here are some examples of metric spaces:

Example 1.2. Euclidean space Rn with the usual notion of distance. Denote the
points of Rn in coordinates by x = (x1, x2, . . . , xn), and define the length

‖x‖ =
√
x2

1 + · · ·+ x2
n.

Then the distance between two points x, y ∈ Rn is given by

d(x, y) = ‖x− y‖ =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

It may seem pretty obvious that this satisfies the axioms for a metric, but let us
make sure. In the first condition, d(x, y) ≥ 0 is clear from the definition; moreover,
d(x, y) = 0 if and only if xi− yi = 0 for every i = 1, . . . , n if and only if x = y. The
second condition is also clear since (xi − yi)2 = (yi − xi)2.

Checking that the third condition holds requires a little bit more work. We first
prove the following inequality for lengths:

(1.3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
After taking the square and expanding, we get

‖x+ y‖2 = (x+ y) · (x+ y) = ‖x‖2 + 2x · y + ‖y‖2,
where x · y = x1y1 + · · · + xnyn is the dot product. From the Cauchy-Schwarz
inequality in analysis, we obtain

x · y ≤ ‖x‖‖y‖,
and therefore

‖x+ y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 =
(
‖x‖+ ‖y‖

)2
,

which proves (1.3). Returning to the third condition, we now have

d(x, z) = ‖x− z‖ =
∥∥(x− y) + (y − z)

∥∥ ≤ ‖x− y‖+ ‖y − z‖ = d(x, y) + d(y, z),

and so the triangle inequality holds and d is a metric.

Example 1.4. Another metric on Rn is given by setting

d(x, y) = max
1≤i≤n

|xi − yi|.

Unlike before, it takes almost no effort to verify all three axioms. The “open balls”
in this metric are now actually open cubes.

Example 1.5. Let X ⊆ R2 be the union of all the vertical lines x1 = n and all the
horizontal lines x2 = n, for n ∈ Z. The “taxicab metric” on X is defined by setting

d(x, y) = |x1 − y1|+ |x2 − y2|.
Here is the proof of the triangle inequality:

d(x, z) = |x1 − z1|+ |x2 − z2|
≤ |x1 − y1|+ |y1 − z1|+ |x2 − y2|+ |y2 − z2| = d(x, y) + d(y, z).
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Example 1.6. Another interesting example is the “railroad metric” on R2. Choose
a point P ∈ R2 in the plane, and define

d(x, y) =

{
‖x− y‖ if the three points x, y, P are collinear,

‖x− P‖+ ‖y − P‖ otherwise.

To see the analogy with railroads, think of P as being the capital city of a country,
in which all railroad lines go through the capital. I will leave it as an exercise to
show that this defines a metric.

Example 1.7. On an arbitrary set X, one can define the trivial metric

d(x, y) =

{
0 if x = y,

1 if x 6= y.

In this case, open balls of radius 0 < r < 1 consist of only one point.

The usual ε-δ-definition of continuity carries over to the setting of metric spaces.
Suppose that (X, dX) and (Y, dY ) are two metric spaces.

Definition 1.8. A function f : X → Y is said to be continuous if, for every point
x ∈ X and every real number ε > 0, one can find a real number δ > 0 such that

dY
(
f(x), f(x′)

)
< ε for every x′ ∈ X with dX(x, x′) < δ.

More graphically, the condition says that f should map the entire open ball
Bδ(x) into the open ball Bε

(
f(x)

)
. Equivalently, we can look at the preimage

f−1
(
Bε
(
f(x)

))
=
{
x′ ∈ X

∣∣ f(x′) ∈ Bε
(
f(x)

) }
,

and the condition is that it should contain an open ball of some radius δ > 0 around
the point x. Sets that contain an open ball around any of their points are called
“open”; this is the same use of the word open as in “open intervals”. The precise
definition is the following.

Definition 1.9. Let X be a metric space. A subset U ⊆ X is called open if, for
every point x ∈ U , there is some r > 0 such that Br(x) ⊆ U .

Note that the empty set is considered to be open: the condition in the definition
is vacuous in that case. It is also obvious that X itself is always open. The following
lemma shows that open balls – as defined above – are indeed open.

Lemma 1.10. In a metric space X, every open ball Br(x0) is an open set.

Proof. By picture. If x ∈ Br(x0) is any point, then d(x, x0) < r, and so the quantity
δ = r − d(x, x0) is positive. Intuitively, δ is the distance from the point x0 to the
boundary of the ball. Now Bδ(x) ⊆ Br(x0); indeed, if y ∈ Bδ(x), then we have

d(y, x0) ≤ d(y, x) + d(x, x0) < δ + d(x, x0) = r

by virtue of the triangle inequality. �

It is clear from the definition that if {Ui}i∈I is any family of open subsets of X,
indexed by some set I, then the union⋃

i∈I
Ui =

{
x ∈ X

∣∣ x ∈ Ui for some i ∈ I
}
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is again open. Similarly, given finitely many open subsets U1, . . . , Un ⊆ X, the
intersection

U1 ∩ · · · ∩ Un =
{
x ∈ X

∣∣ x ∈ Ui for every i = 1, . . . , n
}

is also open. In fact, if x ∈ U1 ∩ · · · ∩ Un, then x ∈ Ui; but Ui is open, and so
Bri(x) ⊆ Ui for some ri > 0. Now if we set r = min(r1, . . . , rn), then

Br(x) ⊆ U1 ∩ · · · ∩ Un,
proving that the intersection is again an open set.

Open sets can be used to give a criterion for continuity that does not depend on
the actual values of the metric.

Proposition 1.11. Let f : X → Y be a function between two metric spaces. Then
f is continuous if and only if f−1(U) is open for every open subset U ⊆ Y .

Proof. The proof is straightforward. Suppose first that f is continuous. Given an
open set U ⊆ Y , we need to show that the preimage f−1(U) is again open. Take
an arbitrary point x ∈ f−1(U). Since f(x) ∈ U , and U is open, we can find ε > 0
with Bε

(
f(x)

)
⊆ U . By definition of continuity, there exists δ > 0 such that

f
(
Bδ(x)

)
⊆ Bε

(
f(x)

)
⊆ U ;

but then Bδ(x) ⊆ f−1(U), and so f−1(U) is an open set.
To prove the converse, suppose that f satisfies the condition in the statement.

Given x0 ∈ X and ε > 0, the open ball Bε
(
f(x0)

)
is an open subset of Y by

Lemma 1.10; its preimage

f−1
(
Bε
(
f(x0)

))
is therefore an open subset of X. Since it contains the point x0, it has to contain
an open ball around x0; but this means exactly that

f
(
Bδ(x0)

)
⊆ Bε

(
f(x0)

)
for some δ > 0. In other words, f is continuous. �

The proposition shows that we can decide whether or not a function is continuous
without knowing the metric; all we have to know is which subsets of X and Y are
open. This makes continuity a topological notion, in the sense we talked about at
the beginning of class.

Topological spaces. We now come to the definition of topological spaces, which
are the basic objects in topology. Rather than by a metric (which is something
quantitative), a topological space is described by giving a collection of “open sets”
(which is something qualitative). These “open sets” should behave in the same way
as open sets in a metric space with respect to taking unions and intersections, and
so we use those properties as axioms.

Definition 1.12. Let X be a set. A topology on X is a collection T of subsets of
X with the following three properties:

(a) ∅ ∈ T and X ∈ T .
(b) If {Ui}i∈I is a family of subsets of X with Ui ∈ T for every i ∈ I, then⋃

i∈I
Ui ∈ T .

(c) If U ∈ T and V ∈ T , then U ∩ V ∈ T .
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The sets in T are called open, and the pair (X,T ) is called a topological space.

By induction, the property in the third condition can easily be extended to all
finite intersections: if U1, . . . , Un ∈ T , then also U1 ∩ · · · ∩ Un ∈ T .

Example 1.13. Every metric space (X, d) is naturally a topological space: the so-
called metric topology consists of all subsets that are open in the sense of Defini-
tion 1.9. We have already checked that all three conditions in the definition are
satisfied. Note that different metric spaces can give rise to the same topological
space.

We will see many additional examples of topological spaces next time.
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Lecture 2: August 30

Today, we are going to look at many additional examples of topological spaces,
to become familiar with the definition from last time. Let me first point out that
Hausdorff’s original definition contained the following additional condition, known
as the Hausdorff axiom.

Definition 2.1. A topological space (X,T ) is said to be Hausdorff if, for every
pair of distinct points x, y ∈ X, there are open sets U, V ∈ T with x ∈ U , y ∈ V ,
and U ∩ V = ∅.

One often says that the two points x and y can be “separated by open sets”.
The metric topology on a metric space (X, d) is always Hausdorff: if x, y ∈ X are
two distinct points, then d(x, y) > 0; now the open balls of radius r = d(x, y)/2
around x and y are disjoint open sets separating x and y. (Indeed, if there was
a point z ∈ Br(x) ∩ Br(y), then we would have d(x, z) < r and d(y, z) < r; by
the triangle inequality, this would mean that 2r = d(x, y) ≤ d(x, z) + d(z, y) < 2r,
which is absurd.) Since most of our intuition is derived from metric spaces such
as Rn, the Hausdorff axiom looks very natural. The reason for not making it part
of the definition nowadays is that certain classes of topologies – most notably the
ones used in algebra – do not satisfy the Hausdorff axiom.

Now on to some examples of topological spaces. We first observe that any set X
can be made into a topological space in the following way.

Example 2.2. Let X be a set. The trivial topology on X is the topology {∅, X}; in
view of the conditions, it is the smallest possible topology. The discrete topology
on X is the topology in which every subset of X is open; it is the largest possibly
topology. Neither of these is very interesting.

Here is a small example of a topological space where the Hausdorff axiom does
not hold.

Example 2.3. The Sierpiński space is the two-element set {0, 1}, with topology
given by {

∅, {1}, {0, 1}
}
.

It is not a Hausdorff space, because the two points 0 and 1 cannot be separated by
open sets – in fact, the only open set containing the point 0 is {0, 1}.

Every subset of a topological space can itself be made into a topological space;
this is similar to the fact that every subset of a metric space is again a metric space.

Example 2.4. Let (X,T ) be a topological space. Given a subset Y ⊆ X, we can
put a topology on Y by intersecting the open sets in T with the subset Y . More
precisely, the subspace topology on Y is defined to be

TY =
{
U ∩ Y

∣∣ U ∈ T
}
.

You will easily be able to verify that this really is a topology. Note that unless
Y ∈ T , the sets in TY are not usually open in X; to avoid confusion, people
sometimes use the expression “open relative to Y ” for the sets in TY .

So for example, the sphere

S2 =
{

(x, y, z) ∈ R3
∣∣ x2 + y2 + z2 = 1

}
is a topological space (in the subspace topology coming from R3); the Cantor set
C ⊆ R is a topological space (in the subspace topology coming from R).
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The notion of basis. In the examples above, we described each topological space
by saying which sets belonged to the topology. Since this can be a little cumbersome,
people often use a more efficient way of presenting this information: a basis. Here
is the definition.

Definition 2.5. Let (X,T ) be a topological space. A basis for the topology is a
collection B of subsets of X with two properties: (1) Every set in B is open, hence
B ⊆ T . (2) Every set in T can be written as the union of sets in B.

This usage of the word “basis” is different from the one in linear algebra, because
a given open set is allowed to be a union of sets in B in many different ways.

Example 2.6. Let (X, d) be a metric space. The collection of all open balls

B =
{
Br(x0)

∣∣ x0 ∈ X and r > 0
}

is a basis for the metric topology: by definition, every open set can be written as a
union of open balls; conversely, every open ball is an open set. Someone raised the
question of whether the empty set is a union of open balls. The answer is yes: it
is the union of zero many open balls. Another (and more efficient) choice of basis
would be

B′ =
{
Br(x0)

∣∣ x0 ∈ X and r ∈ Q ∩ (0,∞)
}
,

using only those open balls whose radius is a rational number.

Example 2.7. Let X be a set. The collection of all one-point subsets of X is a basis
for the discrete topology.

If we are given only the basis, we can recover the topology by taking all possible
unions of sets in B. Here the following notation is convenient: given a collection
C of subsets of X, define ⋃

C =
⋃
U∈C

U ⊆ X

to be the union of all the members of C . If C is empty, let us agree that
⋃

C is
the empty set. The following result allows us to specify a topology on a set X in
terms of a basis.

Proposition 2.8. Let B be a collection of subsets of X with the following proper-
ties: (1)

⋃
B = X; (2) for every U, V ∈ B, the intersection U ∩ V can be written

as a union of elements of B. Then

T (B) =

{⋃
C

∣∣∣∣ C ⊆ B

}
is a topology on X, and B is a basis for this topology.

Proof. Let us verify that T (B) is a topology on X. Since X =
⋃

B and ∅ =
⋃
∅,

both the empty set and X itself are open. Moreover, any set in B is open, because
U =

⋃
{U}. It is obvious from the definition that arbitrary unions of open sets

are again open. To check the condition on intersections, observe first that the
intersection of any two sets in B is open: by assumption, it can be written as a
union of sets in B. Now let

U1 =
⋃

C1 =
⋃
V ∈C1

V and U2 =
⋃

C2 =
⋃

W∈C2

W
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be two arbitrary open sets; then

U1 ∩ U2 =
⋃
V ∈C1
W∈C2

V ∩W

is a union of open sets, and therefore open. This shows that T (B) is a topology;
that B is a basis is obvious, because every set in B is open, and every open set is
a union of sets in B. �

The topology T (B) is sometimes called the topology generated by the basis B.
From now on, we will usually describe topologies in terms of bases.

Ordered sets and the order topology. A nice class of examples comes from
linearly ordered sets.

Definition 2.9. A relation < on a set X is called a linear order if it has the
following properties:

(a) For any pair of x, y ∈ X with x 6= y, either x < y or y < x.
(b) The relation x < x is never satisfied for any x ∈ X.
(c) If x < y and y < z, then x < z.

Given a linear order on X, we define x ≤ y to mean “x < y or x = y”.

The three conditions together imply that, for every pair of elements x, y ∈ X,
exactly one of the three relations

x < y, y < x, x = y

holds. We can therefore visualize a linear order by thinking of the elements of X
as being lined up in increasing order from left to right.

Example 2.10. The usual order relation x < y on R is a linear order.

Example 2.11. The set {A,B, . . . , Z} of all uppercase letters is linearly ordered by
the alphabetic order relation.

Example 2.12. The dictionary order on R2 = R× R is the following relation:

(x1, x2) < (y1, y2)⇔ x1 < y1, or x1 = y1 and x2 < y2

You can easily check that this is a linear order.

Given a linear order < on a set X, we can define open intervals

(a, b) =
{
x ∈ X

∣∣ a < x < b
}

and open rays

(a,∞) =
{
x ∈ X

∣∣ a < x
}
, (−∞, a) =

{
x ∈ X

∣∣ x < a
}

just as in the case of the real numbers. As the word “open” suggests, they form
the basis for a topology on X, the so-called order topology.

Proposition 2.13. Let < be a linear order on a set X, and let B be the collection
of all open intervals, all open rays, and X itself. Then B is a basis for a topology
on X.
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Proof. We have to check that the assumptions of Proposition 2.8 are satisfied. Since
X ∈ B, we have

⋃
B = X. Moreover, it is easy to see that the intersection of

any two sets in B is again in B. According to Proposition 2.8, B is a basis for a
topology on X. After class, somebody asked me whether we really needs the set X
in B. The answer is yes, but only when X has exactly one element; as soon as X
has at least two elements a < b, one has X = (−∞, b) ∪ (a,∞). �

Example 2.14. Since R is both a metric space and a linearly ordered set, it has
two topologies: the metric topology and the order topology. In fact, both have the
same open sets, and are therefore equal. Let us prove this. If a set U is open in the
metric topology, then it is a union of open balls; but every open ball Br(x0) is also
an open interval (x0−r, x0 +r), and so U is open in the order topology. Conversely,
all open intervals and open rays are clearly open sets in the metric topology, and
so every open set in the order topology is also open in the metric topology.

Example 2.15. What do open sets look like in the dictionary topology on R2?

The product topology. Let X and Y be two topological spaces. Their cartesian
product

X × Y =
{

(x, y)
∣∣ x ∈ X and y ∈ Y

}
can again be made into a topological space in a natural way.

Proposition 2.16. The collection of all sets of the form U × V , where U is an
open subset of X and V is an open subset of Y , is a basis for a topology on X ×Y .

Proof. Note that X × Y belongs to our collection of sets, and that we have

(U1 × V1) ∩ (U2 × V2) = (U1 ∩ U2)× (V1 ∩ V2).

The assertion therefore follows from Proposition 2.8. �

The topology in the proposition is called the product topology on X × Y .

Example 2.17. Consider the real line R with its standard topology. The product
topology on R × R is the same as the metric topology; this can be proved in the
same way as in Example 2.14

Lemma 2.18. If B is a basis for the topology on X, and if C is a basis for the
topology on Y , then

B × C =
{
B × C

∣∣ B ∈ B and C ∈ C
}

is a basis for the product topology on X × Y .

Proof. By definition, every open set in X × Y is a union of open sets of the form
U × V , with U open in X and V open in Y . It is therefore enough to show that
U × V can be written as a union of sets in B × C . Since B is a basis for the
topology on X, we have

U =
⋃
i∈I

Ui

for some collection {Ui}i∈I of sets in B; for the same reason,

V =
⋃
j∈J

Vj
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for some collection {Vj}j∈J of sets in C . This means that

U × V =
⋃
i∈I
j∈J

Ui × Vj

is a union of sets in B × C , as required. �

Closed sets, interior, and closure. Here are a few additional definitions that
are useful when talking about general topological spaces.

Definition 2.19. Let X be a topological space. A subset A ⊆ X is called closed
if its complement X \A is open.

The word “closed” is used in the same way as in “closed intervals”, and is
supposed to mean something like “closed under taking limits”; this usage comes
from analysis, where a subset A ⊆ R is called closed if the limit of every convergent
sequence in A also belongs to A. We shall come back to this point at the beginning
of next class.

Obviously, ∅ = X \X and X = X \ ∅ are closed sets – which makes those two
sets both open and closed. The basic rules of set theory also imply that arbitrary
intersections and finite unions of closed sets are again closed. The reason is that

X \
⋂
i∈I

Ai =
⋃
i∈I

(X \Ai),

and that a union of open sets is again open. In fact, one could define topological
spaces entirely in terms of closed sets.

Definition 2.20. Let Y ⊆ X be a subset. The interior of Y is defined to be

intY =
⋃
U⊆Y
open

U ;

it is the largest open subset contained in Y . The closure of Y is defined to be

A =
⋂
A⊇Y
closed

A;

it is the smallest closed set containing Y .

Intuitively, when we take the interior of a set, we are throwing away all points
that lie at the edge of the set; when we take the closure, we add every possible
point of this kind.
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Lecture 3: September 1

Let me begin today’s class by talking about closed sets again. Recall from last
time that a subset A ⊆ X of a topological space is called closed if its complement
X \A is open. We also defined the closure of an arbitrary subset Y ⊆ X to be the
smallest closed subset containing Y ; more precisely,

Y =
⋂
A⊇Y
closed

A

is the intersection of all closed sets containing Y . Intuitively, taking the closure
means adding all those points of X that lie “at the edge of Y ”; the goal is to
understand this operation better.

Example 3.1. In a Hausdorff space X, every one-point set {x} is closed. We have
to convince ourselves that X \ {x} is an open set. Let y ∈ X \ {x} be an arbitrary
point. Since X is Hausdorff, we can find two disjoint open sets U and V with x ∈ U
and y ∈ V . Clearly, V ⊆ X \ {x}; this shows that X \ {x} is a union of open sets,
and therefore open.

Example 3.2. Let Y be a subset of a topological space X. Then a set A ⊆ Y is
closed in the subspace topology on Y if and only if A = Y ∩B for some closed set
B ⊆ X. Note that this is not a definition, but a (very easy) theorem. Here is the
proof: A is closed relative to Y if and only if Y \A is open relative to Y if and only
if Y \ A = Y ∩ U for some open set U ⊆ X if and only if A = Y ∩ (X \ U). (The
last step is easiest to understand by drawing a picture.) But if U is open, X \U is
closed, and so we get our result.

As I mentioned last time, the word “closed” comes from analysis, where it means
something like “closed under taking limits”. To help make the definition more
concrete, let us now discuss the relationship between closed sets and limit points.
If x ∈ X is a point in a topological space, an open set containing x is also called a
neighborhood of x. We usually think of a neighborhood as being a “small” open set
containing x – but unless X is a metric space, this does not actually make sense,
because we do not have a way to measure distances.

Definition 3.3. Let Y be a subset of a topological space X. A point x ∈ X is
called a limit point of Y if every neighborhood of x contains at least one point of
Y other than x itself.

Note that a point x ∈ Y may be a limit point of Y , provided that there are
enough other points of Y nearby. An isolated point, however, is not considered to
be a limit point. The following theorem describes the closure operation in terms of
limit points.

Theorem 3.4. Let Y be a subset of a topological space X. The closure of Y is the
union of Y and all its limit points.

Proof. Let us temporarily denote by Y ′ the union of Y and all its limit points. To
prove that Y ′ = Y , we have to show two things: Y ′ ⊆ Y , and Y ′ is closed. Since
Y ′ contains Y , this will be enough to give us Y ′ = Y .

Let us first prove that Y ′ ⊆ Y . Of course, we only have to argue that every limit
point x of Y belongs to Y . The proof is by contradiction: if x 6∈ Y , then the open
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set X \ Y is a neighborhood of x, and therefore has to contain some point of Y ;
but this is not possible because Y ∩ (X \ Y ) = ∅.

Next, let us show that Y ′ is closed, or in other words, that X \Y ′ is open. Since
a union of open sets is open, it will be enough to prove that for every x ∈ X \ Y ′,
some neighborhood of x is contained in X \Y ′. Now x is clearly not a limit point of
Y , and because of how we defined limit points, this means that some neighborhood
U of x does not contain any point of Y other than possibly x itself. Since we also
know that x 6∈ Y , we deduce that U ∩ Y = ∅. But then no point of U can be a
limit point of Y (because U is open), and so U ⊆ X \ Y ′. �

Sequences and limits. In metric spaces, the property of being closed can also be
expressed in terms of convergent sequences. Let X be a metric space, and suppose
that x1, x2, . . . is a sequence of points of X. We say that the sequence converges
to a point x ∈ X, or that x is the limit of the sequence, if for every ε > 0, one can
find an integer N such that

d(xn, x) < ε for every n ≥ N.

Note that a sequence can have at most one limit: if x′ is another potential limit of
the sequence, the triangle inequality implies that

d(x, x′) ≤ d(x, xn) + d(xn, x
′);

as the right-hand side can be made arbitrarily small, d(x, x′) = 0, which means
that x′ = x.

In view of how the metric topology is defined, we can rephrase the condition
for convergence topologically: the sequence x1, x2, . . . converges to x if and only if
every open set containing x contains all but finitely many of the xn. This concept
now makes sense in an arbitrary topological space.

Definition 3.5. Let x1, x2, . . . be a sequence of points in a topological space. We
say that the sequence converges to a point x ∈ X if, for every open set U containing
x, there exists N ∈ N such that xn ∈ U for every n ≥ N . In that case, x is called
a limit of the sequence.

You should convince yourself that if x is a limit of a sequence x1, x2, . . . , then
it is also a limit point of the subset {x1, x2, . . . }. (Question: What about the
converse?) Unlike in metric spaces, limits are no longer necessarily unique.

Example 3.6. In the Sierpiński space, both 0 and 1 are limits of the constant
sequence 1, 1, . . . , because {0, 1} is the only open set containing the point 0.

In a Hausdorff space, on the other hand, limits are unique; the proof is left as
an exercise.

Lemma 3.7. In a Hausdorff space X, every sequence of points has at most one
limit.

The following result shows that in a metric space, “closed” really means “closed
under taking limits”.

Proposition 3.8. Let X be a metric space. The following two conditions on a
subset Y ⊆ X are equivalent:

(a) Y is closed in the metric topology.
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(b) Y is sequentially closed: whenever a sequence x1, x2, . . . of points in Y
converges to a point x ∈ X, one has x ∈ Y .

Proof. Suppose first that Y is closed. Let x1, x2, . . . be a sequence of points in
Y that converges to a point x ∈ X; we have to prove that x ∈ Y . This is pretty
obvious: because Y is closed, the complement X\Y is open, and if we had x ∈ X\Y ,
then all but finitely many of the xn would have to lie in X \ Y , which they don’t.

Now suppose that Y is sequentially closed. To prove that Y is closed, we have to
argue that X \Y is open. Suppose this was not the case. Because of how we defined
the metric topology, this means that there is a point x ∈ X \ Y such that no open
ball Br(x) is entirely contained in X \ Y . So in each open ball B1/n(x), we can
find at least one point xn ∈ Y . Now I claim that the sequence x1, x2, . . . converges
to x: indeed, we have d(xn, x) < 1/n by construction. Because x ∈ X \ Y , this
contradicts the fact that Y is sequentially closed. �

This also gives us the following description of the closure: if Y ⊆ X is a subset
of a metric space, then the closure Y is the set of all limit points of convergent
sequences in Y .

Unfortunately, Proposition 3.8 does not generalize to arbitrary topological spaces;
you can find an example in this week’s homework. Closed sets are always sequen-
tially closed – the first half of the proof works in general – but the converse is
not true. What made the second half of the proof work is that every point in a
metric space has a countable neighborhood basis: for every point x ∈ X, there are
countably many open sets U1(x), U2(x), . . . , such that every open set containing
x contains at least one of the Un(x). In a metric space, we can take for example
Un(x) = B1/n(x). Topological spaces with this property are said to satisfy the
first countability axiom. So Proposition 3.8 is true (with the same proof) in every
topological space where the first countability axiom holds. If this axiom does not
hold in X, then there are simply “too many” open sets containing a point x ∈ X
to be able to describe closed sets in terms of sequences (which are by definition
countable).

Note. If X is first countable, then the collection

B =
{
Un(x)

∣∣ x ∈ X and n ≥ 1
}

is a basis for the topology on X. A stronger version of this condition is that X
should have a basis consisting of countably many open sets; such spaces are said to
satisfy the second countability axiom.

Continuous functions and homeomorphisms. As suggested in the first lec-
ture, we define continuous functions by the condition that the preimage of every
open set should be open.

Definition 3.9. Let (X,TX) and (Y,TY ) be two topological spaces. A function
f : X → Y is called continuous if

f−1(U) =
{
x ∈ X

∣∣ f(x) ∈ U
}
∈ TX

for every U ∈ TY .
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If the topology on Y is given in terms of a basis B, then it suffices to check the
condition for U ∈ B; the reason is that

f−1

( ⋃
U∈C

U

)
=
⋃
U∈C

f−1(U).

We could have just as well defined continuity used closed sets; the reason is that

f−1(Y \A) =
{
x ∈ X

∣∣ f(x) 6∈ A
}

= X \ f−1(A).

We have already seen that the topological definition is equivalent to the ε-δ one
in the case of metric spaces; so we already know many examples of continuous
functions from analysis. To convince ourselves that the topological definition is
useful, let us prove some familiar facts about continuous functions in this setting.
The first one is that the composition of continuous functions is again continuous.

Lemma 3.10. If f : X → Y and g : Y → Z are continous, then so is their compo-
sition g ◦ f .

Proof. Let U ⊆ Z be an arbitrary open set. Since g is continuous, g−1(U) is open
in Y ; since f is continous,

(g ◦ f)−1(U) = f−1
(
g−1(U)

)
is open in X. This proves that g ◦ f is continuous. �

In analysis, we often encounter functions that are defined differently on different
intervals. Here is a general criterion for checking that such functions are continuous.

Proposition 3.11 (Pasting lemma). Let X = A ∪ B, where both A and B are
closed sets of X. Let f : A → Y and g : B → Y be two continuous functions. If
f(x) = g(x) for every x ∈ A ∩B, then the function

h : X → Y, h(x) =

{
f(x) if x ∈ A,

g(x) if x ∈ B

is well-defined and continuous on X.

Proof. We can prove the continuity of h by showing that the preimage of every
closed set in Y is closed. So let C ⊆ Y be closed. We have

h−1(C) =
{
x ∈ X

∣∣ h(x) ∈ C
}

=
{
x ∈ A

∣∣ f(x) ∈ C
}
∪
{
x ∈ B

∣∣ g(x) ∈ C
}

= f−1(C) ∪ g−1(C).

Now f is continous, and so f−1(C) is closed in the subspace topology on A; but
because A is itself closed in X, this means that f−1(C) is also closed in X. The
same goes for g−1(C), and so h−1(C) is a closed set. �

Example 3.12. Let us consider the example of a product X × Y of two topological
spaces (with the product topology). Denote by

p1 : X × Y → X and p2 : X × Y → Y

the projections to the two coordinates, defined by p1(x, y) = x and p2(x, y) = y.
Then both p1 and p2 are continuous. This is easy to see: for instance, if U ⊆ X is
an open subset, then p−1(U) = U×Y is open by definition of the product topology.
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Proposition 3.13. A function f : Z → X ×Y is continuous if and only if the two
coordinate functions

f1 = p1 ◦ f : Z → X and f2 = p2 ◦ f : Z → Y

are continuous.

Proof. One direction is easy: if f is continous, then f1 and f2 are compositions of
continous functions, hence continuous. For the other direction, we use the defini-
tion. A basis for the product topology is given by sets of the form U × V , with
U ⊆ X and V ⊆ Y both open. Then

f−1(U × V ) =
{
z ∈ Z

∣∣ f1(z) ∈ U and f2(z) ∈ V
}

= f−1
1 (U) ∩ f−1

2 (V )

is the intersection of two open sets, hence open. �
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Lecture 4: September 6

Homeomorphisms. As I mentioned in the first lecture, the purpose of topology
is to look at qualitative properties of geometric objects that do not depend on the
exact shape of an object, but more on how the object is put together. We formalized
this idea by definiting topological spaces; but what does it mean to say that two
different topological spaces (such as a circle and a square) are really “the same”?

Definition 4.1. Let f : X → Y be a bijective function between topological spaces.
If both f and the inverse function f−1 : Y → X are continuous, then f is called a
homeomorphism, and X and Y are said to be homeomorphic.

Intuitively, think of X as being made from some elastic material (like a balloon),
and think of stretching, bending, or otherwise changing the shape of X without
tearing the material. Any Y that you get in this way will be homeomorphic to the
original X. Note that the actual definition is both more precise and more general,
since we are allowing arbitrary functions.

Suppose that f : X → Y is a homeomorphism. For each open set U ⊆ X, we
are assuming that its inverse image under f−1 : Y → X is open in X; but because
f is bijective, this is the same as the image of U under f . In other words, a
homeomorphism is a bijective function f : X → Y such that f(U) is open if and
only if U is open. We therefore get a bijective correspondence not only between
the points of X and Y , but also between the open sets in both topologies. So any
question about the topology of X or Y will have the same answer on both sides; we
may therefore think of X and Y as being essentially the same topological space.

Example 4.2. The real numbers R are homeomorphic to the open interval (0, 1).
One possible choice of homeomorphism is the function

f : R→ (0, 1), f(x) =
ex

ex + 1

Both f and the inverse function f−1(y) = log(y)− log(1− y) are continuous.

Example 4.3. Consider the function

f : [0, 1)→ S1, f(t) = (cos t, sin t)

that takes the interval (with the subspace topology from R) to the unit circle
(with the subspace topology from R2). It is bijective and continuous, but not a
homeomorphism: [0, 1/2) is open in [0, 1), but its image is not open in S1.

Example 4.4. Let us classify the letters of the English alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

up to homeomorphism. Here we think of each letter as being made from line
segments in R2; the topology is the subspace topology. By inspection, there are
eight homeomorphism classes, depending on the number of loops and line segments
in each letter:

B A R P Q D O C G I J L M N S U V W Z E F T Y H K X

For example, W can be bent to make I, and so the two are homeomorphic. On the
other hand, there is no homeomorphism between T and I: if we remove the crossing
point, we are left with three intervals in the case of T, but removing one point from
I produces at most two intervals. (Think about how one can say this in terms of
the topology on each letter.)
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Topological manifolds. In the remainder of today’s class, I want to introduce
three additional examples of topological spaces. The first one is topological mani-
folds. A manifold is a space X that “locally” looks like Euclidean space: if you sit
at any point of X, and only look at points nearby, you may think that you are in
Rn. Here is the precise definition.

Definition 4.5. An n-dimensional topological manifold is a Hausdorff topological
space X with the following property: every point x ∈ X has a neighborhood that
is homeomorphic to an open subset in Rn.

In geometry, people look at other classes of manifolds that are obtained by
working with a smaller class of functions. For example, if a function and its inverse
function are both differentiable, it is called a diffeomorphism; differentiable man-
ifolds are defined by replacing “homeomorphic” by “diffeomorphic” in the above
definition. In algebraic geometry, there is a similar definition with polynomials.

At this point, somebody asked why we need the Hausdorff condition; the answer
is that we do not want to allow something like taking two copies of R and gluing
them together along R \ {0}. (More about this example later on, when we discuss
quotient spaces.) Later in the semester, we will show that an open subset in Rn
can never be homeomorphic to an open subset in Rm for m 6= n; this means that
the dimension of a manifold really is a well-defined notion.

Example 4.6. The square and the circle are both one-dimensional manifolds; a
homeomorphism between them is given by drawing the square inside the circle and
projecting one to the other from their common center.

Example 4.7. The n-sphere

Sn =
{

(x0, x1, . . . , xn) ∈ Rn+1
∣∣ x2

0 + x2
1 + · · ·+ x2

n = 1
}
,

with the subspace topology coming from Rn+1, is an n-dimensional manifold. Intu-
itively, this is clear; let me prove it for n = 2 by using stereographic projection. The
plane z = −1 is tangent to the sphere at the south pole; given any point (x, y, z)
not equal to the north pole (0, 0, 1), we can see where the line connecting (0, 0, 1)
and (x, y, z) intersects the plane z = −1. In this way, we get a bijection

f : S2 \ {(0, 0, 1)} → R2.

It is easy to work out the formulas to see that f and its inverse are continuous.
The points on the line are parametrized by (0, 0, 1) + t(x, y, z − 1), with t ∈ R; the
intersection point with the plane has

1 + t(z − 1) = −1 or t =
2

1− z
,

which means that

f(x, y, z) =

(
2x

1− z
,

2y

1− z

)
.

One can show in a similar manner that f−1 is continuous. Since we can also do
stereographic projection from the south pole, every point of S2 has a neighborhood
that is homeomorphic to R2.

Example 4.8. The implicit function theorem from analysis gives us one way to define
manifolds. Suppose that f : R2 → R is a continuously differentiable function. The
implicit function theorem says that if f(x0, y0) = 0, and if the partial derivative
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∂f/∂y does not vanish at the point (x0, y0), then all nearby solutions of the equation
f(x, y) = 0 are of the form

y = ϕ(x)

for a continously differentiable function ϕ : (x0 − ε, x0 + ε) → R with ϕ(x0) = y0.
This function ϕ gives us a homeomorphism between a small neighborhood of the
point (x0, y0) in the set f−1(0) and an open interval in R. This shows that f−1(0) is
a one-dimensional manifold, provided that at least one of the two partial derivatives
∂f/∂x or ∂f/∂y is nonzero at every point of f−1(0).

Example 4.9. If M1 and M2 are manifolds of dimension n1 and n2, respectively,
then their product M1×M2 (with the product topology) is a manifold of dimension
n1 + n2. The proof is left as an exercise. For instance, the product S1 × S1 is a
two-dimensional manifold called the torus.

An important general problem is to classify manifolds (or more general topolog-
ical spaces) up to homeomorphism. In general, this is only possible if we impose
sufficiently many other conditions (such as connectedness or compactness) to limit
the class of topological spaces we are looking at. We will come back to this problem
later in the semester.

Quotient spaces and the quotient topology. In geometry, it is common to
describe spaces by “cut-and-paste” constructions like the following.

Example 4.10. If we start from the unit square and paste opposite edges (with the
same orientation), we get the torus. If we start from the closed unit disk in R2

and collapse the entire boundary into a point, we obtain S2. To make a Möbius
band, we take a strip of paper, twist one end by 180◦, and then glue the two ends
together. We can make a torus with two holes by taking two copies of the torus,
removing a small disk from each, and then pasting them together along the two
boundary circles.

In each of these cases, the result should again be a topological space. To formalize
this type of construction, we start with a topological space X and an equivalence
relation ∼ on it; intuitively, ∼ tells us which points of X should be glued together.
(Recall that an equivalence relation is the same thing as a partition of X into
disjoint subsets, namely the equivalence classes; two points are equivalent if and
only if they are in the same equivalence class.) What we want to do is to build a
new topological space in which each equivalence class becomes just one point. To
do this, we let X/∼ be the set of equivalence classes; there is an obvious function

p : X → X/∼,

which takes a point x ∈ X to the equivalence class containing x. Now there is a
natural way to make X/∼ into a topological space.

Proposition 4.11. The collection of sets

T =
{
U ⊆ X/∼

∣∣ p−1(U) is open in X
}

defines a topology on X/∼, called the quotient topology.

Proof. We have to check that the three conditions in the definition of topology are
satisfied. First, p−1(∅) = ∅ and p−1(X/∼) = X, and so both ∅ and X/∼ belong
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to T . The conditions about unions and intersections follow from the set-theoretic
formulas

p−1

(⋃
i∈I

Ui

)
=
⋃
i∈I

p−1(Ui) and p−1(U ∩ V ) = p−1(U) ∩ p−1(V )

and the definition of T . �

With this definition, p becomes a continuous function. In fact, the quotient
topology is the largest topology with the property that p is continous. Even when
X is Hausdorff, the quotient X/∼ is not necessarily Hausdorff.

Example 4.12. Let us go back to the example of the line with two origins, made by
gluing together two copies of R along R \ {0}. Here we can take X = {0, 1} × R,
and define the equivalence relation so that (0, t) ∼ (1, t) for every t 6= 0. Most
equivalence classes have two points, namely {(0, t), (1, t)} with t 6= 0, except for
{(0, 0)} and {(1, 0)}. The quotient space X/∼ is not Hausdorff (because the two
equivalence classes {(0, 0)} and {(1, 0)} cannot be separated by open sets), but
every point has a neighborhood homeomorphic to R.

In fact, it is an interesting problem of finding conditions on X and ∼ that will
guarantee that X/∼ is Hausdorff. This does happen in real life: I work in algebraic
geometry, but in one of my papers, I had to spend about a page on proving that a
certain quotient space was again Hausdorff.

The most useful property of the quotient topology is the following.

Theorem 4.13. Let f : X → Y be a continous function that is constant on equiva-
lence classes: whenever x1 ∼ x2, one has f(x1) = f(x2). Then f induces a function

f̃ : X/∼→ Y , which is continuous for the quotient topology on X/∼.

Proof. The proof is left as an exercise. �

Product spaces and the product topology. We have already seen that the
product of two topological spaces is again a topological space. Now we want to deal
with the general case where we allow an arbitrary (and possibly infinite) number of
factors. So let (Xi,Ti) be a collection of topological spaces, indexed by a (possibly
infinite) set I. Consider the cartesian product

X =
∏
i∈I

Xi =
{

(xi)i∈I
∣∣ xi ∈ Xi for every i ∈ I

}
,

whose elements are all (generally infinite) families of elements xi ∈ Xi, one for each
i ∈ I. It is not completely obvious that X has any elements at all – at least, this
does not follow from the usual axioms of set theory. In addition to the Zermelo-
Fraenkel axioms, one needs the so-called axiom of choice, which says that if Xi 6= ∅
for every i ∈ I, then X 6= ∅.

Note. The axiom of choice claims that one can simultaneously choose one element
from each of a possibly infinite number of nonempty sets. The problem is that we
cannot just “choose” the elements arbitrarily, because we do not have enough time
to make infinitely many choices. This axiom may seem very natural, but it has a
large number of strange consequences. For example, you may have heard of the
Banach-Tarski paradox: the axiom of choice implies that one can divide the three-
dimensional unit ball into finitely many pieces, and then put them back together
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in a different way and end up with a ball of twice the radius. This kind of thing
lead to many arguments about the validity of the axiom, until it was proved that
the axiom of choice is logically independent from the other axioms of set theory.
Nowadays, most people assume the axiom of choice since it makes it easier to prove
interesting theorems.

We want to make X into a topological space. There are two different ways of
generalizing the definition from the case of two factors.

Definition 4.14. The box topology on X is the topology generated by the basis{∏
i∈I

Ui

∣∣∣∣ Ui ∈ Ti for every i ∈ I
}
.

It is not hard to see that this is indeed a basis for a topology: it contains X, and
since (∏

i∈I
Ui

)
∩

(∏
i∈I

Vi

)
=
∏
i∈I

Ui ∩ Vi,

the intersection of any two basic open sets is again a basic open set. It it clear from
the definition that the coordinate functions

pj : X → Xj , pj ((xi)i∈I) = xi

are continuous functions. The box topology is a perfectly good topology on X, but
when I is infinite, it has a very large number of open sets, which leads to certain
pathologies. (For example, it usually does not satisfy the first or second countability
axiom.)

We can get a better topology by putting some finiteness into the definition.

Definition 4.15. The product topology on X is the topology generated by the basis{∏
i∈I

Ui

∣∣∣∣ Ui ∈ Ti for every i ∈ I, and Ui = Xi for all but finitely many i ∈ I
}
.

The difference with the box topology is that we are now allowed to specify only
finitely many coordinates in each basic open set. The idea behind the product
topology is that every set of the form p−1

j (U) should be open (since we want pj
to be continuous), and that finite intersections of open sets need to be open (since
we want to have a topology). In fact, one can show that the product topology is
the smallest topology on X that makes all the coordinate functions pj : X → Xj

continous.

Theorem 4.16. If we give X the product topology, then a function f : Y → X is
continuous if and only if fi = pi ◦ f : Y → Xi is continous for every i ∈ I.

Proof. The proof is the same as in the case of two factors. �

This nice result fails for the box topology. For that reason, we almost always use
the product topology when talking about infinite products of topological spaces.

Example 4.17. Let X be the product of countably many copies of R, indexed by
the set {1, 2, . . . }. The function

f : R→ X, f(t) = (t, t, . . . )
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is not continuous for the box topology, because

f−1

( ∞∏
n=1

(
− 1

n
,

1

n

))
= {0}

is not open in R.

Next time, we will talk about connectedness, §23 to §25 in the textbook.
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Lecture 5: September 8

Now that we have seen several examples of topological spaces, it is time to begin
our study of topology. The definition of a topological space is very broad, and
there is not much that one can say in general. Instead, topologists focus on certain
additional properties of topological spaces and try to prove interesting results about
spaces that have those properties.

The first two important properties that we are going to consider are connect-
edness and compactness. In a sense, they are generalizations of two important
results from calculus, namely the intermediate value theorem and the maximum
value theorem. Both have to do with a continuous function f : [a, b] → R defined
on a closed interval [a, b] ⊆ R. The intermediate value theorem says that f takes on
every value that lies between the values at the two endpoints: for every r between
f(a) and f(b), there is some x ∈ [a, b] with f(x) = r. The maximum value theorem
says that f has a maximum value: there is some x0 ∈ [a, b] such that f(x0) ≥ f(x)
for every x ∈ [a, b]. In calculus, these results are usually viewed as properties of
continuous functions; but they also reflect two properties of closed intervals in R,
namely connectedness and compactness.

Connectedness. Let X be a topological space. A pair of open sets U, V ⊆ X with
U ∪ V = X and U ∩ V = ∅ is called a separation of X, because it separates the
points of X into two groups that have nothing to do with each other. Note that
U = X \ V is both open and closed; a separation of X is therefore the same thing
as a subset U ⊆ X that is open and closed and not equal to ∅ or X.

Definition 5.1. A topological space X is called connected if it has no separation.

Equivalently, X is connected if the only subsets that are both open and closed
are ∅ and X itself. Connectedness depends only on the topology of X; if two
topological spaces are homeomorphic, then they are either both connected or both
not connected.

Example 5.2. The three-point space {a, b, c} with the topology{
∅, {a}, {b}, {a, b}, {a, b, c}

}
is connected, because {a, b, c} is the only open set containing the point c.

Example 5.3. The space R\{0} is not connected, because (−∞, 0) and (0,∞) form
a separation.

Example 5.4. The rational numbers Q (with the subspace topology coming from
R) are not connected. In fact, the only connected subspaces of Q are the points,
and so Q is what is called totally disconnected. To see why, suppose that X ⊆ Q
contains at least two points a < b. Let c be an irrational number with a < c < b;
then X ∩ (−∞, c) and X ∩ (c,∞) form a separation of X.

Example 5.5. The Cantor set is also totally disconnected.

The real numbers R are an important example of a connected topological space.
This is the content of the following theorem.

Theorem 5.6. R is connected.
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Proof. The argument we are going to give depends on the following important
property of real numbers: If a set of real numbers A ⊆ R is bounded from above,
then there is a well-defined least upper bound supA. By definition, supA is the
smallest real number with the property that x ≤ supA for every x ∈ A.

Now let us assume that R is not connected and derive a contradiction. Let
R = A ∪ B be a separation, and choose a point a ∈ A and b ∈ B; without loss of
generality, we may suppose that a < b. Now we will find a point s in the interval
[a, b] where A and B touch each other, and get a contradiction by studying what
happens at that point. Using the least upper bound property, define

s = sup
(
A ∩ [a, b]

)
.

Since R = A ∪ B, the point s should lie either in A or in B, but we will see in a
moment that neither s ∈ A nor s ∈ B can be true.

Let us first consider the case s ∈ A. Then s < b, because b ∈ B; now A is open,
and so it has to contain an open interval of the form (a1, a2) with a1 < s < a2 < b.
This contradicts the fact that s is an upper bound for the set A ∩ [a, b].

The other possibility is that s ∈ B. Here a < s, because a ∈ A; now B is open,
and so it has to contain an open interval of the form (b1, b2) with a < b1 < s < b2.
Now any x ∈ A ∩ [a, b] satisfies x ≤ s, and therefore s < b1. This shows that b1 is
also an upper bound for the set A ∩ [a, b], contradicting the fact that s is the least
upper bound. �

The same proof shows that any interval (closed or open) and any half-interval
(closed or open) is also connected. Note that the argument breaks down for Q
precisely because the rational numbers do not have the least upper bound property.

General results about connectedness. We will now establish a few general
results about connected spaces. They all agree with our intuition of what connect-
edness should mean. The following simple lemma will be a useful tool.

Lemma 5.7. Let X = C ∪D be a separation of a topological space. If Y ⊆ X is a
connected subspace, then Y ⊆ C or Y ⊆ D.

Proof. We have Y = (Y ∩ C) ∪ (Y ∩ D), and both sets are open in the subspace
topology and disjoint. Since Y is connected, one of them must be empty; but then
we either have Y = Y ∩ C, which means that Y ⊆ C; or Y = Y ∩D, which means
that Y ⊆ D. �

The first result is that if we join together any number of connected subspaces at
a common point, the result is again connected.

Proposition 5.8. Let {Yi}i∈I be a collection of connected subspaces of a topological
space X. If the intersection

⋂
i∈I Yi is nonempty, then the union Y =

⋃
i∈I Yi is

again connected.

Proof. We argue by contradiction. Suppose that Y = C ∪ D was a separation.
Choose a point x ∈

⋂
i∈I Yi; without loss of generality x ∈ C. Since each Yi is

connected, and since Yi and C have the point x in common, Lemma 5.7 tells us
that Yi ⊆ C. This being true for every i ∈ I, we get Y ⊆ C, which contradicts the
fact that D is nonempty. �

Similarly, the closure of a connected subspace is again connected.
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Proposition 5.9. Let Y be a connected subspace of a topological space X. If
Y ⊆ Z ⊆ Y , then Z is again connected.

Proof. Suppose that there was a separation Z = C ∪ D. By Lemma 5.7, the
connected subspace Y has to lie entirely in one of the two sets; without loss of
generality, we may assume that Y ⊆ C. Now C = Z ∩ A for some closed set
A ⊆ X, because C is closed in the subspace topology of Z. Since Y ⊆ A, we
also have Z ⊆ Y ⊆ A, and therefore Z = C. This contradicts the fact that D is
nonempty. �

The most interesting result is that the image of a connected space under a
continuous function is again connected.

Theorem 5.10. Let f : X → Y be a continous function. If X is connected, then
the image f(X) is also connected.

Proof. Suppose that there was a separation f(X) = C ∪D. Then C is a nonempty
open subset of f(X), and because f is continuous, f−1(C) is a nonempty open
subset of X; the same is true for f−1(D). But then

X = f−1(C) ∪ f−1(D)

is a separation of X, contradicting the fact that X is connected. �

One can show quite easily (see Exercise 10 in §23) that an arbitrary product
of connected spaces is connected in the product topology. The following example
shows that this is not true for the box topology.

Example 5.11. Let X = RN be the set of all infinite sequences x0, x1, . . . , in the box
topology. Let B be the set of all bounded sequences, and U the set of all unbounded
sequences. I claim that X = B ∪ U is a separation. B and U are clearly disjoint
and nonempty; they are also open in the box topology. Indeed, if x0, x1, . . . ∈ B is
a bounded sequence, then

(x0 − 1, x0 + 1)× (x1 − 1, x1 + 1)× · · ·

is an open set contained in B; if x0, x1, . . . ∈ U is unbounded, then the same set is
contained in U .

Since we began our discussion of connectedness by talking about the intermedi-
ate value theorem in calculus, let us now prove a version for arbitrary connected
topological spaces.

Theorem 5.12 (Intermediate value theorem). Let f : X → Y be a continuous
function from a connected space X to a linearly ordered set (Y,<) in the order
topology. If a, b ∈ X, and if r ∈ Y is any element lying between f(a) and f(b), then
there is a point x ∈ X with f(x) = r.

Proof. We know from Theorem 5.10 that f(X) is a connected subspace of Y . Now
consider the two open sets f(X) ∩ (−∞, r) and f(X) ∩ (r,∞). They are obviously
disjoint, and since r lies between f(a) and f(b), both are nonempty. If r 6∈ f(X),
then we would get a separation of f(X), which is not possible because f(X) is
connected. The conclusion is that there is a point x ∈ X with f(x) = r. �
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The usual intermediate value theorem is of course the special case when X is
a closed interval in R, and Y = R. By splitting up the proof into two parts –
closed intervals in R are connected; connected spaces satisfy the intermediate value
theorem – we get a better understanding of this calculus theorem, too.

Paths and path connectedness. We defined connectedness in a negative way,
by saying that a space is connected if it cannot be separated into two disjoint
chunks. There is another possible definition, namely that it should be possible to
go from any point to any other point. This leads to another notion called “path
connectedness”. Let X be a topological space. A path from a point x ∈ X to a
point y ∈ X is simply a continuous function f : [a, b]→ X from a closed interval in
R to the space X, such that f(a) = x and f(b) = y.

Definition 5.13. We say that X is path connected if any two points in X can be
joined by a path in X.

The advantage of this definition is that it is more intuitive. The disadvantage is
that for many topological spaces, every continuous map from a closed interval in R
is constant; this limits the usefulness of the definition in terms of paths. We will
see later that the two definitions are equivalent when X is sufficiently nice; but in
general, we only have the following implication.

Proposition 5.14. If X is path connected, then it is connected.

Proof. Suppose that there was a separation X = C ∪D. Since closed intervals in R
are connected, the image of any path is a connected subspace of X by Theorem 5.10;
according to Lemma 5.7, it has to be contained entirely inside C or entirely inside
D. This means that there are no paths connecting C and D, contradicting the path
connectedness of X. �

Example 5.15. Let n ≥ 2, and consider Rn with the origin removed. This space is
path connected: any two points on the unit sphere Sn−1 can be joined by a path
going along a great circle; and any point of Rn \ {0} can be joined to a point on
Sn−1 by a radial path. In particular, the space is connected.

Example 5.16. The rational numbers Q are not path connected. Since they are
not even connected, this follows from the proposition; but one can also prove it
directly by showing that any continuous function from a closed interval to Q must
be constant.

Example 5.17. Here is an example of a topological space that is connected but not
path connected. Let

S =
{

(x, sin(1/x) ∈ R2
∣∣ x > 0

}
denote the graph of the function sin(1/x). Being the continuous image of the
connected space (0,∞), it is connected; therefore its closure

S = S ∪
{

(0, y) ∈ R2
∣∣ − 1 ≤ y ≤ 1

}
is also connected. It is known as the topologist’s sine curve. I claim that S is not
path connected. To see why, suppose there was a path connecting the point (0, 0)
to a point in S. Because S is open in S, we can assume without loss of generality
that the path is of the form

f : [0, 1]→ S
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with f(0) ∈ S \ S and f(t) ∈ S for t > 0. If we write f(t) =
(
x(t), y(t)

)
, then

the coordinate functions x and y are continuous; we also have x(t) > 0 and y(t) =
sin
(
1/x(t)

)
for t > 0, and x(0) = 0. But now the fact that sin(1/x) oscillates wildly

leads to a contradiction: we can find a sequence of positive real numbers tn → 0
with y(tn) = (−1)n, whereas y was supposed to be continuous. To construct such
a sequence, we first choose for every n = 1, 2, . . . a real number 0 < xn < x(1/n)
such that sin(1/xn) = (−1)n. Because x(0) = 0, we can then use the intermediate
value theorem to find some point 0 < tn < 1/n with x(tn) = xn.
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Lecture 6: September 13

Connected components. If a topological space X is not connected, it makes
sense to investigate the maximal connected subspaces it contains. Given a point
x ∈ X, we define

C(x) =
⋃{

C ⊆ X
∣∣ C is connected and x ∈ C

}
as the union of all connected subspaces of X that contain the point x.

Proposition 6.1. These sets have the following properties:

(a) Each subspace C(x) is connected and closed.
(b) If x, y ∈ X, then C(x) and C(y) are either equal or disjoint.
(c) Every nonempty connected subspace of X is contained in a unique C(x).

Proof. C(x) is a union of connected subspaces that all contain the point x, and
therefore connected by Proposition 5.8. Now Proposition 5.9 shows that the closure
C(x) is also connected; since it contains x, it must be contained in C(x), and
therefore equal to C(x). This proves (a).

To prove (b), suppose that C(x) and C(y) are not disjoint. Take any z ∈
C(x) ∩ C(y). We shall argue that C(x) = C(z); by symmetry, this will imply that
C(x) = C(z) = C(y). We have z ∈ C(x), and since C(x) is connected, we get
C(x) ⊆ C(z). Hence x ∈ C(z), and for the same reason, C(z) ⊆ C(x).

To prove (c), let Y ⊆ X be nonempty connected subspace. Choose a point
x ∈ Y ; then Y ⊆ C(x) by construction. Uniqueness follows from (b). �

The set C(x) is called the connected component of x; the proposition shows that
it is the maximal connected subspace of X containing the point x. Since any two
connected components of X are either equal or disjoint, we get a partition of the
space X into maximal connected subsets.

Example 6.2. The connected components of a space are always closed, but not
necessarily open. In the case of Q, the connected component of x ∈ Q is {x},
because no subspace with two or more points is connected. So the connected
components of X do not give us a separation of X in general.

Example 6.3. If X has only finitely many connected components, then each con-
nected component is open (being the complement of a finite union of closed sets).

There is a similar definition for path connectedness: given a point x ∈ X, we set

P (x) =
⋃{

P ⊆ X
∣∣ P is path connected and x ∈ P

}
=
{
y ∈ X

∣∣ x and y can be joined by a path in X
}
,

and call it the path component of x. The following result can be proved in the same
way as Proposition 6.1.

Proposition 6.4. The path components of X have the following properties:

(a) Each subspace P (x) is path connected.
(b) If x, y ∈ X, then P (x) and P (y) are either equal or disjoint.
(c) Every nonempty path connected subspace of X is contained in a unique

P (x).

Since P (x) is connected by Proposition 5.14, it is contained in C(x); but the two
need not be equal.
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Example 6.5. The topologist’s sine curve is connected, but it has two path compo-
nents.

Path connectedness and connectedness. I mentioned last time that in suffi-
ciently nice topological spaces (such as open subsets of Rn) connectedness and path
connectedness are equivalent. The point is that Rn contains lots and lots of paths,
whereas a random topological space may not contain any nonconstant path at all.
This suggests looking at spaces where at least any two nearby points can be joined
by a path.

Definition 6.6. A topological space X is locally path connected if for every point
x ∈ X and every open set U containing x, there is a path connected open set V
with x ∈ V and V ⊆ U .

Open balls in Rn are obviously path connected. Consequently, every open set in
Rn is locally path connected; more generally, every topological manifold is locally
path connected. Note that in order to be locally path connected, every point
needs to have arbitrarily small path connected neighborhoods. Note that a path
connected space may not be locally path connected: we can get an example by
taking the topologist’s sine curve{

(0, y)
∣∣ − 1 ≤ y ≤ 1

}
∪
{

(x, sin 1/x)
∣∣ 0 < x ≤ 1

}
⊆ R2

and joining the two points (0, 1) and (1, sin 1) by a path that is disjoint from the rest
of the set. The resulting space is path connected, but not locally path connected
at any point of the form (0, y) with −1 ≤ y ≤ 1.

Proposition 6.7. Let X be a locally path connected topological space. Then P (x)
is open, and P (x) = C(x) for every x ∈ X. In particular, the connected components
of X are open.

Proof. You will remember a similar result from one of last week’s homework prob-
lems. We first prove that P (x) is open for every x ∈ X. Since X is locally path
connected, there is a path connected neighborhood U of x; we have U ⊆ P (x), be-
cause P (x) is the union of all path connected subspaces containing x. If y ∈ P (x)
is any point, then P (y) = P (x), and so P (x) also contains a neighborhood of y,
proving that P (x) is open.

Next, we show that P (x) = C(x). The union of all the other path components
of X is open, and so their complement P (x) must be closed. Now P (x) ⊆ C(x) is a
nonempty subset that is both open and closed; because C(x) is connected, it must
be that P (x) = C(x). �

The last step in the proof is a typical application of connectedness: to prove that
a nonempty subset Y of a connected space X is equal to X, it is enough to show
that Y is both open and closed.

Compactness. The second important property of closed intervals in R is compact-
ness. Perhaps you know the definition that is used in analysis: a subset A ⊆ Rn
is called compact if every sequence in A has a convergent subsequence. As with
closed sets, definitions involving sequences are not suitable for general topological
spaces. We therefore adopt the following definition in terms of open coverings.
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Definition 6.8. An open covering of a topological space X is a collection U of
open subsets with the property that

X =
⋃
U∈U

U.

We say that X is compact if, for every open covering U , there are finitely many
open sets U1, . . . , Un ∈ U such that X = U1 ∪ · · · ∪ Un.

Compactness is a very important finiteness property of the topology on a space.
In fact, every topological space with only finitely many points is trivially compact;
in a sense, compact spaces are thus a generalization of finite topological spaces.

Note that compactness is a topological property: if X is compact, then any space
homeomorphic to X is also compact. You should convince yourself that when the
topology of X is given in terms of a basis, it suffices to check the condition for open
coverings by basic open sets.

Example 6.9. R is not compact: in the open covering

R =

∞⋃
n=1

(−n, n),

no finite number of subsets is enough to cover R.

Example 6.10. Q ∩ [0, 1] is also not compact. This is obvious using the analyst’s
definition in terms of sequences; here is one way of proving it with our definition.
We enumerate all the rational numbers between 0 and 1 in the form α1, α2, . . . , and
also choose an irrational number β ∈ [0, 1]. For every k, let Ik be the open interval
of length `k = 1

2 |αk − β| centered at the point αk. Obviously, the sets

Ik ∩Q ∩ [0, 1]

form an open covering of Q ∩ [0, 1]; I claim that no finite number of sets can cover
everything. Otherwise, there would be some integer n ≥ 1 such that every rational
number between 0 and 1 lies in I1 ∪ · · · ∪ In. But then the open interval of length

min
1≤k≤n

`k

centered at β would not contain any rational number, which is absurd.

These examples illustrate an important point: it is usually pretty easy to show
that a space is not compact, because all we have to do is find one offending open
covering. On the other hand, it can be quite hard to show that a space is compact,
because we need to consider all possible open coverings.

Example 6.11. The closed unit interval [0, 1] is compact; we will prove this next
time.

General properties of compactness. The following lemma is an easy conse-
quence of the definitions (of compactness and of the subspace topology).

Lemma 6.12. Let X be a topological space, and let Y ⊆ X be a subspace. The
following two conditions are equivalent:

(a) Y is compact (in the subspace topology).
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(b) Whenever U is a collection of open sets in X with

Y ⊆
⋃
U∈U

U,

there are finitely many sets U1, . . . , Un ∈ U with Y ⊆ U1 ∪ · · · ∪ Un.

We can use this lemma to prove some general properties of compact spaces.

Proposition 6.13. Every closed subspace of a compact space is compact.

Proof. Let X be compact and Y ⊆ X closed. Given an open covering U of Y , we
get an open covering of X by throwing in the open subset U0 = X \ Y . Since X
is compact, there are finitely many sets U1, . . . , Un ∈ U such that X = U0 ∪ U1 ∪
· · · ∪ Un. But then Y ⊆ U1 ∪ · · · ∪ Un, proving that Y is compact. �

Proposition 6.14. If X is compact and f : X → Y is continuous, then f(X) is
again compact.

Proof. Let U be an arbitrary open covering of f(X). Then{
f−1(U)

∣∣ U ∈ U
}

is a collection of open sets that cover X; because X is compact, there must be
finitely many sets U1, . . . , Un ∈ U with

X = f−1(U1) ∪ · · · ∪ f−1(Un).

Since U1, . . . , Un ⊆ f(X), we now get f(X) = U1 ∪ · · · ∪ Un, proving that f(X) is
also compact. �
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Lecture 7: September 15

Closed sets and compact sets. Last time, we defined compactness in terms of
open coverings: a topological space X is compact if, for every open covering U ,
there are finitely many open sets U1, . . . , Un ∈ U such that X = U1 ∪ · · · ∪ Un.
To prove that a given space is not compact is usually not difficult: we just have to
find one open covering that violates the condition in the definition. To prove that
a given space is compact can be quite difficult: we have to verify the condition for
all possible open coverings. (This task becomes a little easier when the topology
on X is given by a basis, because we only need to consider coverings by basic
open subsets.) Since compactness is a strong requirement, compact spaces have a
lot of wonderful properties. The following theorem about continuous functions on
compact spaces shows this effect at work.

Theorem 7.1. Let f : X → Y be a continous function. If X is compact and Y is
Hausdorff, then the image f(X) is closed.

Recall from last time that the image of a compact space under a continuous
function is again compact; this was an easy consequence of the definitions. The-
orem 7.1 requires a little bit more work to prove. Let me first note the following
surprising corollary.

Corollary 7.2. Let f : X → Y be a bijective continous function. If X is compact
and Y is Hausdorff, then f is a homeomorphism.

Proof. Let us see how this follows from Theorem 7.1. We have to prove is that
the inverse function f−1 : Y → X is continous; this is equivalent to saying that the
preimage of every closed set A ⊆ X is closed in Y . The preimage of A under f−1 is
exactly f(A), and so we need to argue that f(A) is closed. As a closed subset of a
compact space, A is compact (Proposition 6.13); therefore its image f(A) is again
compact by Proposition 6.14. Since Y is Hausdorff, Theorem 7.1 implies that f(A)
is closed. �

Now let us start proving the theorem. By Proposition 6.14, the image f(X) is
a compact subspace of the Hausdorff space Y . The following proposition explains
why f(X) must be closed.

Proposition 7.3. Let X be a Hausdorff topological space. If Y ⊆ X is a compact
subspace, then Y is closed in X.

Proof. We shall argue that X \ Y is a union of open sets, and hence open. Fix a
point x ∈ X \Y . For any y ∈ Y , we can find disjoint open sets U(y) and V (y) with
x ∈ U and y ∈ V ; this is because X is Hausdorff. Therefore

Y ⊆
⋃
y∈C

V (y),

and because Y is compact, there are finitely many points y1, . . . , yn ∈ Y with
Y ⊆ V (y1) ∪ · · · ∪ V (yn). But then the open set

U(y1) ∩ · · · ∩ U(yn)

is disjoint from V (y1) ∪ · · · ∪ V (yn), hence contained in X \ Y ; because it is a
neighborhood of x, and because x ∈ X \ Y was arbitrary, X \ Y must be open. �
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Note that this result is false when X is not Hausdorff; a simple example is given
by the Sierpiński space. More generally, let X be any finite topological space; then
all compact subsets of X are closed if and only if the topology on X is discrete if
and only if X is Hausdorff.

Note. The proof of Proposition 7.3 shows that we can separate points and compact
subspaces in a Hausdorff space by open sets. More precisely, given a compact
subspace Y ⊆ X and a point x 6∈ Y , there are disjoint open sets U and V with
x ∈ U and Y ⊆ V – in the notation used during the proof,

U = U(y1) ∩ · · · ∩ U(yn) and V = V (y1) ∪ · · · ∪ V (yn).

If X is both compact and Hausdorff, so that every closed subspace is compact, we
can even separate points and arbitrary closed subspaces by open sets. We shall
investigate results of this type in more detail later.

Examples of compact spaces. Let us now look at a few topological spaces that
are compact. The first example is closed intervals in R. You probably already know
that closed intervals are “compact” in the analysis sense – every sequence has a
convergent subsequence – but we need to do some work to prove that they are also
compact in the topology sense.

Theorem 7.4. The closed interval [0, 1] is compact.

Proof. Let U be an open covering; we have to show that the interval can be covered
by finitely many open sets in U . The idea of the proof is very simple: 0 belongs
to some open set U1 ∈ U , which contains some interval of the form [0, a); then a
belongs to some open set U2 ∈ U , which again contains a maximal interval [a, b);
and so on. Of course, the situation could be like in one of Zeno’s paradoxes, with the
points a, b, . . . converging to some limit inside the interval. To avoid this problem,
we have to take a slightly less direct approach. Let us introduce the set

S =
{
x ∈ [0, 1]

∣∣ [0, x] can be covered by finitely many open sets in U
}
.

We want to show that 1 ∈ S, because this will mean that [0, 1] can be covered
by finitely many sets in U . Using the least upper bound property of R, define
s = supS. Now the argument proceeds in three steps:

Step 1. Every point t with 0 ≤ t < s has to belong to S. Suppose that we had
t 6∈ S. Then every point x ∈ S has to satisfy x < t: the reason is that [0, x] can
be covered by finitely many open sets in U , and if t ≤ x, then the same open sets
would cover [0, t]. This means that t is an upper bound for S, contradicting our
choice of s. Consequently, we have [0, s) ⊆ S.

Step 2. We show s ∈ S. Since U is an open covering, there is an open set U ∈ U
with s ∈ U . If s = 0, this shows that s ∈ S. If s > 0, then U contains an interval of
the form (a, s] with 0 ≤ a < s. By Step 1, a ∈ S, and so [0, a] is covered by finitely
many open sets in U ; throwing in U , we get a finite open covering of [0, s].

Step 3. We prove that s = 1. Suppose that s < 1. We already know that [0, s]
is covered by finitely many open sets in U . Their union is a neighborhood of s,
and therefore contains an interval of the form [s, b) with s < b ≤ 1. Because U is
an open covering, b ∈ U for some U ∈ U ; but now we have finitely many open sets
covering [0, b], contradicting our choice of s. �

In fact, every closed interval of the form [a, b] is compact: this follows either by
adapting the above proof, or by noting that any (nontrivial) closed interval in R is
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homeomorphic to [0, 1]. In the proof, we only used the ordering of R and the least
upper bound property; for that reason, the theorem is true is any linearly ordered
set with the least upper bound property.

The next example is Rn and its subsets. If you are taking analysis, you may
already know that a subspace of Rn is compact if and only if it is closed and
bounded (in the Euclidean metric). Here bounded means that it is contained in a
ball BR(0) of some radius R. I want to explain why this result is also true with
our definition of compactness. The following general result about products will be
useful for the proof.

Proposition 7.5. If X and Y are compact, then X × Y is compact.

Proof. Recall that the product topology has a basis consisting of all open sets of
the form U × V , with U open in X and V open in Y . Let U be an open covering
of X × Y ; as I explained earlier, it suffices to consider the case that U consists of
basic open sets.

Step 1. Fix a point x ∈ X, and consider the vertical slice p−1
1 (x) = {x} × Y . It

is homeomorphic to Y , and therefore compact; one way of seeing this is to consider
the continuous function i : Y → X×Y , i(y) = (x, y), and to apply Proposition 6.14.
Since it is covered by the union of all the open sets in U , we can find finitely many
open sets U1 × V1, . . . , Un × Vn ∈ U such that p−1

1 (x) ⊆ U1 × V1 ∪ · · · ∪ Un × Vn.
Now define U(x) = U1∩ · · ·∩Un; then the entire set U(x)×Y is covered by finitely
many open sets in U .

Step 2. The collection of open sets U(x) from Step 1 is an open covering of X.
By compactness, there are finitely many points x1, . . . , xm ∈ X with

X = U(x1) ∪ · · · ∪ U(xm).

This means that

X × Y = U(x1)× Y ∪ · · · ∪ U(xm)× Y,
and because each these m sets is covered by finitely many sets in U , the same is
true for the product X × Y . �

More generally, any finite product of compact spaces is again compact; this can
easily be proved by induction on the number of factors. We will see later in the
semester that arbitrary products of compact spaces are compact (in the product
topology); this is an extremely powerful result, but the proof is not that easy.

Theorem 7.6. A subset A ⊆ Rn is compact if and only if it is closed and bounded.

Proof. Let us first check that every compact subset A ⊆ Rn is both closed and
bounded. As Rn is Hausdorff, Proposition 6.13 implies that A is closed. To prove
boundedness, observe that

A ⊆
∞⋃
n=1

Bn(0)

is an open covering; because A is compact, we must have A ⊆ Bn(0) for some n.
The really interesting part is the converse. Suppose that A ⊆ Rn is closed and

bounded. Choose some R > 0 with the property that A ⊆ BR(0); then also

A ⊆ [−R,R]n.
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We know from Theorem 7.4 that the closed interval [−R,R] is compact; the space
on the right-hand side is therefore compact by Proposition 7.5. Being a closed
subset of a compact space, A is therefore compact as well. �

What about more general metric spaces? The proof above shows that a compact
subset of a metric space must be closed and bounded; but the converse is not true
in general. (The homework for next week will ask you to find an example of a
subset in a metric space that is closed and bounded but not compact.) However,
just as with closed sets, it is still true that compactness in metric spaces can be
detected by sequences.

Theorem 7.7. For a metric space X, the following two properties are equivalent:

(a) X is a compact (in the metric topology).
(b) X is sequentially compact, meaning that every sequence in X has a conver-

gent subsequence.

You can find the proof in §28 of the book by Munkres; I decided not to present
this in class because it is more about choosing sequences and subsequences than
about general topology.

Next time, we will look at some other results about compact spaces, and at one-point
compactifications.
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Lecture 8: September 20

Baire’s theorem. Here is a cute problem. Suppose that f : (0,∞)→ R is a contin-
uous function with the property that the sequence of numbers f(x), f(2x), f(3x), . . .
converges to zero for every x ∈ (0,∞). Show that

lim
x→∞

f(x) = 0.

This problem, and several others of a similar nature, is basically unsolvable unless
you know the following result.

Theorem 8.1 (Baire’s theorem). Let X be a nonempty compact Hausdorff space.

(a) If X = A1 ∪A2 ∪ · · · can be written as a countable union of closed sets An,
then at least one set An has nonempty interior.

(b) If U1, U2, . . . ⊆ X is a countable collection of dense open sets, then the
intersection U1 ∩ U2 ∩ · · · is dense in X.

Here a subset Y ⊆ X in a topological space is called dense if its closure Y is
equal to X, or equivalently, if Y intersects every nonempty open subset of X. In
analysis, there is another version of Baire’s theorem for complete metric spaces: the
assumption is that X is a complete metric space, and the conclusion is the same as
in Theorem 8.1.

Example 8.2. The problem from above uses the version for complete metric spaces.
Pick some ε > 0. By assumption, for every x > 0, there is some integer n ≥ 1 such
that |f(kx)| ≤ ε for all k ≥ n. This means that (0,∞) is the union of the countably
many closed sets

An =
{
x > 0

∣∣ |f(kx)| ≤ ε for k ≥ n
}
.

Baire’s theorem ensures that at least one An contains an open interval; and from
that, one can deduce that |f(x)| ≤ ε for x� 0.

In the first half of today’s class, we are going to prove Theorem 8.1. The second
portion of the theorem is actually stronger than the first one, so let me begin by
explaining why (b) implies (a). Let X be a compact Hausdorff space, and suppose
that we have countably many closed subsets A1, A2, . . . with

X =

∞⋃
n=1

An.

If the interior intAn = ∅, then the open complement Un = X \ An must be dense
in X: the reason is that X \ Un ⊆ X \ Un = An is an open subset of An, hence
empty, which means that Un = X. Now if (a) was false, we would have a countable
collection of dense open sets; since we are assuming that (b) holds, the intersection

∞⋂
n=1

Un

is dense in X, and therefore nonempty. But since

X \
∞⋂
n=1

Un =

∞⋃
n=1

X \ Un =

∞⋃
n=1

An = X,

this contradicts our initial assumption that X is the union of the An. This argument
also shows in which sense (b) is stronger than (a): it tells us not only that the
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intersection of countably many dense open sets is nonempty, but that it is still
dense in X.

The proof of Baire’s theorem requires a little bit of preparation; along the way,
we have to prove two other results that will also be useful for other things later on.
As a first step, we restate the definition of compactness in terms of closed sets. To
do that, we simply replace “open” by “closed” and “union” by “intersection”; we
also make the following definition.

Definition 8.3. A collection A of subsets of X has the finite intersection property
if A1 ∩ · · · ∩An 6= ∅ for every A1, . . . , An ∈ A .

The definition of compactness in terms of open coverings is great for deducing
global results from local ones: if something is true in a neighborhood of every point
in a compact space, then the fact that finitely many of those neighborhoods cover
X will often imply that it is true on all of X. The following formulation emphasizes
a different aspect of compactness: the ability to find points with certain properties.

Proposition 8.4. A topological space X is compact if and only if, for every col-
lection A of closed subsets with the finite intersection property, the intersection⋂

A∈A

A

is nonempty.

If we think of each closed set A ∈ A as being a certain condition on the points
of X, and of the finite intersection property as saying that the conditions are con-
sistent with each other, then the result can be interpreted as follows: provided X is
compact, there is at least one point x ∈ X that satisfies all the conditions at once.

Proof. Let us first show that the condition is necessary. Suppose that X is com-
pact, and that A is a collection of closed sets with the finite intersection property.
Consider the collection of open sets

U =
{
X \A

∣∣ A ∈ A
}
.

The finite intersection property of A means exactly that no finite number of sets
in U can cover X: this is clear because

(X \A1) ∪ · · · ∪ (X \An) = X \ (A1 ∩ · · · ∩An) 6= X

for every A1, . . . , An ∈ A . Because X is compact, it follows that U cannot be an
open covering of X; but then

X \
⋂
A∈A

A =
⋃
A∈A

X \A 6= X,

which means that the intersection of all the sets in A is nonempty. To see that the
condition is also sufficient, we can use the same argument backwards. �

The next step in the proof of Baire’s theorem is the following observation about
compact Hausdorff spaces.

Proposition 8.5. Let X be a compact Hausdorff space and let x ∈ X be a point.
Inside every neighborhood U of x, there is a smaller neighborhood V of x with
V ⊆ U .
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Proof. This follows easily from our ability to separate points and closed sets in a
compact Hausdorff space (see the note after the proof of Proposition 7.3). The
closed set X \ U does not contain the point x; consequently, we can find disjoint
open subsets V,W ⊆ X with x ∈ V and X \U ⊆W . Now X \W is closed, and so

V ⊆ X \W ⊆ U,

as asserted. �

The property in the proposition is called local compactness; we will study it in a
little more detail during the second half of today’s class. But first, let us complete
the proof of Baire’s theorem.

Proof of Theorem 8.1. Let U1, U2, . . . be countably many dense open subsets of X.
To show that their intersection is again dense in X, we have to prove that

U ∩
∞⋂
n=1

Un 6= ∅

for every nonempty open set U ⊆ X. It is not hard to show by induction that all
finite intersections U ∩U1∩· · ·∩Un are nonempty: U ∩U1 6= ∅ because U1 is dense;
U ∩U1∩U2 6= ∅ because U2 is dense, etc. The problem is to find points that belong
to all of these sets at once, and it is here that Proposition 8.4 comes into play.

First, consider the intersection U∩U1. It must be nonempty (because U1 is dense
in X), and so we can find a nonempty open set V1 with V1 ⊆ U ∩ U1 (by applying
Proposition 8.5 to any point in the intersection). Next, consider the intersection
V1∩U2. It must be nonempty (because U2 is dense), and so we can find a nonempty
open set V2 with V2 ⊆ V1 ∩ U2 (by applying Proposition 8.5 to any point in the
intersection). Observe that we have

V2 ⊆ V1 and V2 ⊆ V1 ∩ U2 ⊆ U ∩ U1 ∩ U2.

Continuing in this way, we obtain a sequence of nonempty open sets V1, V2, . . . with
the property that Vn ⊆ Vn−1 ∩ Un; by construction, their closures satisfy

V1 ⊇ V2 ⊇ V3 ⊇ · · ·

and so the collection of closed sets Vn has the finite intersection property. Since X
is compact, Proposition 8.4 implies that

∞⋂
n=1

Vn 6= ∅.

But since Vn ⊆ U ∩ U1 ∩ · · · ∩ Un for every n, we also have

∞⋂
n=1

Vn ⊆ U ∩
∞⋂
n=1

Un,

and so the intersection on the right-hand side is indeed nonempty. �

If you like a challenge, try to solve the following problem: Let f : R → R be an
infinitely differentiable function, meaning that the n-th derivative f (n) exists and
is continous for every n ∈ N. Suppose that for every x ∈ R, there is some n ∈ N
with f (n)(x) = 0. Prove that f must be a polynomial! (Warning: This problem is
very difficult even if you know Baire’s theorem.)
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Local compactness and one-point compactification. In Proposition 8.5, we
proved that every compact Hausdorff space has the following property.

Definition 8.6. A Hausdorff topological space X is called locally compact if for
every x ∈ X and every open set U containing x, there is an open set V containing
x whose closure V is compact and contained in U .

Note that this definition is different from the one in the textbook: Munkres calls
a topological space “locally compact” if every point x ∈ X has some neighborhood
whose closure is compact. In fact, several other definitions are in common use,
too; in a sense, Munkres’ definition is the least restrictive one, and the one I gave
is the most restrictive one. When X is Hausdorff, however, Munkres’ definition is
equivalent to the one above; all interesting theorems involving local compactness are
about locally compact Hausdorff spaces anyway. (I prefer this formulation because
it is similar to the definition of “locally path connected”.)

Of course, there are many examples of topological spaces that are locally compact
but not compact.

Example 8.7. Rn is locally compact; in fact, we showed earlier that every closed
and bounded subset of Rn is compact. It follows that every topological manifold is
also locally compact.

The reason why Rn is not compact is because of what happens “at infinity”. We
can see this very clearly if we think of Rn as embedded into the n-sphere Sn; recall
that the n-sphere minus a point is homeomorphic to Rn. By adding one point,
which we may think of as a point at infinity, we obtain the compact space Sn: the
n-sphere is of course compact because it is a closed and bounded subset of Rn+1.
The following result shows that something similar is true for every locally compact
Hausdorff space: we can always build a compact space by adding one point.

Theorem 8.8. Every locally compact Hausdorff space X can be embedded into a
compact Hausdorff space X∗ such that X∗ \X consists of exactly one point.

Proof. To avoid confusion, we shall denote the topology on X by the letter T .
Define X∗ = X ∪ {∞}, where ∞ is not already an element of X. Now we want to
put a topology on X∗ that induces the given topology on X and that makes X∗

into a compact Hausdorff space. What should be the open sets containing the point
at infinity? The complement of an open subset containing ∞ is a subset K ⊆ X;
if we want X∗ to be compact, K must also be compact, because closed subsets of
compact spaces are compact. So we are lead to the following definition:

T ∗ = T ∪
{
X∗ \K

∣∣ K ⊆ X compact
}

Keep in mind that since X is Hausdorff, any compact subset K ⊆ X is closed (by
Proposition 7.3), and so X \ K is open in X. In particular, X itself is an open
subset of X∗.

It is straightforward to check that T ∗ is a topology on X∗:

(1) Clearly, ∅ and X∗ = X∗ \ ∅ belong to T ∗.
(2) For unions of open sets, we consider three cases. First, an arbitrary union

of sets in T again belongs to T (because T is a topology on X). Second,⋃
i∈I

X∗ \Ki = X∗ \
⋂
i∈I

Ki,
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and the intersection of all the Ki is a closed subspace of a compact space,
and therefore again compact (by Proposition 6.13). Third,

U ∪ (X∗ \K) = X∗ \
(
K ∩ (X \ U)

)
and because X \ U is closed, the intersection K ∩ (X \ U) is compact.

(3) For intersections of open sets, there are again three cases. First, a union of
two sets in T again belongs to T ; second,

(X∗ \K1) ∪ (X∗ \K2) = X∗ \ (K1 ∪K2),

and K1 ∪K2 is obviously again compact; third,

U ∩ (X∗ \K) = U ∩ (X \K)

is the intersection of two open sets in X, and therefore an element of T .

It is also easy to see that the function f : X → X∗ defined by f(x) = x is an
embedding: it gives a bijection between X and its image in X∗, and because of
how we defined T ∗, the function f is both continuous and open.

Finally, we show that X∗ is a compact Hausdorff space. Consider an arbitrary
open covering of X∗ by sets in T ∗. At least one of the open sets has to contain
the point ∞; pick one such set X∗ \K. Then K has to lie inside the union of the
remaining open sets in the covering; by compactness, finitely many of these sets will
do the job, and together with the set X∗ \K, we obtain a finite subcovering of our
original covering. This proves that X∗ is compact. To prove that X∗ is Hausdorff,
consider two distinct points x, y ∈ X∗. If x, y ∈ X, they can be separated by open
sets because X is Hausdorff. If, say, y =∞, we use the local compactness of X to
find a neighborhood U of x whose closure U ⊆ X is compact; then U and X∗ \ U
are disjoint neighborhoods of the points x and y, respectively. �

When X is not already compact, the space in the theorem is called the one-
point compactification of X. In the homework for this week, you can find several
examples of one-point compactifications.
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Lecture 9: September 22

Our topic today is Tychonoff’s theorem about the compactness of product spaces.
We showed some time ago that the product of two compact spaces is again compact;
by induction, it follows that the same holds for any finite product.

Theorem 9.1 (Tychonoff’s theorem). Let {Xi}i∈I be a collection of topological
spaces. If each Xi is compact, then the product

X =
∏
i∈I

Xi

is compact in the product topology.

For a product X×Y of two spaces, we were able to prove compactness by looking
at the fibers of the projection to X, and then at X; obviously, this kind of argument
will not work in the case of an infinite product. Instead, the proof of Tychonoff’s
theorem relies heavily of the axiom of choice. We noted earlier that it is needed to
show that infinite products of nonempty sets are nonempty: in fact, one formulation
of the axiom of choice is that

Xi 6= ∅ for every i ∈ I =⇒
∏
i∈I

Xi 6= ∅.

But since the empty set is still compact, this is not the only reason why we need the
axiom of choice: as explained in one of this week’s homework problems, Tychonoff’s
theorem is actually equivalent to the axiom of choice.

Zorn’s lemma. Constructions with infinite sets often involve making an infinite
number of choices that are not independent from each other. To deal with such
problems, set theorists have come up with several other results that, although log-
ically equivalent to the axiom of choice, are more convenient in practice. Probably
the most useful among these is Zorn’s lemma about partially ordered sets.

Definition 9.2. A partial ordering on a set E is a relation ≤ with the following
properties:

(1) Symmetry: x ≤ x for every x ∈ E.
(2) Reflexivity: x ≤ y and y ≤ x imply x = y.
(3) Transitivity: x ≤ y and y ≤ z implies x ≤ z.

Note that we do not assume that every two elements of E are comparable; recall
from earlier in the semester that a linear ordering is a partial ordering in which
x ≤ y or y ≤ x is true for every x, y ∈ E.

Example 9.3. The power set of a set S is the collection of all subsets of S; it is
partially ordered by inclusion. More generally, we can consider any collection of
subsets of S; except in very special cases, this is not a linear ordering.

Zorn’s lemma gives a condition under which a partial ordering (E,≤) has max-
imal elements. As some of the elements of E may not be comparable, it does not
make sense to look for a maximum (= an element m ∈ E with x ≤ m for every
x ∈ E); instead, we settle for the following.

Definition 9.4. An element m ∈ E is called maximal if m ≤ x for some x ∈ E
implies m = x.
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Note that there may be more than one maximal element; it is easy to find
examples in the case of subsets of a set. At this point, someone objected that
not every partially ordered set has maximal elements: for example, there are no
maximal elements in R, because for every m ∈ R, the number m+ 1 ∈ R is strictly
greater; equivalently, the sequence 1, 2, 3, . . . is unbounded. Interestingly, it turns
out that the existence of increasing families of elements without upper bound is the
only obstacle.

Theorem 9.5 (Zorn’s lemma). Let (E,≤) be a partially ordered set. If every well-
ordered subset of E has an upper bound in E, then E has at least one maximal
element.

Here a subset W ⊆ E is said to be well-ordered if W is linearly ordered by ≤, in
such a way that every nonempty subset of W contains a minimum; an upper bound
for W is an element b ∈ E such that x ≤ b for every x ∈ W . In the textbooks,
Zorn’s lemma is often stated with the condition that every linearly ordered subset
of E should have an upper bound in E; our version is due to Kneser (1950).

Let me first explain very roughly how the axiom of choice comes into play.
An obvious strategy for proving Zorn’s lemma is the following. Pick an arbitrary
element x0 ∈ E. If x0 happens to be maximal, we are done; otherwise, the set of
strictly larger elements is nonempty. Pick one such element x1 6= x0 with x0 ≤ x1; if
x1 is maximal, we are done; etc. If we continue this process until we can no longer
add new elements, we ought to end up with a (possibly uncountable) increasing
family of elements of E. (If the family is countable, we can index it by the natural
numbers; if not, we need to use a larger ordinal number than ω.) The family is
well-ordered, and therefore has an upper bound; by construction, any upper bound
must be a maximal element in E. Of course, this is not rigorous: one problem is
that each choice in the construction depends on all the preceding ones, whereas the
axiom of choice is about making independent choices.

In case you want to know exactly how the axiom of choice implies Zorn’s lemma,
let me now describe Kneser’s proof (which is written in German). To shorten the
notation, let us agree that x < y stands for x ≤ y and x 6= y. For each x ∈ E
that is not maximal, the set of y ∈ E with x < y is nonempty; using the axiom of
choice, we obtain the existence of a function f : E → E with the property that{

x < f(x) if x ∈ E is not maximal,

x = f(x) if x ∈ E is maximal.

By another application of the axiom of choice, we can choose for every well-ordered
subset W ⊆ E an upper bound b(W ); here b is a function from the set of well-
ordered subsets of E to the set E. Having made these two choices, Zorn’s lemma
is now evidently a consequence of the following fixed point theorem.

Theorem 9.6. Let (E,≤) be a partially ordered set in which every well-ordered
subset W has an upper bound b(W ). If f : E → E is a function with the property
that x ≤ f(x) for all x ∈ E, then there is some element m ∈ E with m = f(m).

Kneser’s observation is that Theorem 9.6 can be proved without further appeals
to the axiom of choice. Before we can get into the proof, we have to introduce one
item of notation and one definition. Given a well-ordered subset W ⊆ E and an
element x ∈W , the set

Wx =
{
y ∈W

∣∣ y < x
}



3

is called a section of W ; it is again a well-ordered subset of E.
From now on, we consider a partially ordered set (E,≤) that satisfies the as-

sumptions in Theorem 9.6. The following definition formalizes the construction of
increasing families of elements that I sketched above.

Definition 9.7. A well-ordered subset C ⊆ E is called a chain if every x ∈ C
satisfies x = f

(
b(Cx)

)
.

We observe that in any pair of chains, one of the two contains the other.

Lemma 9.8. If C and D are two chains in E, then either C ⊆ D or D = Cc for
some c ∈ C.

Proof. If C 6⊆ D, the set C \D is nonempty, and because C is well-ordered, there
is a unique smallest element c ∈ C \D. Of course, this means that

Cc =
{
x ∈ C

∣∣ x < c
}
⊆ D.

I claim that D = Cc. Suppose that this was not the case; then D \Cc is nonempty,
and because D is well-ordered, there is a unique smallest element d ∈ D \ Cc; as
before, the minimality of d means that

Dd ⊆ Cc ⊆ D.
Now we cannot have Dd = Cc, because then the chain property would give

d = f
(
b(Dd)

)
= f

(
b(Cc)

)
= c,

contradicting our choice of c. So there must be some element of Cc that does not
belong to Dd; let x ∈ Cc \Dd be the unique smallest one. Since x is in D but not
in Dd, it must satisfy d ≤ x; in particular, we have Dd ⊆ Cx. Since x is minimal,
it is clear that Dd = Cx; but now the chain property gives

d = f
(
b(Dd)

)
= f

(
b(Cx)

)
= x,

and since x ∈ Cc, this contradicts our choice of d. The conclusion is that D = Cc,
and hence that D ⊆ C. �

It is now a relatively easy matter to show that there is a unique maximal chain.

Lemma 9.9. Let K be the union of all the chains in E. Then K is again a chain.

Proof. We first argue thatK is again well-ordered. By Lemma 9.8, any two elements
x, y ∈ K are contained in a single chain C; because C is linearly ordered, x and y
are comparable, and so K is also linearly ordered. Now let S ⊆ K be an arbitrary
nonempty subset. Take any element s ∈ S; it is contained in a chain C, and since
C is well-ordered, the intersection S ∩C has a smallest element s0. I claim that s0

is the minimum of S. To see why, take any x ∈ S. If x ∈ C, it is clear that s0 ≤ x;
if not, x belongs to another chain D. Now D is not entirely contained in C, and so
Lemma 9.8 shows that C = Dd for some d ∈ D. Because x is not an element of C,
it must be that d ≤ x; but then

s0 < d ≤ x,
proving that s0 is indeed the minimum of S.

To verify that K is a chain, we have to show that x = f
(
b(Kx)

)
for every x ∈ K.

Let C be a chain containing x. A similar argument as above shows that Cx = Kx,
and hence that

x = f
(
b(Cx)

)
= f

(
b(Kx)

)
,
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proving that K is also a chain. �

We can now finish the proof of Theorem 9.6 by showing that m = f
(
b(K)

)
is

the desired fixed point. The properties of f guarantee that

b(K) ≤ f
(
b(K)

)
= m,

and so m is an upper bound for K. If we had m 6∈ K, then the set K ∪ {m} would
be a chain in E; this is not possible because of how we defined K. The conclusion
is that m ∈ K, and therefore

m ≤ b(K) ≤ f
(
b(K)

)
= m.

These inequalities show that m = b(K), and hence that m = f(m).

Proof of Tychonoff’s theorem. Now we come back to Tychonoff’s theorem
about the product

X =
∏
i∈I

Xi,

of a family of compact topological spaces Xi. To show that X is compact, we have
to argue that every open covering of X has a finite subcovering. Recall that the
product topology has a basis

B =

{∏
i∈I

Ui

∣∣∣∣ Ui ⊆ Xi open and Ui = Xi for all but finitely many i ∈ I
}

;

as we observed earlier, it is enough to prove that every open covering U ⊆ B has
a finite subcovering. If we denote by pi : X → Xi the projection to the i-th factor,
and consider the smaller collection of open sets

C =

{
p−1
i (Ui)

∣∣∣∣ i ∈ I and Ui ⊆ Xi open

}
,

then every open set in B is the intersection of finitely many open sets in C . This
makes C a “subbasis” for the product topology, in the following sense.

Definition 9.10. A family of open sets C in a topological space is called a subbasis
if the collection of all finite intersections of sets in C is a basis for the given topology.

As a first step towards proving the compactness of X, let us show that every
open covering by sets in C has a finite subcovering.

Lemma 9.11. Let U ⊆ C be an open covering of X by subbasic open sets. Then
there are finitely many open sets U1, . . . , Un ∈ C such that X = U1 ∪ · · · ∪ Un.

Proof. For each i ∈ I, we consider the collection of open sets

Ui =
{
U ⊆ Xi

∣∣ p−1
i (U) ∈ U

}
.

If Ui does not cover Xi for any i ∈ I, then the axiom of choice would allow us to
choose, for every index i ∈ I, an element xi ∈ Xi \

⋃
Ui. Now consider the point

x = (xi)i∈I . By construction, it does not lie in any open set of the form p−1
i (U)

with U ∈ Ui; but this is absurd because U was supposed to be an open covering
of X by sets in C . The conclusion is that there must be some index i ∈ I with

Xi =
⋃
U∈Ui

U.

Because Xi is compact, finitely many open sets in Ui suffice to cover Xi; now their
preimages under pi give us the desired finite subcovering of U . �
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Now we have the following general result, which says that in order to check
whether a space X is compact, it suffices to look at coverings by open sets in a
subbasis.

Theorem 9.12 (Alexander’s subbasis theorem). Let X be a topological space and
let C be a subbasis for the topology. If every open covering U ⊆ C has a finite
subcovering, then X is compact.

Proof. We shall prove the contrapositive, namely that if X is not compact, then
there must be an open covering V ⊆ C without finite subcovering. Let B be the
basis generated by the subbasis C ; every element of B is an intersection of finitely
many open sets in C .

Since X is not compact, there is at least one open covering U ⊆ B without
finite subcovering. Now the idea is to look for a maximal open covering with this
property, in the hope that it will contain enough sets from the subbasis C . This
obviously requires Zorn’s lemma. Consider the collection E of all open coverings
U ⊆ B without finite subcovering. It is partially ordered by inclusion: U1 ⊆ U2

means that the covering U2 contains more open sets than the covering U1. If
W ⊆ E is a well-ordered subset, then the open covering{

U ∈ B
∣∣ U ∈ U for some U ∈W

}
again belongs to E, and is therefore an upper bound for W : indeed, any finite
number of open sets in this covering will be in one U ∈ W (because W is linearly
ordered), and therefore cannot cover X (because U does not have any finite sub-
covering). Now Zorn’s lemma guarantees the existence of a maximal open covering
V ⊆ B without finite subcovering. Maximality translates into the following re-
markable property: for every basic open set V ∈ B, either V ∈ V or V ∪ {V } has
a finite subcovering.

Now let U be an arbitrary open set in V ; since U ∈ B, it must be of the form
U = U1 ∩ · · · ∩ Un for certain U1, . . . , Un ∈ C . I claim that for some i = 1, . . . , n,
we must have Ui ∈ V . If this was not the case, then Ui 6∈ V , and by maximality,
V ∪ {Ui} has a finite subcovering for every i = 1, . . . , n. This means that finitely
many open sets in V cover the complement X \ Ui; but since

(X \ U1) ∪ · · · ∪ (X \ Un) = X \ (U1 ∩ · · · ∩ Un),

this would produce a finite covering of X by open sets in V , which is not allowed.
So every set U ∈ V is contained in a larger open set Ui ∈ V ∩ C . The conclusion
is that V ∩ C is still an open covering of X; since it cannot contain any finite
subcovering either, we get the desired result. �

Taken together, Lemma 9.11 and Alexander’s subbasis theorem prove Tychonoff’s
theorem. Note that the axiom of choice was used twice: once during the proof of
Lemma 9.11 and once in the form of Zorn’s lemma.

Connected sums. We can join two manifolds of the same dimension together to
make another manifold with a more complicated topology. This construction gives
us other interesting examples of compact connected surfaces.

Suppose that X and Y are two connected n-dimensional manifolds. In each of
the two manifolds, we remove a small open set homeomorphic to a ball in Rn, and
then we paste the two pieces together along the boundaries of the two balls, which
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are homeomorphic to the (n− 1)-sphere Sn−1. The resulting manifold is called the
connected sum of X and Y and is denoted by the symbol X#Y .

Here is a more careful description of the construction. Choose two points x ∈ X
and y ∈ Y . Since X is a manifold, some open neighborhood of x is homeomorphic
to an open subset of Rn. If we let B =

{
x ∈ Rn

∣∣ |x| < 1
}

be the open unit ball

in Rn, and B̄ =
{
x ∈ Rn

∣∣ |x| ≤ 1
}

its closure, we can therefore choose a function

f : B̄ → X

such that f(0) = x and such that f is a homeomorphism between B̄ and its image.
The complement X \ f(B) is now a manifold with boundary, the boundary being
homeomorphic to Sn−1 via f . Similarly choose g : B̄ → Y . On the disjoint union(

X \ f(B)
)
t
(
Y \ g(B)

)
,

we get an equivalence relation by declaring that f(x) ∼ g(x) for every x ∈ Sn−1.
The connected sum X#Y is then defined as the quotient by this equivalence rela-
tion, together with the quotient topology.

Note. The construction of the connected sum depends on the choice of x ∈ X and
y ∈ Y (and of the functions f and g), but one can show that different choices lead
to spaces that are homeomorphic. The key point is the following fact: If x1, x2 ∈ X
are two points on a connected manifold, then there is a homeomorphism φ : X → X
with the property that φ(x1) = x2. (In other words, the group of homeomorphisms
acts transitively on X.) Here is a sketch of the proof. First, one shows that for any
two points x1, x2 ∈ B̄ in the closed unit ball, there is a homeomorphism f : B̄ → B̄
such that f(x1) = x2 and such that f acts as the identity on the unit sphere Sn−1.
(One can actually write down such a homeomorphism explicitly.) By the pasting
lemma, this means that if the two points x1, x2 ∈ X are contained in a subset
homeomorphic to B̄, then there is a homeomorphism of X taking x1 to x2. To
deal with the general case, we use the fact that X is path-connected to find a path
joining x1 and x2; by compactness, this path can be covered by finitely many open
sets whose closures are homeomorphic to B̄. We can then construct the desired
homeomorphism in steps, by moving x1 from the first ball into the second ball,
then into the third ball, and so on.

You should convince yourself that X#Y is again an n-dimensional manifold. It
is also easy to see that if X and Y are connected (or compact), then X#Y is again
connected (or compact).

Example 9.13. Recall that the torus is defined as T = S1× S1. The connected sum
T#T is called the 2-holed torus; similarly, the connected sum of n copies of T is
called the n-holed torus. It is a compact and connected 2-dimensional manifold.
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Example 9.14. The projective plane is the space of lines in R3. As a topological
space, we can define it for example as the quotient space of the closed unit disk{

(x, y) ∈ R2
∣∣ x2 + y2 ≤ 1

}
by the equivalence relation (x, y) ∼ (−x,−y) for (x, y) ∈ S1. It is another example
of a compact and connected 2-dimensional manifold; like the Klein bottle, it is not
orientable. We denote the projective plane by the symbol P.

Here is a nice exercise: Describe the connected sum P#P. (Hint: What do you
get if you remove an open disk from P?)
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Lecture 10: September 27

Countability axioms. Today, I am going to introduce several additional condi-
tions – called “axioms” for historical reasons – that a topological space may or may
not satisfy. All of these conditions are saying that the topology on a given space
X is “nice” in some way; for example, we will see that Rn satisfies all of them. By
assuming one or several of these conditions about a topological space X, we can
usually prove more interesting theorems about X.

The first set of conditions is known as the countability axioms.

Definition 10.1. Let X be a topological space.

(a) X is said to be first countable if every point x ∈ X has a countable neigh-
borhood basis: there are countably many open sets B1(x), B2(x), . . . such
that every open set U containing the point x contains at least one Bn(x).

(b) X is said to be second countable if X has a countable basis: there are
countably many open sets B1, B2, . . . that form a basis for the topology.

The second countability axiom is saying that the topology on X can be described
by countably many conditions; the first countability axiom is saying that this is true
locally at each point of X. Note that a second countable space is automatically first
countable, since all those Bn with x ∈ Bn will be countable neighborhood basis at
the point x. Both conditions tell us that there are not too many open sets in X: for
instance, if X is second countable, then every open set must be a union of certain
Bn, and so the cardinality of the topology is at most that of the power set of N.

Example 10.2. Rn is second countable: the collection of all open balls Br(x0) with
x0 ∈ Qn and r ∈ Q ∩ (0,∞) is a countable basis for the topology.

Example 10.3. Every metric space is first countable: at every point x, the collection
of open balls B1/n(x) is a countable neighborhood basis. On the other hand, a
metric space does not have to be second countable: we have seen before that the
discrete topology on a set X always comes from a metric; when X is uncountable,
the discrete topology is obviously not second countable.

Example 10.4. The infinite product RN in the box topology is not first countable;
this was the content of a homework problem earlier in the semester.

Example 10.5. Here is another interesting example of a space that is not second
countable. Let R` denote the set of real numbers with the lower limit topology : a
basis for the topology consists of all half-open intervals [a, b) with a < b. Since

(a, b) =
⋃
c>a

[c, b),

this topology is finer than the usual topology on R. It is not second countable, for
the following reason: Suppose that B is any basis for the topology on R`. For each
x ∈ R, the set [x, x + 1) is open, and so there would have to be a basic open set
Bx ∈ B with

x ∈ Bx ⊆ [x, x+ 1).

But now we have Bx 6= By for x 6= y, because we have x = inf Bx. This means that
the cardinality of B is at least that of R, and so there is no countable basis.

Example 10.6. Any subspace of a first/second countable space is again first/second
countable.
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Second countable spaces are nice because many properties such as closedness or
compactness can be checked using sequences. We have already proved that in a
first countable space, a subset is closed if and only if it is sequentially closed (see
the remark just after Proposition 3.8). In a second countable space, the same is
true for compactness.

Proposition 10.7. Let X be a topological space that is second countable. Then X
is compact if and only if it is sequentially compact, that is if every sequence in X
has a convergent subsequence.

For the proof, we need the following lemma about the existence of convergent
subsequences. Note that we are not assuming thatX is Hausdorff, and so a sequence
may have more than one limit.

Lemma 10.8. Let x1, x2, . . . be a sequence of points in a first countable space X.
Let x ∈ X be a point such that for every neighborhood U of x, one has xn ∈ U for
infinitely many n. Then a subsequence of x1, x2, . . . converges to x.

Proof. X has a countable neighborhood basis B1(x), B2(x), . . . at the point x; by
successively intersecting these open sets, we can arrange that

B1(x) ⊇ B2(x) ⊇ · · ·
The set of n with xn ∈ B1(x) is infinite; let n1 be the smallest element. The set
of n with xn ∈ B2(x) is also infinite; let n2 be the smallest element with n2 > n1.
Continuing in this way, we obtain an increasing sequence of integers n1 < n2 <
· · · , such that xnk

∈ Bk(x) for every k. In particular, every Bk(x) contains all
but finitely many points of the subsequence xn1

, xn2
, . . . ; since the Bk(x) form a

neighborhood basis, this implies that x is a limit of the subsequence. �

Proof of Proposition 10.7. We first show that compactness implies sequential com-
pactness; this part of the proof only uses the fact that X is first countable. Let
x1, x2, . . . ∈ X be an arbitrary sequence. Suppose that it does not have convergent
subsequence; then Lemma 10.8 tells us that every point x ∈ X must have some
neighborhood Ux that only contains xn for finitely many values of n. Now the open
covering

X =
⋃
x∈X

Ux

has a finite subcovering (because X is compact), and so at least one of the open
sets in this finite subcovering should contain infinitely many terms of our sequence.
This is a contradiction, and so there must be a convergent subsequence after all.

Next, we show that sequential compactness implies compactness. Let B be a
basis for the topology on X. Recall that compactness of X is equivalent to saying
that every open covering by basic open sets has a finite subcovering. So let U ⊆ B
be an open covering by basic open sets; since there are countably many open sets
in the covering, we can enumerate them as U1, U2, . . . . To show that X is compact,
we have to show that

U1 ∪ · · · ∪ Un = X

for some n. Suppose this was false; then for each n, we can choose a point

xn ∈ X \ U1 ∪ · · · ∪ Un.
By assumption, a subsequence of this sequence has a limit x ∈ X; because U is an
open covering of X, there must be some m with x ∈ Um, and so Um has to contain
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xn for infinitely many values of n. But by construction, xn 6∈ Um for n ≥ m, and
so we have arrived at a contradiction. �

Another useful property of second countable spaces is the following; in analysis,
spaces with this property are called “separable”.

Proposition 10.9. If X is second countable, then it contains a countable dense
subset.

Proof. Let B1, B2, . . . be a countable basis for the topology; without loss of gener-
ality, each Bn is nonempty. For every n, choose a point xn ∈ Bn; then {x1, x2, . . . }
is countable and dense, because by construction, every nonempty open subset of X
contains at least one xn. �

Separation axioms. The second set of conditions are the so-called separation
axioms; they are generalizations of the Hausdorff axiom. Each of these conditions
is saying that there are sufficiently many open sets in X to “separate” certain kinds
of subsets of X; we will see later how they can be used to construct interesting
nontrivial continous functions on X.

Definition 10.10. Let X be a topological space in which every one-point set is
closed.

(a) X is called Hausdorff if any two distinct points can be separated by open
sets: given two points x 6= y, there are disjoint open sets U, V ⊆ X with
x ∈ U and y ∈ V .

(b) X is called regular if any point and any closed set not containing the point
can be separated by open sets: given a point x ∈ X and a closed set A ⊆ X
with x 6∈ A, there are disjoint open sets U, V ⊆ X with x ∈ U and A ⊆ V .

(c) X is called normal if any two disjoint closed sets can be separated by open
sets: given two closed sets A,B ⊆ X with A ∩ B = ∅, there are disjoint
open sets U, V ⊆ x with A ⊆ U and B ⊆ V .

The condition that sets of the form {x} are closed is also called T1; the Hausdorff
axiom is T2, regularity is T3, and normality is T4. This terminology comes from the
German word “Trennungsaxiom”, which translates as “separation axiom”. Note
that every Hausdorff space is automatically T1; the other two conditions no longer
imply that one-point sets are closed, and so we include this in the definition. (There
is also a condition called T0; if I remember correctly, it says that for two distinct
points, there is an open set containing one but not the other. In addition, there are
various intermediate notions, but those are mostly just used by specialists.)

Example 10.11. Here is an example of a non-Hausdorff space where all one-point sets
are closed: take any infinite set X with the finite complement topology. Here any
two nonempty open sets intersect each other, and so we obviously cannot separate
anything.

As suggested by the words “regular” and “normal”, regular or normal spaces are
closer to our intuition: for example, regularity means that if A is a closed set and
x 6∈ A, then x is a certain distance away from A. We will also see next week that
normality in particular has very interesting consequences. For now, let us look at
a few examples from earlier in the semester.
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Example 10.12. We already know that every compact Hausdorff space X is regular
(see the comments after Proposition 7.3). We can use essentially the same proof
to show that X is also normal. Let A and B be disjoint closed subsets of X. For
every x ∈ A, we have x 6∈ B, and since X is regular, we can find disjoint open sets
Ux and Vx with x ∈ Ux and B ⊆ Vx. Now A is closed, and therefore compact; since
we have

A ⊆
⋃
x∈A

Ux,

there are finitely many points x1, . . . , xn ∈ A with A ⊆ Ux1
∪ · · · ∪ Uxn

. If we now
define

U = Ux1
∪ · · · ∪ Uxn

and V = Vx1
∩ · · · ∩ Vxn

,

then U and V are open, disjoint, A ⊆ U , and B ⊆ V .

Example 10.13. Metric spaces are another interesting class of examples: every met-
ric space is normal. Since we already know that one-point sets are closed, it suffices
to show that any two disjoint closed sets A and B can be separated by open sets.
The main point is that X \B is open, and so for every a ∈ A, we can find a small
positive number r(a) > 0 such that the open ball Br(a)(a) ⊆ X \ B. Likewise, for
every b ∈ B, we can find some r(b) > 0 such that Br(b)(b) ⊆ X \ A. Now consider
the two open sets

U =
⋃
a∈A

B 1
2 r(a)(a) and V =

⋃
b∈B

B 1
2 r(b)

(b).

Evidently, A ⊆ U and B ⊆ V ; but in fact, U and V are also disjoint. For suppose
that there was a point x ∈ U ∩ V . Then we would have

d(x, a) <
1

2
r(a) and d(x, b) <

1

2
r(b)

for some a ∈ A and some b ∈ B; by the triangle inequality,

d(a, b) ≤ d(a, x) + d(x, b) <
1

2
r(a) +

1

2
r(b).

Now if r(a) ≤ r(b), we get d(a, b) < r(b), which means that a ∈ Br(b)(b); but this
contradicts that fact that Br(b)(b) ⊆ X \A. Similarly, r(b) ≤ r(a) would imply that
b ∈ Br(a)(a) ⊆ X \B. The conclusion is that U and V must be disjoint after all.

The following result, which we did not discuss in class, shows how the countability
axioms and separation axioms work together.

Theorem 10.14. Every regular space with a countable basis is normal.

Proof. Let X be a regular topological space with a countable basis B. We have to
prove that every pair of disjoint closed sets A,B ⊆ X can be separated by open
sets. We will first use regularity to construct countable open coverings for A and
B, and then explain how to produce disjoint open sets containing A and B.

For any x ∈ A, the open set X \ B contains x; because X is regular, there is
a neighborhood of x whose closure does not intersect B. Now B is a basis, and
so inside this neighborhood, we can certainly find a basic open set containing x
whose closure does not intersect B. Since B is countable, the collection of all basic
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open sets obtained in this way must also be countable; let us enumerate them as
U1, U2, . . . . We then have

A ⊆
∞⋃
n=1

Un,

and the closure of every Un is disjoint from B. By the same argument, we can find
basic open sets V1, V2, . . . with

B ⊆
∞⋃
n=1

Vn

and Vn∩A = ∅. In this way, we obtain two open sets containing A and B. There is
no reason why they should be disjoint, but we can use the following trick to make
them so. Consider the collection of open sets

U ′n = Un \
n⋃
k=1

Vk and V ′n = Vn \
n⋃
k=1

Uk.

Since every Vk is disjoint from A, we have A ∩ U ′n = A ∩ Un, and therefore

A ⊆
∞⋃
n=1

U ′n = U ;

for the same reason, B is contained in V , which is the union of the V ′n. I claim that
U and V are disjoint. Indeed, any point x ∈ U ∩ V would have to belong to some
U ′m and some V ′n; if m ≤ n, then

x ∈ U ′m ⊆ Um and x ∈ V ′n = Vn \
n⋃
k=1

Uk,

which is clearly a contradiction. Since n ≤ m also leads to a contradiction, we
conclude that X must be normal. �

Before we discuss some additional examples, let us first investigate which of the
separation axioms are preserved under taking subspaces and products. Since many
constructions in topology involve looking at subspaces or products of known spaces,
this is very useful in practice.

Proposition 10.15. If a topological space X is Hausdorff/regular, then every sub-
space of X is also Hausdorff/regular. If (Xi)i∈I is a collection of topological spaces
that are all Hausdorff/regular, then their product∏

i∈I
Xi

is also Hausdorff/regular.

Proof. We already know that every subspace of a Hausdorff space is again Haus-
dorff, and that an arbitrary product of Hausdorff spaces is again Hausdorff. We
will therefore concentrate on proving the same results for regular spaces.

First, let us consider a subspace Y of a regular space X. Obviously, every point
x ∈ Y is closed relative to Y , since it is the intersection of Y and the closed set {x}.
Now suppose we are also given a subset B ⊆ Y that is closed relative to Y , such
that x 6∈ B. By definition of the subspace topology, there is a closed set A ⊆ X
such that B = Y ∩ A. Because x ∈ Y , we have x 6∈ A, and so we separate x and
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A by disjoint open sets U, V ⊆ X. But then Y ∩ U and Y ∩ V are disjoint, open
relative to Y , and separate x and B.

Second, let us consider an arbitrary product of regular spaces Xi, indexed by a
set I. We shall use the other formulation of regularity in Proposition 11.1, because
it is easier to check. Given a point x = (xi)i∈I and an open set U containing x, we
can certainly find inside U a basic open set of the form∏

i∈I
Ui

containing x; recall that Ui = Xi for all but finitely many i ∈ I. If Ui = Xi, we
define Vi = Xi; otherwise, we use the regularity of X to find an open subset Vi with
x ∈ Vi and Vi ⊆ Ui. Now ∏

i∈I
Vi

is a neighborhood of x whose closure ∏
i∈I

Vi

is contained inside the original open set U . �

This result is no longer true for normality: subspaces of normal spaces need not
be normal. The proof breaks down in the case of two disjoint closed subsets of Y ,
because their extensions to closed sets in X may no longer be disjoint.

Counterexamples involving normal spaces. Unlike in the case of regular spaces,
products of normal spaces need not be normal. The simplest example of this in-
volves the lower limit topology.

Example 10.16. The lower limit topology R` is normal. Since the topology is finer
than the usual topology on R, it is clear that every one-point set is closed. To prove
normality, let A and B be disjoint closed subsets of R`. Every a ∈ A belongs to the
open set R` \ B, and so there must exist a basic open set of the form [a, xa) that
is disjoint from B. Similarly, there must exist a basic open set of the form [b, xb)
that is disjoint from A. If we now define

U =
⋃
a∈A

[a, xa) and V =
⋃
b∈B

[b, xb),

it is easy to see that U and V are disjoint open sets with A ⊆ U and B ⊆ V .

Example 10.17. The product space R` × R` is not normal. This example shows
that a product of two normal spaces need not be normal; since R` is regular, and
since the product of two regular spaces is again regular, it is also provides us with
an example of a regular space that is not normal.

The proof that R` × R` is not normal is surprisingly tricky. Since the basic
open sets in R` are half-open intervals, the product space has a basis consisting of
half-open squares of the form

Sr(x, y) = [x, x+ r)× [y, y + r).

The idea is to consider the line

L =
{

(x,−x)
∣∣ x ∈ R

}
⊆ R` × R`.
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Observe that L is closed (because its complement is open), and that the subspace
topology on L is discrete (because L∩S1(x,−x) = {(x,−x)} is open relative to L).
This means that every subset of L is actually closed in R` ×R`. In particular, the
two sets

A =
{

(x,−x)
∣∣ x ∈ Q

}
and B =

{
(x,−x)

∣∣ x 6∈ Q
}

are disjoint closed subsets; we shall argue that whenever we have A ⊆ U and B ⊆ V ,
the two open sets U and V must intersect.

What does it mean to have A ⊆ U and B ⊆ V ? Simply that for every x ∈ Q,
some basic open set Sr(x,−x) with r > 0 is contained in U , and that for every
x 6∈ Q, some basic open set Sr(x,−x) with r > 0 is contained in V . Since A and
B are extremely interwoven, it looks very likely that some of the basic open sets
around the points of A would have to intersect some of the basic open sets around
the points of B, and hence that U ∩ V 6= ∅; the only problem is that we do not
have much control over how big each basic open set is.

In a situation like this, where something is true for every real number, it is often
useful to think of Baire’s theorem. In fact, we can write R as a countable union

R = Q ∪
∞⋃
n=1

En,

where En =
{
x 6∈ Q

∣∣ S1/n(x,−x) ⊆ V
}

. The reason is that every x 6∈ Q has to
belong to En for sufficiently large n, simply because B ⊆ V . Of course, the En will
not be closed; but we also have

R = Q ∪
∞⋃
n=1

En,

and now Baire’s theorem gurantees that some En contains an open interval I. What
this means is that the points of En ∩ I are dense in I.

We now have a uniform bound on the size of the basic open sets, and so we can
easily show that U ∩ V 6= ∅. Let y ∈ I be any rational number; then (y,−y) ∈ A,
and so there exists some r > 0 with Sr(y,−y) ⊆ U . On the other hand, I contains
a dense subset of points x ∈ I ∩ En with S1/n(x,−x) ⊆ V . If we choose one such
point with |x− y| < min(r, 1/n), then

∅ 6= Sr(y,−y) ∩ S1/n(x,−x) ⊆ U ∩ V.
This shows that R` × R` is not normal.

The second example is a subspace of a normal space that fails to be normal. It
involves the minimal uncountable well-ordered set SΩ, which you may remember
from the homework. Let me first recall the definition of well-ordered sets.

Definition 10.18. A linear ordering ≤ on a set X is called a well-ordering if every
nonempty subset of X contains a least element.

A typical example of a well-ordered set is (N,≤). In fact, any well-ordered set
X looks like the natural numbers “at the beginning”: being well-ordered, X has
a unique smallest element, a unique second-smallest element, etc. It is not easy
to imagine well-ordered sets of larger cardinality, but in fact, the axiom of choice
implies that every set can be well-ordered in some way.

Theorem 10.19 (Well-Ordering Theorem). Every nonempty set has at least one
well-ordering.
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In particular, there are well-ordered sets of every possible cardinality. When
Zermelo announced this result, nobody really believed it could be true. A closer
examination of his proof showed that it involved choosing elements from infinitely
many nonempty sets, and thus the axiom of choice was introduced into set theory.
In fact, the Well-Ordering Theorem is another result that is logically equivalent to
the axiom of choice.

Example 10.20. Here is how one can use Zermelo’s theorem to prove the existence
of an uncountable well-ordered set in which every section is countable. Let S be
any uncountable set (such as R), and let ≤ be a well-ordering on S; as usual, we
shall use the notation x < y to mean x ≤ y and x 6= y. For every x ∈ S, we consider
the so-called section

Sx =
{
y ∈ S

∣∣ y < x
}
.

If it happens that Sx is countable for every x ∈ S, then (S,≤) is the desired minimal
uncountable well-ordered set. Otherwise, the subset{

x ∈ S
∣∣ Sx is uncountable

}
is nonempty, and because (S,≤) is well-ordered, it contains a smallest element m.
But then every section of Sm must be countable, and so (Sm,≤) has the properties
we want.

We denote the minimal uncountable well-ordered set by the symbol SΩ; we also
let SΩ = SΩ ∪ {Ω}, with the ordering in which Ω is the largest element. The
well-ordering on SΩ has the following curious property.

Lemma 10.21. Every countable subset of SΩ has a least upper bound in SΩ.

Proof. Let C ⊆ SΩ be a countable subset. Since every section of SΩ is countable,
the set {

x ∈ SΩ

∣∣ x < y for some y ∈ C
}

=
⋃
y∈C

{
x ∈ SΩ

∣∣ x < y
}

is countable, and therefore a proper subset of the uncountable set SΩ. Every element
of SΩ not in this subset is an upper bound for C; because SΩ is well-ordered, there
is a unique smallest element, which is a least upper bound for C. �

Example 10.22. The order topology on SΩ is compact Hausdorff, and therefore
normal. Recall that SΩ has both a largest element Ω and a smallest element; being
well-ordered, it also has the least upper bound property. The proof of Theorem 7.4
shows that SΩ is compact in the order topology; on the other hand, every order
topology is Hausdorff.

Example 10.23. The product SΩ × SΩ is not normal. Since it is a subspace of
SΩ × SΩ, which is again compact Hausdorff and therefore normal, this example
shows that a subspace of a normal space does not have to be normal.

The proof is again not easy. Recall that because SΩ is Hausdorff, the diagonal
in SΩ × SΩ is closed; consequently,

A =
{

(x, x)
∣∣ x ∈ SΩ

}
is a closed subset of SΩ × SΩ. Likewise, the set

B =
{

(x,Ω
∣∣ x ∈ SΩ

}
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is also closed, and clearly disjoint from A. We shall prove that it is not possible to
separate A and B by disjoint open sets in SΩ × SΩ.

Suppose to the contrary that we had A ⊆ U and B ⊆ V with U ∩ V = ∅. For
every point x ∈ SΩ, the vertical line{

(x, y)
∣∣ y ∈ SΩ

}
contains the point (x, x) ∈ A. Since U is a neighborhood of (x, x), and V is
a neighborhood of (x,Ω), it is clear that there exists an element y ∈ SΩ with
x < y < Ω and (x, y) 6∈ U . Since SΩ is well-ordered, we can define f(x) to be the
smallest element for which this holds; thus we obtain a function

f : SΩ → SΩ

with the property that x < f(x) and
(
x, f(x)

)
6∈ U . Now choose any x1 ∈ SΩ and

consider the increasing sequence

x1 < x2 < x3 < · · ·
defined by setting xn+1 = f(xn) for n = 1, 2, . . . . According to Lemma 10.21, the
sequence has a least upper bound b ∈ SΩ; being increasing, it is forced to converge
to b. We now obtain a contradiction by looking at the sequence of points(

xn, f(xn)
)

=
(
xn, xn+1

)
.

On the one hand, it converges to the point (b, b) ∈ U ; on the other hand, none of
the points

(
xn, f(xn)

)
belongs to U . Since U is open, this is absurd, and so SΩ×SΩ

cannot be normal.
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Lecture 11: September 29

We can formulate the definition of regularity and normality differently, in a way
that emphasizes separating subsets inside an open set from the “boundary” of the
open set.

Proposition 11.1. Let X be a topological space in which one-point sets are closed.

(a) X is regular if and only if for every x ∈ X and every open set U containing
x, there is a smaller open set V with x ∈ V and V ⊆ U .

(b) X is normal if and only if for every closed subset A ⊆ X and every open
set U containing A, there is a smaller open set V with A ⊆ V and V ⊆ U .

Proof. We will only prove (a), since (b) is very similar. Let us first show that
regularity implies the condition above. Any point x ∈ U does not belong to the
closed set X \ U ; since X is regular, we can find disjoint open sets V and W with
x ∈ V and X \ U ⊆W . Now V is contained in the closed set X \W , and so

V ⊆ X \W ⊆ U,
as claimed. To prove the converse, we can use the same argument backwards. �

Urysohn’s lemma. Our topic today is the following useful theorem about normal
spaces – which, for historical reasons, is known as Urysohn’s lemma.

Theorem 11.2 (Urysohn’s lemma). Let X be a normal topological space, and let
A,B ⊆ X be disjoint closed subsets. Then there is a continuous function

f : X → [0, 1]

with the property that f(x) = 0 for every x ∈ A, and f(x) = 1 for every x ∈ B.

Urysohn’s lemma tells us that when X is normal, there are many continuous
functions from X to R. This is very useful, because one can then try to use such
functions to embed X into a product of copies of R; as we will see later, applications
of this idea include a sufficient condition for a topological space to be metrizable,
and an embedding theorem for abstract compact manifolds.

Example 11.3. Before we try to prove Urysohn’s lemma in general, let us first
consider the example of metric spaces; as we know, every metric space is normal.
When X is a metric space, one can actually write down a function f explicitly
in terms of distances. First, given any closed set A ⊆ X, we can easily create a
continuous function that vanishes on A and is positive everywhere else: simply take

X → [0,∞), x 7→ d(x,A).

Here the distance from the point x to the set A is by definition

d(x,A) = inf
{
d(x, y)

∣∣ y ∈ A};

note that the infimum may not be achieved (for example when X = Q and A is the

set of all rational numbers greater than
√

2). One can show that this function is
continuous on X (see the homework for this week). Note that d(x,A) = 0 if x ∈ A.
If x 6∈ A, then we have Br(x) ⊆ X \A for some r > 0, and so d(x,A) ≥ r > 0.

Now suppose that we are given two disjoint closed sets A and B. Consider the
function

f : X → [0, 1], f(x) =
d(x,A)

d(x,A) + d(x,B)
,
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which is well-defined and continuous because, due to the fact that A ∩ B = ∅, the
denominator is always positive. By inspection, f(x) = 0 for x ∈ A, and f(x) = 1
for x ∈ B.

Proof of Urysohn’s lemma. Now we return to the case where A,B are disjoint
closed sets in an arbitrary normal space X. Since we do not know any R-valued
continuous functions on X, constructing the desired function f will be more in-
volved. Note that continuity of f is the main point: otherwise, we could just define
f to be 0 on A, to be 1 on B, and to be something else on X \ (A ∪ B). In a
nutshell, the idea for the construction is the following: using the normality of X,
we will construct very many open sets in X, and then we use the position of x ∈ X
with respect to these open sets to decide what the value of f(x) should be.

One way to approach the problem is the following. Suppose we already had a
continuous function f : X → [0, 1] with the desired properties. For each t ∈ [0, 1],
the sublevel set

Ut = f−1[0, t) ⊆ X
would then be open. Moreover, for s < t, we would have not only Us ⊆ Ut, but
actually

Us ⊆ Ut,
due to the fact that f−1[0, s] is a closed set containing Us and contained in Ut.
These containments look very similar to the alternative definition of normality in
Proposition 11.1: whenever we have A ⊆ U with A closed and U open, we can find
V open with A ⊆ V ⊆ V ⊆ U . So what we will do is to construct a collection
of open sets that have the same property as the sublevel sets of our hypothetical
function f ; and then we will use these open sets to actually define the function f .

Now we begin the actual proof. The first step is to choose a countable dense
subset of R; for the sake of convenience, we shall use the set of dyadic rationals

D =

{
k

2n

∣∣∣∣ k ∈ Z and n ≥ 1

}
.

We order the set of dyadic rationals in [0, 1] as follows:

D ∩ [0, 1] =
{

0, 1, 1
2 ,

1
4 ,

3
4 ,

1
8 ,

3
8 , . . .

}
For every α ∈ D ∩ [0, 1], we now select an open set Uα ⊆ X by the following
recursive procedure. To start, define U1 = X \B and note that A is a closed subset
of the open set U1; using normality, we can find an open set U0 with

A ⊆ U0 ⊆ U0 ⊆ U1.

The next dyadic rational on the list is 1
2 , which lies between 0 and 1; we use

normality to find an open set U 1
2

with

U0 ⊆ U 1
2
⊆ U 1

2
⊆ U1.

Next comes 1
4 , which lies between 0 and 1

2 ; accordingly, we choose

U0 ⊆ U 1
4
⊆ U 1

4
⊆ U 1

2
;

and for 3
4 , we choose

U 1
2
⊆ U 3

4
⊆ U 3

4
⊆ U1.

Continuing in this way, we obtain a family of open subsets Uα, indexed by the set
D∩[0, 1]. Since it will simplify the proof later, we extend the definition to all dyadic
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rationals by putting Uα = ∅ for α < 0 and Uβ = X for β > 1. The resulting family
of open sets has the following properties:

(1) A ⊆ U0 and U1 = X \B.
(2) Uα = ∅ for α < 0 and Uβ = X for β > 1.

(3) If α < β, then Uα ⊆ Uβ .

Although this is not going to be quite exactly true, think of the sets Uα as the
sublevel sets of the function f that we are trying to construct.

The second step of the proof is to define a suitable function f : X → [0, 1]. For
any x ∈ X, we consider the set

D(x) =
{
α ∈ D

∣∣ x ∈ Uα }
that keeps track of which Uα the given point belongs to. If our open sets were
actually sublevel sets of a function f , the condition x ∈ Uα would mean that
f(x) < α; this observation suggests the following definition:

f : X → [0, 1], f(x) = inf D(x)

Why does this make sense? Since Uβ = X for every β > 1, the set D(x) contains
all dyadic rationals greater than 1; on the other hand, Uα = ∅ for α < 0, and so
D(x) contains no dyadic rationals less than 0. In particular, D(x) is nonempty and
bounded from below; using the properties of R, it has a well-defined greatest lower
bound in [0, 1]. It is not obvious that f is continuous, but we can easily show that
it has the correct values on A and B. Indeed, if x ∈ A, we have x ∈ U0, hence
0 ∈ D(x), which shows that f(x) = inf D(x) = 0. On the other hand, x ∈ B implies
that x 6∈ Uα for any α ≤ 1; but then f(x) = inf D(x) = 1.

The following lemma will help us prove that f is continuous.

Lemma 11.4. With notation as above, the following is true:

(a) If x ∈ Uα, then f(x) ≤ α; equivalently, if f(x) > α, then x 6∈ Uα.
(b) If X 6∈ Uβ, then f(x) ≥ β; equivalently, if f(x) < β, then x ∈ Uβ.

Proof. For (a), suppose that x ∈ Uα. Then x ∈ Uβ for every β > α, which means
that D(x) contains every dyadic rational β > α. Because D is dense in the unit
interval, this can only happen if f(x) = inf D(x) ≤ α: otherwise, we could find
some β ∈ D(x) with α < β < f(x), contradicting the definition of f(x).

For (b), suppose that x 6∈ Uβ . Then x 6∈ Uα for any α ≤ β, which means that
D(x) does not contain any α ≤ β; this clearly makes β a lower bound for D(x) and
so f(x) = inf D(x) ≥ β. �

Now we argue that f is continuous. Since [0, 1] has the subspace topology, it
will be enough to show that f is continuous as a function from X to R. Given any
point x0 ∈ X, and any open interval (c, d) containing the point f(x0), we have to
show that there is a neighborhood U of x0 with f(U) ⊆ (c, d). Using the fact that
D is dense, we choose α, β ∈ D with

c < α < f(x0) < β < d.

I claim that the open set

U = Uβ \ Uα
contains the point x0 and satisfies f(U) ⊆ I. To see why, observe that we have
f(x0) < β, and therefore x0 ∈ Uβ by the lemma; likewise, f(x0) > α, and therefore
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x0 6∈ Uα. To show that f(U) ⊆ (c, d), take an arbitrary point x ∈ U . Then x ∈ Uβ ,
and so f(x) ≤ β by the lemma; likewise, x 6∈ Uα, and so f(x) ≥ α. This yields

f(U) ⊆ [α, β] ⊆ (c, d)

and shows that f is continuous.

Urysohn’s lemma versus normality. Urysohn’s lemma shows that any two
disjoint closed subsets in a normal space can be separated by a continuous function,
in the following sense.

Definition 11.5. Let X be a topological space and let A,B ⊆ X be disjoint closed
sets. We say that A and B can be separated by a continuous function if there is a
continuous function f : X → [0, 1] with f(x) = 0 for every x ∈ A and f(x) = 1 for
every x ∈ B.

This condition looks a lot more useful than being normal, because it is more
useful to have a lot of continuous functions that to have a lot of open sets. But in
fact, it is precisely equivalent to normality.

Corollary 11.6. Let X be a topological space in which all one-point sets are closed.
Then X is normal if and only if every pair of disjoint closed sets can be separated
by a continuous function.

Proof. Urysohn’s lemma shows that every normal space satisfies this condition.
Conversely, suppose that every pair of disjoint closed sets A,B ⊆ X can be sepa-
rated by a continuous function f : X → [0, 1]. Then

U = f−1
[
0, 1

2

)
and V = f−1

(
1
2 , 1
]

are disjoint open sets containing A and B, respectively. �
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Lecture 12: October 4

Midterm. The midterm will be held in class on Tuesday, October 18. It can
include all the material from point set topology up until the end of this week.

Urysohn’s metrization theorem. Today, I want to explain some applications
of Urysohn’s lemma. The first one has to do with the problem of characterizing
metric spaces among all topological spaces. As we know, every metric space is also
a topological space: the collection of open balls Br(x) is a basis for the metric
topology. A natural question is exactly which topological spaces arise in this way.

Definition 12.1. A topological space X is called metrizable if it is homeomorphic
to a metric space (with the metric topology).

In fact, the answer is known: the Nagata-Smirnov metrization theorem gives a
necessary and sufficient condition for metrizability. If you are interested, please
see Chapter 6 in Munkres’ book; to leave enough time for other topics, we will
not discuss the general metrization theorem in class. We will focus instead on the
special case of second countable spaces, which is all that one needs in practice.

Recall from last week that every metric space is normal. It turns out that if we
restrict our attention to spaces with a countable basis, then normality is equivalent
to metrizability; this is the content of the following theorem by Urysohn. In fact,
it is enough to assume only regularity: by Theorem 10.14, every regular space with
a countable basis is normal.

Theorem 12.2 (Urysohn’s metrization theorem). Every regular space with a count-
able basis is metrizable.

Example 12.3. For example, every compact Hausdorff space with a countable basis
is metrizable: the reason is that every compact Hausdorff space is normal.

There are two ways to show that a given spaceX is metrizable: one is to construct
a metric that defines the topology on X; the other is to find an embedding of X into
a metric space, because every subspace of a metric space is again a metric space.
To prove the metrization theorem, we first show that the product space [0, 1]ω is
metrizable (by constructing a metric), and then we show that every regular space
with a countable basis can be embedded into [0, 1]ω (by using Urysohn’s lemma).

Proposition 12.4. The product space [0, 1]ω is metrizable.

Proof. We write the points of [0, 1]ω in the form x = (x1, x2, . . . ), where 0 ≤ xk ≤ 1.
Recall from our discussion of the product topology that the collection of open sets{

y ∈ [0, 1]ω
∣∣ |xk − yk| < rk for k = 1, . . . , n

}
is a basis for the topology T ; here x ∈ [0, 1]ω is any point, n ≥ 1 is an integer,
and r1, . . . , rn are positive real numbers. Each of the basic open sets only imposes
conditions on finitely many coordinates; our task is to find a metric in which the
open balls have the same property.

We define a candidate metric on the product space by the formula

d(x, y) = sup
k

1

k
|xk − yk| = max

k

1

k
|xk − yk|.

Because |xk − yk| ≤ 1, the numbers 1
k |xk − yk| approach 0 as k gets large; the

supremum is therefore achieved for some k. It is an easy exercise to check that d is
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indeed a metric. To prove that the metric topology Td is the same as the product
topology T , we have to compare the basic open sets in both topologies.

Let us first show that every open ball Br(x) is open in the product topology. By
definition, we have

Br(x) =
{
y ∈ [0, 1]ω

∣∣ d(x, y) < r
}

=
{
y ∈ [0, 1]ω

∣∣ |xk − yk| < kr for every k
}

=
{
y ∈ [0, 1]ω

∣∣ |xk − yk| < kr for every k ≤ r−1
}

;

the last equality holds because |xk−yk| < kr is automatically satisfied once kr > 1,
due to the fact that xk, yk ∈ [0, 1]. So the open ball Br(x) is actually a basic open
set in the product topology, which means that Td ⊆ T .

To prove that the two topologies coincide, let U ∈ T be an arbitrary open set
in the product topology. For any point x ∈ U , some basic open set{

y ∈ [0, 1]ω
∣∣ |xk − yk| < rk for k = 1, . . . , n

}
must be contained in U . If we now define

r = min
1≤k≤n

rk
k
,

then we have kr < rk for every k = 1, . . . , n, and so the open ball

Br(x) =
{
y ∈ [0, 1]ω

∣∣ |xk − yk| < kr for every k
}

is contained in U . This is enough to conclude that U ∈ Td, and hence that Td = T ;
thus the product space [0, 1]ω is indeed metrizable. �

One consequence is that Rω is also metrizable: it is homeomorphic to (0, 1)ω,
which is a subspace of the metrizable space [0, 1]ω. You can see from the proof that
the index set really had to be countable in order to define the metric; in fact, one
can show that the product of uncountably many copies of R is no longer metrizable.

Proof of Urysohn’s metrization theorem. We are now ready to prove The-
orem 12.2. Let X be a regular space with a countable basis; let me remind you
that X is automatically normal (by Theorem 10.14). The idea of the proof is to
construct an embedding

F : X → [0, 1]ω, F (x) =
(
f1(x), f2(x), . . .

)
.

Recall that an embedding is an injective function f : X → Y that induces a homeo-
morphism between X and the subspace f(X) of Y . Since a function into a product
space is continuous if and only if all the coordinate functions fn = pn ◦ F are con-
tinuous, we have to look for countably many continuous functions fn : X → [0, 1].
There are two other requirements: (1) F should be injective, meaning that when-
ever x 6= y, there should exist some n with fn(x) 6= fn(y). (2) F should induce
a homeomorphism between X and F (X), meaning that whenever U ⊆ X is open,
F (U) should be open in the subspace topology on F (X).

Lemma 12.5. There are countably many continuous functions fn : X → [0, 1] with
the following property: for every open set U ⊆ X and for every point x0 ∈ U , there
is some index n such that fn(x0) = 1, but fn(x) = 0 for all x 6∈ U .
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Proof. Since X is normal, we can easily find such a function for every U and every
x0: we only have to apply Urysohn’s lemma to the two closed sets {x0} and X \U .
The resulting collection of functions is not going to be countable in general, but we
can use the existence of a countable basis to make it so.

Let B1, B2, . . . be a countable basis for the topology on X. For every pair of
indices m,n such that Bm ⊆ Bn, the two closed sets Bm and X \ Bn are disjoint;
Urysohn’s lemma gives us a continuous function gm,n : X → [0, 1] with

gm,n(x) =

{
1 if x ∈ Bm,

0 if x 6∈ Bn.

In this way, we obtain countably many continuous functions; I claim that they have
the desired property. In fact, suppose that we have an open set U ⊆ X and a point
x0 ∈ U . Because the Bn form a basis, there is some index n with x ∈ Bn ⊆ U .
Now X is regular, and so we can find a smaller open set V with

x ∈ V ⊆ V ⊆ Bn;

we can also choose another index m such that x ∈ Bm ⊆ V . Then Bm ⊆ V ⊆ Bn,
and the function gm,n from above satisfies gm,n(x0) = 1 (because x0 ∈ Bm), and
gm,n(x) = 0 for x ∈ X \U (because X \U ⊆ X \Bn). This shows that the countably
many functions gm,n do what we want. �

Using the functions from the lemma, we can now define a function

F : X → [0, 1]ω, F (x) =
(
f1(x), f2(x), . . .

)
;

because all the individual functions fn are continuous, the function F is also con-
tinuous (by Theorem 4.16). Our goal is to show that F is an embedding. Injectivity
is straightforward: Suppose we are given two points x, y ∈ X with x 6= y. Then x
belongs to the open set X \ {y}, and so Lemma 12.5 guarantees that there is some
index n for which fn(x) = 1 and fn(y) = 0. But then F (x) 6= F (y), because their
n-th coordinates are different.

This already proves that F is a continuous bijection between X and F (X); the
following lemma shows that it is even a homeomorphism.

Lemma 12.6. F is a homeomorphism between X and the subspace F (X) of [0, 1]ω.

Proof. We have to show that for any nonempty open set U ⊆ X, the image F (U)
is open in the subspace topology on F (X). Consider an arbitrary point t0 ∈ F (U);
note that t0 = F (x0) for a unique x0 ∈ U . According to Lemma 12.5, there is some
index n with fn(x0) = 1 and fn(x) = 0 for every x 6∈ U . Now consider the set

W = F (X) ∩
{
t ∈ [0, 1]ω

∣∣ pn(t) > 0
}
.

It is clearly open in F (X), being the intersection of F (X) with a basic open set in
[0, 1]ω. I claim that t0 ∈W and W ⊆ F (U). In fact, we have

pn(t0) = pn
(
F (x0)

)
= fn(x0) > 0,

which shows that t0 ∈ W . On the other hand, every point t ∈ W is of the form
t = F (x) for a unique x ∈ X, and

fn(x) = pn
(
F (x)

)
= pn(t) > 0.

Since fn vanishes outside of U , this means that x ∈ U , and so t = F (x) ∈ F (U). It
follows that F (U) is a union of open sets, and therefore open. �
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The conclusion is that X is homeomorphic to a subspace of [0, 1]ω; because
the latter space is metrizable, X itself must also be metrizable. We have proved
Theorem 12.2.

Embeddings of manifolds. The strategy that we used to prove Theorem 12.2 –
namely to embed a given space X into a nice ambient space, using the existence
of sufficiently many continuous functions on X – has many other applications in
topology and geometry. One such application is to the study of abstract manifolds.
Recall the following definition.

Definition 12.7. An m-dimensional topological manifold is a Hausdorff space with
a countable basis in which every point has a neighborhood homeomorphic to an
open set in Rm.

Earlier in the semester, I left out the condition that manifolds should have
a countable basis. The integer m is called the dimension of the manifold; it is
uniquely determined by the manifold, because one can show that a nontrivial open
subset in Rm can only be homeomorphic to an open subset in Rn when m = n.
One-dimensional manifolds are called curves, two-dimensional manifolds are called
surfaces; the study of special classes of manifolds is arguably the most important
object of topology.

Of course, people were already studying manifolds long before the advent of
topology; back then, the word “manifold” did not mean an abstract topological
space with certain properties, but rather a submanifold of some Euclidean space.
So the question naturally arises whether every abstractly defined manifold can
actually be realized as a submanifold of some RN . The answer is yes; we shall
prove a special case of this result, namely that every compact manifold can be
embedded into RN for some large N .

Remark. One can ask the same question for manifolds with additional structure,
such as smooth manifolds, Riemannian manifolds, complex manifolds, etc. This
makes the embedding problem more difficult: for instance, John Nash (who was
portrayed in the movie A Beautiful Mind) became famous for proving an embedding
theorem for Riemannian manifolds.

Of course, every m-dimensional manifold can “locally” be embedded into Rm;
the problem is how to patch these locally defined embeddings together to get a
“global” embedding. This can be done with the help of the following tool.

Definition 12.8. Let X = U1 ∪ · · · ∪ Un be an open covering of a topological
space X. A partition of unity (for the given covering) is a collection of continuous
functions φ1, . . . , φn : X → [0, 1] with the following two properties:

(1) The support of φk is contained in the open set Uk.
(2) We have

∑n
k=1 φk(x) = 1 for every x ∈ X.

Here the support Suppφ of a continuous function φ : X → R means the closure
of the set φ−1(R\{0}); with this definition, x 6∈ Suppφ if and only if φ is identically
zero on some neighborhood of x.
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Lecture 13: October 6

Embeddings of manifolds (continued). Recall from last time the definition of
a partition of unity. Given a finite open covering X = U1∪ · · ·∪Un of a topological
space, a partition of unity is a collection of continuous functions φ1, . . . , φn : X →
[0, 1] with the following two properties:

(1) The support of φk is contained in the open set Uk.
(2) We have

∑n
k=1 φk(x) = 1 for every x ∈ X.

Example 13.1. Partitions of unity are useful for extending locally defined functions
continuously to the entire space. For example of how this works, suppose that
X = U1 ∪ U2, and that we have a continuous function f1 : U1 → R. Assuming that
there is a partition of unity φ1 + φ2 = 1, we can consider the function

f : X → R, f(x) =

{
f1(x)φ1(x) if x ∈ U1,

0 if x ∈ X \ Suppφ1.

Since the two definitions are compatible on the intersection of the two open sets U1

and X \ Suppφ1, the function f is continuous. Now every x ∈ X \ Suppφ2 belongs
to Suppφ1 ⊆ U1, because of the relation φ1(x) = φ1(x) + φ2(x) = 1, and so

f(x) = f1(x)φ1(x) = f1(x).

As you can see, we have obtained a continuous function on X that agrees with the
original function f1 on the smaller open set X \ Suppφ2.

We can use Urysohn’s lemma to construct a partition of unity for every finite
open covering of a normal space.

Lemma 13.2. If X is normal, then every finite open covering X = U1 ∪ · · · ∪ Un
admits a partition of unity.

Proof. Let me first explain the general idea. This is easier to follow if you draw
a picture. Consider one of the open sets in the covering, say U1. Since we want
Suppφ1 to be contained inside U1, the function φ1 should presumably be equal to
1 somewhere inside of U1, and then continuously go down to 0 near the boundary
of U1. One way to make sure that this happens is to choose two open sets W1 and
V1 with the property that

W1 ⊆ V1 ⊆ V1 ⊆ U1,

and then arrange that φ1 is equal to 1 on W1, and equal to 0 on X\V1. To construct
φ1, we can of course use Urysohn’s lemma. Here are the details:

Step 1. We can find an open covering X = V1 ∪ · · · ∪ Vn such that Vk ⊆ Uk for
every k = 1, . . . , n. To get started, consider the set

A = X \
(
U2 ∪ · · · ∪ Un

)
.

It is closed and contained in the open set U1, because X = U1 ∪ · · · ∪ Un. Since
X is normal, we can find an open set V1 with A ⊆ V1 ⊆ V1 ⊆ U1; by construction,
V1, U2, . . . , Un is still an open covering of X.

To get the remaining open sets, we proceed by induction. Suppose that we
already have V1, . . . , Vk−1 with X = V1 ∪ · · · ∪ Vk−1 ∪ Uk ∪ · · · ∪ Un. Then

B = X \
(
V1 ∪ · · · ∪ Vk−1 ∪ Uk+1 ∪ · · · ∪ Un

)
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is closed and contained in the open set Uk. Since X is normal, we can find an open
set Vk with B ⊆ Vk ⊆ Vk ⊆ Uk; now V1, . . . , Vk, Uk+1, . . . , Un still cover X, and so
we can continue the process until we reach k = n.

Step 2. We construct the desired partition of unity φ1 + · · ·+φn = 1. Repeating
the argument in Step 1 for the open covering X = V1 ∪ · · · ∪ Vn, we can find an
open covering X = W1 ∪ · · · ∪Wn by even smaller open sets with

Wk ⊆ Vk ⊆ Vk ⊆ Uk.

Now the closed sets Wk and X \ Vk are disjoint, and so Urysohn’s lemma tells
us that there is a continuous function ψk : X → [0, 1] with

ψk(x) =

{
1 if x ∈Wk,

0 if x ∈ X \ Vk.

Because ψk is identically zero on X \Vk, the support of ψk is contained in Vk ⊆ Uk.
To turn these functions into a partition of unity, we now consider their sum

ψ1 + · · ·+ ψn.

At every x ∈ X, the value of the sum is at least 1: indeed, we have ψk(x) = 1 for
x ∈Wk, and the open sets W1, . . . ,Wn cover X. Therefore

φk =
ψk

ψ1 + · · ·+ ψn

is a continuous function from R into [0, 1], with the property that Suppφk ⊆ Uk.
Since φ1 + · · ·+ φn = 1 is clear, we have found the desired partition of unity. �

We can use the existence of partitions of unity to prove the following embedding
theorem for compact manifolds.

Theorem 13.3. Every compact manifold can be embedded into Euclidean space.

Proof. Let X be a compact manifold of dimension m; we will construct an em-
bedding F : X → RN for some large integer N . By definition, every point of X
has a neighborhood homeomorphic to an open set in Rm; since X is compact,
finitely many of these neighborhoods will cover X. We thus get an open covering
X = U1 ∪ · · · ∪ Un as well as embeddings

gk : Uk → Rm.

Let φ1 + · · · + φn = 1 be a partition of unity; it exists by Lemma 13.2 because X
is compact Hausdorff, hence normal. For every k = 1, . . . , n, consider the function

fk : X → Rm, fk(x) =

{
φk(x)gk(x) if x ∈ Uk,

0 if x ∈ X \ Suppφk.

The two definitions are compatible on the intersections of the open sets Uk and
X \ Suppφk, and so fk is continuous.

Now it is an easy matter to obtain the desired embedding. Set N = n + mn,
and consider the function

F : X → RN = Rn × (Rm)n, F (x) =
(
φ1(x), . . . , φn(x), f1(x), . . . , fn(x)

)
.

Clearly, F is continuous; we want to show that it defines an embedding of X into
RN . Because X is compact and RN is Hausdorff, all we have to do is prove that F



3

is injective: a continuous bijection between a compact space and a Hausdorff space
is automatically a homeomorphism!

So suppose that we have two points x, y ∈ X with F (x) = F (y). This means that
φk(x) = φk(y) and fk(x) = fk(y) for every k = 1, . . . , n. Since φ1 + · · ·+φn = 1, we
can find some index k for which φk(x) = φk(y) > 0. This forces x, y ∈ Uk (because
Suppφk ⊆ Uk); but then

φk(x)gk(x) = fk(x) = fk(y) = φk(y)gk(y).

After dividing by φk(x) = φk(y), we see that gk(x) = gk(y); but gk : Uk → Rm was
injective, and so x = y. �

The choice of N is far from optimal: with some additional tricks, one can show
that every compact manifold of dimension m can actually be embedded into R2m.

The Tietze extension theorem. Another important application of Urysohn’s
lemma is the following extension theorem for continuous real-valued functions. This
result is very useful in analysis.

Theorem 13.4 (Tietze extension theorem). Let X be a normal topological space,
and A ⊆ X a closed subset.

(a) Let I ⊆ R be a closed interval. Any continuous function f : A → I can be
extended to a continuous function g : X → I.

(b) Similarly, any continuous function f : A→ R can be extended to a contin-
uous function g : X → R.

Saying that g extends f means that we have g(a) = f(a) for every point a ∈ A.
The assumption that A be closed is very important: for example, the function
f : (0,∞)→ R with f(x) = 1/x cannot be extended continuously to all of R.

Proof of Tietze’s theorem. We did not discuss the proof of Theorem 13.4 in
class; I am including it in the notes for people who want to see how it works.
Roughly speaking, it goes like this. Using Urysohn’s lemma, we construct a se-
quence of continuous functions sn : X → I that approximates f more and more
closely as n gets large. The desired function g will be the limit of this sequence.
Since we want g to be continuous, we first have to understand under what con-
ditions the limit of a sequence of continuous functions is again continuous. The
keyword here is “uniform convergence”.

Consider a sequence of functions fn : X → R from a topological space X to the
real numbers (or, more generally, to a metric space). We say that the sequence
converges (pointwise) to a function f : X → R if, for every x ∈ X, the sequence of
real numbers fn(x) converges to the real number f(x). More precisely, this means
that for every x ∈ X and every ε > 0, there exists N with |fn(x)− f(x)| < ε for all
n ≥ N . Of course, N is allowed to depend on x; we get a more restrictive notion of
convergence if we assume that the same N works for all x ∈ X at the same time.

Definition 13.5. A sequence of functions fn : X → R converges uniformly to a
function f : X → R if, for every ε > 0, there is some N such that |f(x)−fn(x)| < ε
for all n ≥ N and all x ∈ X.

The usefulness of uniform convergence is that it preserves continuity.

Lemma 13.6. The limit of a uniformly convergent sequence of continuous func-
tions is continuous.
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Proof. Suppose that the sequence of continuous functions fn : X → R converges
uniformly to a function f : X → R. We have to show that f is continuous. Let V ⊆
R be an arbitrary open set; to show that f−1(V ) is open, it suffices to produce for
every point x0 ∈ f−1(V ) a neighborhood U with f(U) ⊆ V . This is straightforward.
One, f(x0) ∈ V , and so there is some r > 0 with

Br
(
f(x0)

)
⊆ V.

Two, the sequence converges uniformly, and so we can find an index n such that
|fn(x) − f(x)| < r/3 for every x ∈ X. Three, fn is continuous, and so there is an
open set U containing x0 with

fn(U) ⊆ Br/3
(
fn(x0)

)
.

Now we can show that f(U) ⊆ V . Let x ∈ U be any point; then

|f(x)−f(x0)| ≤ |f(x)−fn(x)|+ |fn(x)−fn(x0)|+ |fn(x0)−f(x0)| < r

3
+
r

3
+
r

3
= r,

and so f(x) ∈ Br
(
f(x0)

)
⊆ V . �

We will do the proof of Theorem 13.4 in three steps. Throughout, X denotes a
normal topological space, and A ⊆ X a closed subset.

The first step is to solve the following simpler problem. Given a continuous
function f : A→ [−r, r], we are going to construct a continuous function h : X → R
that is somewhat close to f on the set A, without ever getting unreasonably large.
More precisely, we want the following two conditions:

|h(x)| ≤ 1

3
r for every x ∈ X(13.7)

|f(a)− h(a)| ≤ 2

3
r for every a ∈ A(13.8)

To do this, we divide [−r, r] into three subintervals of length 2
3r, namely

I1 =

[
−r, 1

3
r

]
, I2 =

[
−1

3
r,

1

3
r

]
, I3 =

[
1

3
r, r

]
.

Now consider the two sets B = f−1(I1) and C = f−1(I3). They are closed subsets
of A (because f is continuous), and therefore of X (because A is closed); they are
also clearly disjoint. Because X is normal, Urysohn’s lemma produces for us a
continuous function h : X → [− 1

3r,
1
3r] with

h(x) =

{
− 1

3r for x ∈ B,
1
3r for x ∈ C.

Since |f(x)| ≤ 1
3r, it is clear that (13.7) holds. To show that (13.8) is also satisfied,

take any point a ∈ A. There are three cases. If a ∈ B, then f(a) and h(a) both
belong to I1; if a ∈ C, then f(a) and h(a) both belong to I3; if a 6∈ B ∪ C, then
f(a) and h(a) both belong to I2. In each case, the distance between f(a) and h(a)
can be at most 2

3r, which proves (13.8).
The second step is to use the construction from above to prove assertion (a) in

Theorem 13.4. If I consists of a single point, the result is clear. On the other hand,
any closed interval of positive length is homeomorphic to [−1, 1]; without loss of
generality, we may therefore assume that we are dealing with a continuous function
f : A → [−1, 1]. As I said above, our strategy is to build a uniformly convergent
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sequence of continuous functions sn : X → [−1, 1] that approximates f more and
more closely on A.

To begin with, we can apply the construction in the first step to the function
f : A→ [−1, 1]; the result is a continuous function h1 : X → R with

|h1(x)| ≤ 1

3
r and |f(a)− h1(a)| ≤ 2

3
r.

Now consider the difference f − h1, which is a continuous function from A into the
closed interval [− 2

3r,
2
3r]. By applying the construction from the first step again

(with r = 2
3 ), we obtain a second continuous function h2 : X → R with

|h2(x)| ≤ 1

3
· 2

3
and |f(a)− h1(a)− h2(a)| ≤

(
2

3

)2

.

Notice how h1 +h2 is a better approximation for f than the initial function h1. We
can obviously continue this process indefinitely. After n steps, we have n continuous
functions h1, . . . , hn : X → R with

|f(a)− h1(a)− · · · − hn(a)| ≤
(

2

3

)n
.

By applying the construction to the function f − h1 − · · · − hn and the value
r = (2/3)n, we obtain a new continuous function hn+1 : X → R with

|hn+1(x)| ≤ 1

3
·
(

2

3

)n
and |f(a)− h1(a)− · · · − hn(a)− hn+1(a)| ≤

(
2

3

)n+1

.

Now I claim that the function

g(x) =

∞∑
n=1

hn(x)

is the desired continuous extension of f . To prove this claim, we have to show that
the series converges for every x ∈ X; that the limit function g : X → [−1, 1] is
continuous; and that g(a) = f(a) for every a ∈ A.

To prove the convergence, let us denote by sn(x) = h1(x) + · · ·+ hn(x) the n-th
partial sum of the series; clearly, sn : X → R is continuous. If m > n, then

|sm(x)− sn(x)| ≤
m∑

k=n+1

|hk(x)| ≤ 1

3

m∑
k=n+1

(
2

3

)k−1

≤
(

2

3

)n
.

This proves that the sequence of real numbers sn(x) is Cauchy; if we define g(x) as
the limit, we obtain a function g : X → R. Now we can let m go to infinity in the
inequality above to obtain

|g(x)− sn(x)| ≤
(

2

3

)n
for every x ∈ X. This means that the sequence sn converges uniformly to g, and so
by Lemma 13.6, g is still continuous. It is also not hard to see that g takes values
in [−1, 1]: for every x ∈ X, we have

|g(x)| ≤
∞∑
n=1

|hn(x)| ≤ 1

3

∞∑
n=1

(
2

3

)n−1

= 1,
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by evaluating the geometric series. It remains to show that g(a) = f(a) whenever
a ∈ A. By construction, we have

|f(a)− sn(a)| = |f(a)− h1(a)− · · · − hn(a)| ≤
(

2

3

)n
;

letting n→∞, it follows that |f(a)− g(a)| = 0, which is what we wanted to show.
The third step is to prove assertion (b) in Theorem 13.4, where we are given a

continuous function f : A→ R. Evidently, R is homeomorphic to the open interval
(−1, 1); the result of the second step therefore allows us to extend f to a continuous
function g : X → [−1, 1]. The remaining problem is how we can make sure that
g(X) ⊆ (−1, 1). Here we use the following trick. Given g, we consider the subset

D = g−1{−1, 1} ⊆ X.
Because g is continuous, this set is closed; it is also disjoint from the closed set
A, because g(A) ⊆ (−1, 1). By Urysohn’s lemma, there is a continuous function
ϕ : X → [0, 1] with ϕ(D) = {0} and ϕ(A) = {1}. Now consider the continuous
function ϕ · g. It is still an extension of f , because we have

ϕ(a) · g(a) = g(a) = f(a)

for a ∈ A. The advantage is that ϕ · g maps X into the open interval (−1, 1): if
x ∈ D, then ϕ(x) · g(x) = 0, while if x 6∈ D, then |ϕ(x) · g(x)| ≤ |g(x)| < 1. This
completes the proof of Tietze’s extension theorem.
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Lecture 14: October 13

Complete metric spaces. Our topic this week is the space C(X,Y ) of continuous
functions between two topological spaces X and Y . Understanding the space of all
continuous functions can be very useful, for example to find interesting examples of
continuous functions. This topic actually belongs more to analysis than to topology,
but since it involves several results from general topology as well, it seems like a
good way to finish our discussion of general topology. Before we get to the space
of continuous functions, however, we have to return for a moment to the subject of
metric spaces and introduce the important concept of completeness.

Let (X, d) be a metric space. We saw earlier that the metric topology on X is
first countable – the open balls with radius in Q form a neighborhood basis at every
point – and that many properties of subsets can therefore be detected by looking
at sequences: a subset A ⊆ X is closed iff it is sequentially closed; a subset A ⊆ X
is compact iff it is sequentially compact; etc.

In analysis, an important problem is to decide whether a given sequence in a
metric space converges. Typically, one does not know ahead of time what the limit is
– more often than not, the whole point of trying to show that the sequence converges
is so that one can be sure that there is a limit. The notion of a “Cauchy sequence”,
which you have probably already seen in your analysis course, was introduced to
deal with this problem: proving that a sequence converges without knowing what
the limit is.

Definition 14.1. A sequence of points xn ∈ X is called a Cauchy sequence if, for
every ε > 0, one can find an integer N such that

d(xn, xm) < ε for all m,n ≥ N .

Intuitively, a Cauchy sequence is one where the points xn huddle closer and closer
together as n gets large. Of course, not every Cauchy sequence actually converges:
in the metric space Q, any sequence that converges to an irrational number in R is
a Cauchy sequence without limit in Q.

Definition 14.2. A metric space (X, d) is called complete if every Cauchy sequence
in X has a limit in X.

So R is complete, but Q is not; this is the reason why analysts prefer to work
with real numbers instead of rational numbers. There is a general construction for
“completing” a metric space, similar to the way is which R can be obtained from
Q. The result is that, given an arbitrary metric space (X, d), there is a complete

metric space (X̂, d̂) that contains X has a dense subset. Roughly speaking, the
idea is to define an equivalence relation on the set of Cauchy sequences in X: two
Cauchy sequences xn and yn are equivalent if d(xn, yn)→ 0 as n→∞. The points

of X̂ are the equivalence classes of Cauchy sequences; there is a natural metric d̂

on X̂, and after some checking, one finds that (X̂, d̂) is complete. If you have not
seen this construction in a course on analysis, have a look at Theorem 43.7 or at
Exercise 43.9 in Munkres’ book.

Example 14.3. Completeness of a metric space is a property of the metric, not of
the topology: R and (0, 1) are homeomorphic as topological spaces, but whereas R
is complete, (0, 1) is not.
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Example 14.4. Every compact metric space is complete. To see why, suppose that
xn ∈ X is a Cauchy sequence. Being a metric space, X is also sequentially compact,
and so the sequence has a convergent subsequence xn(k) with

x = lim
k→∞

xn(k).

Now that we have a potential limit, we can easily show that the entire sequence xn
converges to x. Fix ε > 0; then since xn is a Cauchy sequence, we can find N such
that d(xn, xm) < ε

2 for every n,m ≥ N . Using the triangle inequality, we get

d(xn, x) ≤ d(xn, xn(k)) + d(xn(k), x) <
ε

2
+
ε

2
= ε

for n ≥ N , by choosing k large enough so that n(k) ≥ N and d(xn(k), x) < ε
2 .

The converse of this last result is not true: in the Euclidean metric, R is complete
but not compact. Let us try to figure out what extra condition (besides complete-
ness) is needed to ensure that a metric space is compact. From the definition of
compactness in terms of open coverings, we know that every compact metric space
has to be bounded; in fact, the following stronger form of boundedness holds.

Definition 14.5. A metric space (X, d) is called totally bounded if, for every r > 0,
it is possible to cover X by finitely many open balls of radius r.

Example 14.6. Let X be an infinite set, with the metric d(x, y) = 1 if x 6= y, and
d(x, y) = 0 if x = y. Then X is bounded, but not totally bounded.

Theorem 14.7. A metric space is compact if and only if it is complete and totally
bounded.

Proof. We have already seen that every compact metric space is complete and
totally bounded. Let us prove that the converse holds. Suppose that (X, d) is a
complete metric space that is totally bounded. In a metric space, compactness is
equivalent to sequential compactness, and so it suffices to show that every sequence
in X has a convergent subsequence. Since X is complete, it suffices moreover to
find a subsequence that is Cauchy.

Let xn ∈ X be a sequence of points. By assumption, we can cover X by finitely
many open balls of radius 1; evidently, at least one of these balls must contain xn
for infinitely many n ∈ N. Call this ball U1, and let

J1 =
{
n ∈ N

∣∣ xn ∈ U1

}
,

which is an infinite set. Similarly, we can cover X by finitely many open balls of
radius 1

2 ; since the set J1 is infinite, at least one of these balls must contain xn for
infinitely many n ∈ J1. Call this ball U2, and let

J2 =
{
n ∈ J1

∣∣ xn ∈ U2

}
,

which is again infinite. Continuing in this way, we obtain a nested sequence J1 ⊇
J2 ⊇ J3 ⊇ · · · of infinite subsets of N, such that xn ∈ U1∩· · ·∩Uk whenever n ∈ Jk.

Now we can choose a suitable subsequence xn(k) of our original sequence. Pick
any element n(1) ∈ J1; then pick an element n(2) ∈ J2 with n(2) > n(1), which
exists because J2 is infinite; then pick an element n(3) ∈ J3 with n(3) > n(2); and
so on. In this way, we obtain a subsequence xn(k) of the original sequence, with the
property that

xn(k) ∈ U1 ∩ · · · ∩ Uk
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for every k = 1, 2, . . . . This sequence is obviously Cauchy: whenever k ≤ `, both
xn(k) and xn(`) belong to the open ball Uk of radius 1

k , and so

d(xn(k), xn(`)) ≤
2

k
.

This subsequence converges because X is complete; the conclusion is that X is
sequentially compact, and therefore compact. �

Function spaces. Given two nonempty sets X and Y , we can consider the space
Fun(X,Y ) of all functions f : X → Y . Since a function is uniquely determined by
its values f(x) for x ∈ X, it is clear that

Fun(X,Y ) = Y X =
∏
x∈X

Y

is simply the Cartesian product, indexed by X, of several copies of Y : a function
f : X → Y corresponds to the element

(
f(x)

)
x∈X of the product.

Now suppose that X and Y are topological spaces; we are interested in the subset

C(X,Y ) =
{
f : X → Y

∣∣ f is continuous
}
⊆ Fun(X,Y )

of all continuous functions. There are several ways of making Fun(X,Y ) and
C(X,Y ) into topological spaces; each is useful in certain situations. The simplest
way is to use the product topology on Y X . The product topology is given by a
basis; let us see what the usual basic open sets look like in terms of functions. Take
finitely many points x1, . . . , xn ∈ X, and finitely many open sets U1, . . . , Un ⊆ Y ;
the corresponding basic open set is

B(x1, . . . , xn, U1, . . . , Un) =
{
f : X → Y

∣∣ f(xi) ⊆ Ui for every i = 1, . . . , n
}
.

Example 14.8. When does a sequence of functions fn : X → Y converge to another
function f : X → Y in this topology? For every x ∈ X and every neighborhood
U of f(x), the basic open set B(x, U) is a neighborhood of f , and therefore has
to contain all but finitely many of the fn. In other words, fn(x) ∈ U for all but
finitely many n, which means that the sequence fn(x) ∈ Y converges to f(x) ∈ Y .
So convergence in this topology is the same as pointwise convergence.

Definition 14.9. The product topology on Fun(X,Y ) = Y X is called the topology
of pointwise convergence.

The disadvantage of this topology is that the subspace C(X,Y ) is not closed,
because the pointwise limit of continuous functions may fail to be continuous.

Example 14.10. Let X = [0, 1] and Y = R, and consider the sequence of functions
fn : [0, 1] → R, fn(x) = xn. Since xn → 0 for x < 1, the sequence converges
pointwise to the function

f : [0, 1]→ R, f(x) =

{
0 if x < 1,

1 if x = 1,

which is no longer continuous.

Another choice of topology on Fun(X,Y ) is related to the notion of uniform
convergence. Here we assume that (Y, d) is a metric space. Given two functions
f, g ∈ Fun(X,Y ), we define their uniform distance to be

ρ(f, g) = sup
x∈X

d
(
f(x), g(x)

)
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if the right-hand side is ≤ 1, and ρ(f, g) = 1 otherwise. (This slightly odd definition
is to make sure that ρ takes values in R.) Intuitively, ρ(f, g) is a measurement of
the “distance” between the graphs of f and g. You should convince yourself that
ρ is in fact a metric on the space Fun(X,Y ); for obvious reasons, it is called the
uniform metric.

Definition 14.11. The metric topology on Fun(X,Y ) defined by ρ is called the
uniform topology.

The basic open sets in this metric are balls of some radius: if 0 < ε < 1, then

Bε(f0) =
{
f : X → Y

∣∣ d(f(x), f0(x)
)
< ε for all x ∈ X

}
.

So a neighborhood of a given function f0 consists of all functions whose graphs lie
in a strip of width 2ε around the graph of f0.

Example 14.12. When does a sequence of functions fn : X → Y converge to another
function f : X → Y in the uniform topology? For every 0 < ε < 1, the open ball
Bε(f) is a neighborhood of f , and therefore has to contain all but finitely many of
the fn. In other words, there should exist some N such that

d
(
fn(x), f(x)

)
< ε

for every n ≥ N and every x ∈ X; but this is saying exactly that fn → f uniformly.

Lemma 14.13. In the uniform topology, C(X,Y ) is a closed subset of Fun(X,Y ).

Proof. The uniform topology is a metric topology, and so it is enough to show
that C(X,Y ) is sequentially closed. Suppose a sequence of continuous functions
fn ∈ C(X,Y ) converges to a function f ∈ Fun(X,Y ). Then fn → f uniformly, and
we know from Lemma 13.6 that f is also continuous. Thus f ∈ C(X,Y ), and so
C(X,Y ) is closed. �

In analysis, people are most interested in the case when (Y, d) is a complete
metric space (such as Rn). Let me end today’s class by showing that the space of
(continuous) functions inherits this completeness property.

Proposition 14.14. If (Y, d) is complete, then both Fun(X,Y ) and C(X,Y ) are
complete with respect to the uniform metric.

Proof. We first show that Fun(X,Y ) is complete with respect to ρ. Let fn ∈
Fun(X,Y ) be an arbitrary Cauchy sequence. For every ε > 0, we can therefore find
some N such that

(14.15) d
(
fm(x), fn(x)

)
< ε

for every x ∈ X and every m,n ≥ N . If we fix a point x ∈ X, this implies that the
sequence fn(x) ∈ Y is a Cauchy sequence; but Y is complete, and so it converges
to some limit that we shall denote by f(x) ∈ Y . In this way, we obtain a function
f : X → Y . For given ε > 0, we can now let m go to infinity in (14.15) to obtain

d
(
f(x), fn(x)

)
≤ ε

for every x ∈ X and every n ≥ N . Therefore ρ(f, fn) ≤ ε whenever n ≥ N , which
means that f is the limit of the Cauchy sequence fn.

Completeness of C(X,Y ) follows from the fact that it is closed: any Cauchy
sequence in C(X,Y ) has a limit in Fun(X,Y ), because Fun(X,Y ) is complete; the
limit actually belongs to C(X,Y ), because C(X,Y ) is sequentially closed. �
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Lecture 15: October 20

Let X be a topological space, and (Y, d) a metric space. Last time, we defined
two topologies on the space of functions from X to Y : the topology of pointwise
convergence, which is just the product topology on Y X ; and the uniform topology,
which is the metric topology induced by the uniform metric. In both cases, we also
get a topology on the subspace C(X,Y ) of all continuous functions. In the uni-
form topology, C(X,Y ) is a closed subspace, because uniform limits of continuous
functions are again continuous; in the topology of pointwise convergence, this is
generally not the case.

Today, we are going to study compact subspaces of C(X,Y ) in the uniform
topology. This question is of some importance in analysis: because C(X,Y ) is a
metric space, compactness means that every sequence has a convergent subsequence.
We shall only look at the special case where X is compact. In that case, the uniform
metric that we defined last time is equivalent to the sup metric

ρ(f, g) = sup
x∈X

d
(
f(x), g(x)

)
;

note that the supremum is achieved at some point, because x 7→ d
(
f(x), g(x)

)
is a

continuous function on the compact space X.

Equicontinuity. Consider a subset F ⊆ C(X,Y ), that is to say, a collection of
continuous functions from X to Y . Under what conditions is F compact? From
Theorem 14.7, we know that a metric space is compact if and only if it is complete
and totally bounded. We should therefore try to understand what total bounded-
ness of F says about the functions in F .

Definition 15.1. We say that F ⊆ C(X,Y ) is equicontinuous if, for every x0 ∈ X
and every ε > 0, there is a neighborhood U of the point x0 such that

d
(
f(x), f(x0)

)
< ε

for every x ∈ U and every f ∈ F .

For a single function f , this condition is just saying that f is continuous; the
point of the definition is that the same open set U should work for all the functions
in F at the same time.

Example 15.2. The collection of functions fn : [0, 1] → R, fn(x) = xn, is not
equicontinuous at the point x0 = 1.

Roughly speaking, total boundedness is equivalent to being equicontinuous. This
is the content of the next two lemmas.

Lemma 15.3. If F ⊆ C(X,Y ) is totally bounded, then it is equicontinuous.

Proof. Let ε > 0 be an arbitrary positive number. Since F is totally bounded, it
can be covered by finitely open balls of radius ε

3 :

F ⊆ B ε
3
(f1) ∪ · · · ∪B ε

3
(fn),

for certain f1, . . . , fn ∈ C(X,Y ). Since

Br(fi) =
{
f : X → Y

∣∣ d(f(x), fi(x)
)
< r for every x ∈ X

}
,

this means concretely that the graph of every f ∈ F stays within ε
3 of the graph of

one of the fi.
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Now let x0 ∈ X be any point. Each fi is continuous, and so there is an open set Ui
containing x0, such that d

(
fi(x), fi(x0)

)
< ε

3 for all x ∈ Ui. Define U = U1∩· · ·∩Un;
then U is still a neighborhood of the point x0, and we have

d
(
fi(x), fi(x0)

)
<
ε

3

for every x ∈ U and every i = 1, . . . , n. Now I claim that

d
(
f(x), f(x0)

)
< ε

for every x ∈ U and every f ∈ F , which is enough to conclude that F is equicon-
tinuous. Indeed, for any f ∈ F , there is some i such that f ∈ B ε

3
(fi); but then

d
(
f(x), f(x0)

)
≤ d
(
f(x), fi(x)

)
+ d
(
fi(x), fi(x0)

)
+ d
(
fi(x0), f(x0)

)
< ε,

which is what we wanted. �

During the proof, we did not use the fact that X is compact. If we add this
assumption, we can get the following better version of equicontinuity.

Lemma 15.4. Suppose that X is compact and that F ⊆ C(X,Y ) is equicontinuous.
Then for every ε > 0, there is a finite open covering X = U1 ∪ · · · ∪ Un such that

d
(
f(x), f(x′)

)
< ε

for every x, x′ ∈ Ui and every f ∈ F .

Proof. Since F is equicontinuous, every point x0 ∈ X has a neighborhood U such
that d

(
f(x), f(x0)

)
< ε

2 for every x ∈ U and every f ∈ F . Using the compactness
of X, finitely many of these open sets cover X; if we denote the points by x1, . . . , xn
and the open sets by U1, . . . Un, we get X = U1 ∪ · · · ∪ Un and

d
(
f(x), f(x′)

)
≤ d
(
f(x), f(xi)

)
+ d
(
f(xi), f(x′)

)
< ε

whenever x, x′ ∈ Ui. �

Example 15.5. If F is equicontinuous, then every subset of F is also equicontinuous.

Example 15.6. One way of proving equicontinuity is by using the derivative. Sup-
pose we are looking at a family F of continuous functions from X = [0, 1] to R. If
each f ∈ F is differentiable, then by the mean value theorem,

|f(x)− f(y)| ≤ |f ′(ξ)| · |x− y|
for some ξ in the interval between x and y. So if we happen to know that the
derivatives of all the functions in F are uniformly bounded, then we can say that
F must be equicontinuous.

Ascoli’s theorem. The main result about compact subsets of C(X,Y ) is Ascoli’s
theorem. This is really a theorem in analysis, but the proof relies on many of the
abstract concepts in topology that we have studied this semester.

Theorem 15.7. Let X be a compact space, let (Y, d) be a metric space, and let
F ⊆ C(X,Y ) be a family of continuous functions. Then F is contained in a compact
subspace of C(X,Y ) if and only if F is equicontinuous and, for every x ∈ X, the
closure of the set

Fx =
{
f(x)

∣∣ x ∈ X } ⊆ Y
is compact in Y .
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So in particular, F is compact iff it is closed in the uniform topology on C(X,Y )
and satisfies both conditions in the theorem.

Let us begin by proving the easy half of the theorem. We first consider the case
where F is compact. Then F is a compact metric space, hence totally bounded
(by Theorem 14.7), hence equicontinuous (by Lemma 15.3). To prove that Fx is
compact in Y , consider the function

evx : F → Y, evx(f) = f(x).

Since d
(
f(x), g(x)

)
≤ ρ(f, g) for every f, g ∈ F , this function is clearly continuous.

As F is compact and Y is Hausdorff, the image

Fx = evx(F) ⊆ Y
is compact. Now suppose that F is contained in a compact subspace G of C(X,Y ).
By the above, G is equicontinuous, and so F is also equicontinuous; moreover, we
have Fx ⊆ Gx, and because Gx is compact, the closure of Fx is also compact. This
proves the easy half of Theorem 15.7.

The other half of the proof requires several steps, so let me first give an outline.
We denote by Y X the space of all functions with the product topology, and by
C(X,Y ) the space of all continuous functions with the uniform topology. We will
prove compactness with the help of Tychonoff’s theorem; this is why we also need
the product topology. Keep in mind that the topology on F is induced by the
uniform topology on C(X,Y ). Here is the outline of the proof:

(1) Let G be the closure of the set F in Y X . We use Tychonoff’s theorem to
prove that G is compact (in the product topology).

(2) We show that G is also equicontinuous; in particular, all the functions in G
are continuous.

(3) We show that the uniform topology coincides with the topology on G.
(4) We conclude the proof by noting that G is a compact subspace of C(X,Y )

containing F .

Step 1. Let G be the closure of F , considered as a subset of Y X . More precisely,
we have an injective (but not continuous) function

F → Y X , f 7→
(
f(x)

)
x∈X ,

and we let G denote the closure of the image. Since the product topology is the
topology of pointwise convergence, each function g ∈ G is a pointwise limit of a
sequence of functions in F ; a priori, the functions in G could therefore be pretty
crazy. But in return, it is easy to show that G is compact. Indeed, for each x ∈ X,
we have f(x) ∈ Fx, and so G is contained in the subspace∏

x∈X
Fx.

Since the closure of each Fx is compact, Tychonoff’s theorem tells us that the
product is compact; being a closed subspace, G is therefore also compact.

Step 2. Now we prove that G is equicontinuous, which means in particular that all
the functions in G are continuous; this is not at all obvious, because they are only
pointwise limits of continuous functions. Let x0 ∈ X be an arbitrary point. Since
F is equicontinuous, we can find a neighborhood U of x0 such that

d
(
f(x), f(x0)

)
<
ε

3
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for all x ∈ U and all f ∈ F . I claim that with this choice of U , we also have

d
(
g(x), g(x0)

)
< ε

for all x ∈ U and all g ∈ G. To see why, let x ∈ U and g ∈ G be arbitrary. Consider
the basic open set{

f : X → Y
∣∣ d(f(x), g(x)

)
< ε

3 and d
(
f(x0), g(x0)

)
< ε

3

}
in Y X . It is a neighborhood of the function g, and therefore has to contain some
f ∈ F (because G is the closure of F). Then we have

d
(
g(x), g(x0)

)
≤ d
(
g(x), f(x)

)
+ d
(
f(x), f(x0)

)
+ d
(
f(x0), g(x0)

)
< ε

from the triangle inequality, and so G is equicontinuous.

Step 3. Since all the functions in G are continuous, G is a subset of C(X,Y ). Our
next task is to show that the topology on G is the same as the subspace topology
coming from the uniform topology on C(X,Y ). Since every open set in the product
topology is also open in the uniform topology, it is enough to prove that the inter-
section of an arbitrary open set in C(X,Y ) with G is open in G. So let U ⊆ C(X,Y )
be an arbitrary open set; for any g0 ∈ U ∩ G, we shall find a neighborhood of g0

in the product topology whose intersection with G is contained in U ∩ G. To get
started, observe that U is open, and therefore contains a ball of some radius r > 0
around g0; hence

Br(g0) ∩ G =
{
g ∈ G

∣∣ d(g(x), g0(x)
)
< r for all x ∈ X

}
⊆ U ∩ G.

Now X is compact and G is equicontinuous, and so we can apply Lemma 15.4.
This gives us a finite open covering X = U1 ∪ · · · ∪ Un and points xi ∈ Ui with the
property that

d
(
g(x), g(xi)

)
<
r

3
whenever x ∈ Ui and g ∈ G. Now consider the set

(15.8)
{
g ∈ G

∣∣ d(g(xi), g0(xi)
)
< r

3 for every i = 1, . . . , n
}
.

It contains g0; it is also open in G, being the intersection of G with a basic open
set in the product topology on Y X . I claim that this entire open set is contained
in the intersection Br(g0) ∩ G, and therefore in U ∩ G. To show this, let g ∈ G be
any function in (15.8). Every x ∈ X belongs to some Ui, and so

d
(
g(x), g0(x)

)
≤ d
(
g(x), g(xi)

)
+ d
(
g(xi), g0(xi)

)
+ d
(
g0(xi), g0(x)

)
< r.

Here the first and third term are less than r
3 because g, g0 ∈ G; the second term

is less than r
3 because g belongs to the open set in (15.8). We conclude that

g ∈ Br(g0), and hence that U ∩ G is open in G.

Step 4. Now we can easily conclude the proof of Ascoli’s theorem. From Step 1,
we know that G is compact in the product topology; from Step 3, we know that it
is also compact in the uniform topology. Therefore F is contained in the compact
subspace G, as claimed. �

Note. Let me briefly explain how Ascoli’s theorem is used in analysis. Consider a
sequence of continuous real-valued functions fn : X → R on a compact space X; in
the notation of Theorem 15.7, we are looking at the countable subset

F = {f1, f2, . . . } ⊆ C(X,R).
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Ascoli’s theorem tells us that if F is equicontinuous and pointwise bounded, then
the closure of F is compact; in particular, there is a subsequence that converges
uniformly to a continuous real-valued function on X. (Note that a subset of R is
compact if and only if it is closed and bounded.)
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Lecture 16: October 25

Algebraic topology. In the remainder of the semester, we shall be talking about
algebraic topology. A basic problem in topology is to decide whether two given
topological spaces X and Y are homeomorphic or not. To show that X and Y
are homeomorphic, we have to find a continuous bijection whose inverse is also
continuous; this comes down to being able to construct continuous functions. On
the other hand, to show that X and Y are not homeomorphic, we have to prove
that there does not exist any homeomorphism between them. This can be diffi-
cult or even impossible: it requires a lot of work to show that Rn and Rm are
not homeomorphic for n 6= m. In practice, one tries to do this with the help of
certain “invariants”: for example, topological properties such as connectedness or
compactness or countability that are the same for homeomorphic spaces.

Example 16.1. In this way, we can distinguish R2 from the two-sphere (because one
is compact and one is not), or R from R2 (because removing a point disconnects
one but not the other). But none of the topological properties we have introduced
can tell Rn from Rm for n,m ≥ 2.

Another useful property of this type is that of being simply connected ; roughly
speaking, X is simply connected if every closed loop in X can be contracted con-
tinuously to a point. You may have seen this notion in complex analysis when
discussing line integrals.

Example 16.2. R2 is simply connected, but R2 \ {(0, 0)} is not: for example, any
circle around the origin cannot be contracted to a point. For the time being, this
statement is only based on our geometric intuition; we shall prove it rigorously
later.

More generally, we shall associate to every topological space X (and to a choice
of point x0 ∈ X) a certain group π1(X,x0), called its fundamental group. Roughly
speaking, the size of this group is related to how many essentially different closed
loops there are inX; in particular, X is simply connected if and only its fundamental
group is the trivial group with one element. If X and Y are homeomorphic, then
their fundamental groups are isomorphic as groups; this means that if two spaces
have different fundamental groups, they cannot be homeomorphic. In this way,
the fundamental group can serve as an “algebraic invariant” of a topological space.
There is also a whole set of higher homotopy groups πn(X,x0); closed loops, which
are the same as continuous functions from S1 into X, get replaced by continuous
functions from Sn into X.

This then is the general idea behind algebraic topology: to a topological space
X, one associates various algebraic objects such as groups or vector spaces that
can serve as invariants. Examples are the fundamental group (first introduced by
Poincaré) and various homology and cohomology groups. Algebraic topology also
provides various tools for computing the groups of vector spaces in question. Very
often, one can obtain a huge amount of information about a space just by knowing
its homotopy groups; for that and other reasons, algebraic topology has become
one of the most important branches in topology.

Paths and homotopies. Recall that a path in a topological space X is simply
a continuous mapping f : I → X from the closed unit interval I = [0, 1] to X.
The point f(0) is called the starting point of the path, and the point f(1) its
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endpoint. Before we can define the fundamental group correctly, we first have to
make sense of things like “deforming one path into another” or “contracting a path
to a point”. The correct notion is that of a homotopy, which roughly means a
continuous deformation of one continuous function into another.

Definition 16.3. Let f : X → Y and f ′ : X → Y be two continuous functions. A
homotopy between f and f ′ is a continuous function

F : X × I → Y

such that F (x, 0) = f(x) and F (x, 1) = f ′(x) for every x ∈ X. If such a homotopy
exists, we say that f and f ′ are homotopic; we often abbreviate this as f ∼ f ′.

A homotopy gives us a family of continuous functions ft(x) = F (x, t) from X to
Y , depending continuously on t ∈ I, that interpolates between f = f0 and f ′ = f1.
In the case of paths, we usually impose that conditions that all the paths in the
family should have the same starting point and endpoint.

Definition 16.4. Let f : I → X and f ′ : I → X be two paths with f(0) = f ′(0) =
x0 and f(1) = f ′(1) = x1. A path homotopy between f and f ′ is a continuous
function

F : I × I → X

such that F (s, 0) = f(s) and F (s, 1) = f ′(s) for every s ∈ I, and such that
F (0, t) = x0 and F (1, t) = x1 for every t ∈ I. If such a path homotopy exists, we
say that f and f ′ are path homotopic; we often abbreviate this as f ∼p f ′.

It is not hard to see that being (path) homotopic is an equivalence relation.

Lemma 16.5. Both ∼ and ∼p are equivalence relations.

Proof. We shall prove this in the case of ∼; you should convince yourself that the
same argument works for ∼p, too. There are three things to be checked:

(1) For every f : X → Y , we have f ∼ f : for the homotopy F : X × I → Y ,
one can take F (x, t) = f(x).

(2) If f ∼ g, then also g ∼ f . Indeed, if F : X × I → Y is a homotopy between
f and g, then G(x, t) = F (x, 1− t) is a homotopy between g and f .

(3) If f ∼ g and g ∼ h, then also f ∼ h. Indeed, suppose that F is a homotopy
between f and g, and that G is a homotopy between g and h. We can then
define a homotopy between f and h by setting

H : X × I → Y, H(x, t) =

{
F (x, 2t) if t ∈ [0, 1

2 ],

G(x, 2t− 1) if t ∈ [ 1
2 , 1].

Since F (x, 1) = g(x) = G(x, 1), the pasting lemma shows that H is well-
defined and continuous. �

We usually denote the (path) homotopy class of f by the symbol [f ].

Example 16.6. Any two functions f, g : X → Rn are homotopic. For the homotopy,
we just move the point f(x) to the point g(x) along the straight line joining them;
more formally,

F : X × I → Rn, F (x, t) = (1− t)f(x) + tg(x)

is a homotopy between f and g. More generally, we could replace Rn by any
convex subset Y ⊆ Rn, since the entire line segment between f(x) and g(x) will
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still be contained in Y . When f and g are paths with the same starting points and
endpoints, F is clearly a path homotopy.

Example 16.7. The two paths

f(s) =
(
cosπs, sinπs

)
and g(s) =

(
cosπs,− sinπs

)
in R2 \ {(0, 0)} are not path homotopic; this should be pretty obvious, although we
cannot prove it at the moment.

Composition of paths. To make it clear which continuous functions are paths,
I will start using lowercase Greek letters like α, β, γ, . . . for paths. If α is a path
from a point x0 to a point x1, and β is a path from x1 to x2, we can obviously joint
the two paths together into a path from x0 to x2. This operation is where we start
to see some algebra.

Definition 16.8. Given two paths α : I → X and β : I → X with α(1) = β(0), we
define their product

α ∗ β : I → X, t 7→

{
α(2t) if t ∈ [0, 1

2 ],

β(2t− 1) if t ∈ [ 1
2 , 1].

Note that this is well-defined and continuous by the pasting lemma.

The notation should be read from left to right: α ∗ β is the path obtained by
first going along α and then along β. In fact, the product only depends on the path
homotopy classes of α and β.

Lemma 16.9. If α ∼p α′ and β ∼p β′, then α ∗ β ∼p α′ ∗ β′.

Proof. If A is a path homotopy between α and α′, and B a path homotopy between
β and β′, then

C : I × I → X, C(s, t) =

{
A(2s, t) if s ∈ [0, 1

2 ],

B(2s− 1, t) if s ∈ [ 1
2 , 1],

is a path homotopy between α ∗ β and α′ ∗ β′. �

It therefore makes sense to define the product for path homotopy classes by
the formula [α] ∗ [β] = [α ∗ β]; the lemma shows that even if we use different
representatives in each class, the result is the same. Keep in mind that the product
is only defined when α(1) = β(0).

Proposition 16.10. The operation ∗ has the following algebraic properties:

(a) It is associative:

[α] ∗
(
[β] ∗ [γ]

)
=
(
[α] ∗ [β]

)
∗ [γ]

whenever α(1) = β(0) and β(1) = γ(0).
(b) The class of the constant path ex(s) = x acts as an identity element:

[α] ∗ [eα(1)] = [α] and [eα(0)] ∗ [α] = [α].

(c) The class of the opposite path ᾱ(s) = α(1− s) acts as an inverse element:

[α] ∗ [ᾱ] = [eα(0)] and [ᾱ] ∗ [α] = [eα(1)].
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Proof. One can prove everything by writing down suitable path homotopies: for
example, a path homotopy between α ∗ eα(1) and α is given by

H : I × I → X, H(s, t) =

{
α(1) if t ≤ 2s− 1,

α
(

2s
1+t

)
if t ≥ 2s− 1.

Writing down all of these formulas is too much work, though, so let me present a
different argument. Observe that in each identity, the two paths go through the
same set of points of X, but at different speeds. So we only have to find homotopies
that adjust the speed of each path. More precisely, we will make use of the following
two simple observations:

(1) If α ∼p α′, and if f : X → Y is continuous, then

f ◦ α ∼p f ◦ α′.

This is obvious, because if F is a path homotopy between α and α′, then
f ◦ F is a path homotopy between f ◦ α and f ◦ α′.

(2) If α(1) = β(0), and if f : X → Y is continuous, then

f ◦ (α ∗ β) = (f ◦ α) ∗ (f ◦ β).

Again, this is easy to see from the definition of ∗.
Now let us get going with the proof. For (b), we have to show that α ∗ eα(1) ∼p α.
Observe that

α ∗ eα(1) = α ◦ (i ∗ e1) and α = α ◦ i,
where i : I → I is the identity path i(s) = s, and e1 : I → I is the constant path
e1(s) = 1. Now i ∗ e1 and i are two paths in I that start and end at the same
points; since I is convex, they must be path homotopic. But then i ∗ e1 ∼p i, and
by the observation above,

α ∗ eα(1) = α ◦ (i ∗ e1) ∼p α ◦ i = α.

The same argument proves that eα(0) ∗α ∼p α, and hence (b). To get (c), note that

ᾱ = α ◦ ı̄,

where ı̄ : I → I is the path ı̄(s) = 1− s. For the same reason as above, i ∗ ı̄ ∼p e0

and ı̄ ∗ i ∼p e1, and then (c) follows by composing with α.
It remains to prove (a). Both paths in question are running through α, β, and

γ is the same order, but at different speeds. Let us define

π : I → X, π(s) =


α(3s) if s ∈ [0, 1

3 ],

β(3s− 1) if s ∈ [ 1
3 ,

2
3 ],

γ(3s− 2) if s ∈ [ 2
3 , 1]

Then you can check that α ∗ (β ∗ γ) = π ◦ `, where ` is the continuous function

` : I → I, `(s) =

{
2
3s if s ∈ [0, 1

2 ],
4
3s−

1
3 if s ∈ [ 1

2 , 1].

Likewise, (α ∗ β) ∗ γ = π ◦ r, where r is the continuous function

r : I → I, r(s) =

{
4
3s if s ∈ [0, 1

2 ],
2
3s+ 1

3 if s ∈ [ 1
2 , 1].
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Now r and ` are paths in I that both start at the point 0 and end at the point 1,
and so ` ∼p r; as before, we conclude that

α ∗ (β ∗ γ) = π ◦ ` ∼p π ◦ r = (α ∗ β) ∗ γ,
which is what we needed to show. �

The fundamental group. We can now define the fundamental group. Let X be
a topological space, and let x0 ∈ X be a point. A path α : I → X is called a loop
based at x0 if it starts and ends at the point x0, in the sense that α(0) = α(1) = x0.
We define

π1(X,x0) =
{

[α]
∣∣ α : I → X is a path with α(0) = α(1) = x0

}
by considering all loops based at x0, up to path homotopy. In fact, π1(X,x0) is not
just a set, but a group; the group operation is given by composition by paths. More
precisely, any two loops based at x0 can be composed, and so we have a well-defined
operation

∗ : π1(X,x0)× π1(X,x0)→ π1(X,x0), [α] ∗ [β] = [α ∗ β].

The properties in Proposition 16.10 are exactly the axioms for being a group. Recall
the following definition from algebra.

Definition 16.11. Let G be a set with a binary operation ◦ : G × G → G. Then
(G, ◦) is called a group if it has the following three properties:

(a) The operation is associative: for every g1, g2, g3 ∈ G, one has g1 ◦(g2 ◦g3) =
(g1 ◦ g2) ◦ g3.

(b) There is an element e ∈ G such that g ◦ e = e ◦ g = g for every g ∈ G.
(c) For every g ∈ G, there is an element g−1 ∈ G with g ◦ g−1 = g−1 ◦ g = e.

The element e ∈ G is called the unit, and for given g ∈ G, the element g−1 ∈ G
is called the inverse of g; one can show that both are uniquely determined. In
practice, the group operation is denoted by juxtaposition: gh means g ◦ h.

In the case of π1(X,x0), all three group axioms for the operation ∗ are proved
in Proposition 16.10.

Definition 16.12. Let X be a topological space and x0 ∈ X. Then π1(X,x0),
together with the operation ∗, is called the fundamental group of X (for the given
base point x0).

The fundamental group does depend on the base point; we shall investigate this
dependence next time.

Definition 16.13. Let X be a path connected topological space. We say that X
is simply connected if, for every point x0 ∈ X, the fundamental group π1(X,x0) is
the trivial group (with one element).

This makes our earlier definition precise: a path connected space is simply con-
nected if every loop in X can be contracted to a point.

Example 16.14. Our earlier example of the straight line homotopy shows that Rn,
or any convex subset of Rn, is simply connected.
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Lecture 17: October 27

Last time, we defined the fundamental group π1(X,x0) of a topological space.
Its elements are paths in X that start and end at the base point x0, taken up to
path homotopy equivalence. Thus a typical element looks like [α], where α : I → X
is a continuous function with α(0) = α(1) = x0. The group structure is defined as
[α] ∗ [β] = [α ∗β], where α ∗β is the path obtained by transversing α followed by β.

Dependence on the base point. Let us first investigate how the fundamental
group depends on the choice of base point. Since any path in X has to stay inside
the path component of x0, it makes sense to assume that X is path connected. Let
x0, x1 ∈ X be two candidates for the base point. Since X is path connected, we
can choose a path ϕ : I → X with ϕ(0) = x0 and ϕ(1) = x1. We obtain a function

ϕ̂ : π1(X,x0)→ π1(X,x1), ϕ̂[α] = [ϕ̄] ∗ [α] ∗ [ϕ];

in other words, given a path α based at x0, we build a new path based at x1 by
moving from x1 to x0 along the path ϕ̄, then transversing α, and then moving back
from x0 to x1 along ϕ.

Lemma 17.1. The function ϕ̂ : π1(X,x0)→ π1(X,x1) is an isomorphism of groups.

Proof. Recall that a function φ : G→ H between two groups is called a homomor-
phism if φ(gh) = φ(g)φ(h) for every g, h ∈ H; from this condition one can deduce,
with the help of the group axioms, that φ(e) = e and that φ(g−1) = φ(g)−1 for
every g ∈ G. A bijective homomorphism is called an isomorphism; if φ is an isomor-
phism, then the inverse function φ−1 : H → G is automatically a homomorphism
as well. (Can you prove this?)

Now let us prove the statement. It is easy to see that ϕ̂ is a homomorphism.
Indeed, given two elements [α] and [β] in π1(X,x0), we have

ϕ̂
(
[α] ∗ [β]

)
= [ϕ̄] ∗ [α] ∗ [β] ∗ [ϕ]

= [ϕ̄] ∗ [α] ∗ [ϕ] ∗ [ϕ̄] ∗ [β] ∗ [ϕ] =
(
ϕ̂[α]

)
∗
(
ϕ̂[β]

)
,

due to the identity [ϕ] ∗ [ϕ̄] = [ex0
]. If we denote by ψ = ϕ̄ the reverse path from

x1 to x0, we get another homomorphism

ψ̂ : π1(X,x1)→ π1(X,x0),

and it is clear from the definitions that ψ̂ is the inverse function of ϕ̂, which is
therefore an isomorphism. �

Functorial properties. The fundamental group was supposed to be an invariant
of a topological space X, and so we should also convince ourselves that homeomor-
phic spaces have isomorphic fundamental groups. Suppose we have a continuous
function f : X → Y . If α is a path in X starting and ending at the point x0, then
f ◦ α is a path in Y starting and ending at the point y0 = f(x0); moreover, if
α ∼p α′, then f ◦ α ∼p f ◦ α′. In this way, we obtain a well-defined function

f∗ : π1(X,x0)→ π1(Y, y0), f∗[α] = [f ◦ α].

This function is actually a group homomorphism.

Lemma 17.2. If f : (X,x0)→ (Y, y0) is continuous, f∗ : π1(X,x0)→ π1(Y, y0) is a
homomorphism of groups. Given a second continuous function g : (Y, y0)→ (Z, z0),
one has (g ◦ f)∗ = g∗ ◦ f∗.
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Here the notation f : (X,x0)→ (Y, y0) means that f : X → Y is a function with
the property that f(x0) = y0.

Proof. The first assertion holds because

f∗
(
[α] ∗ [β]

)
= f∗[α ∗ β] = [f ◦ (α ∗ β)] = [(f ◦ α) ∗ (f ◦ β)] =

(
f∗[α]

)
∗
(
f∗[β]

)
.

The second assertion holds because

(g ◦ f)∗[α] = [(g ◦ f) ◦ α] = [g ◦ (f ◦ α)] = g∗[f ◦ α] = g∗
(
f∗[α]

)
. �

In the language of category theory, the above construction is an example of a
functor from the category of topological spaces to the category of groups. The
most basic example of a category is the category of sets: a typical object is a set
X, and a morphism between two sets X and Y is simply a function f : X → Y .
One can add extra structure and consider for example the category of topological
spaces or the category of groups; in each case, the right notion of morphism is
one that preserves the extra structure: a morphism between topological spaces is a
continuous function, and a morphism between groups is a group homomorphism.

Example 17.3. One can also consider the category of topological spaces with base
point: its objects are pairs (X,x0), and its morphisms are continuous functions
f : (X,x0)→ (Y, y0).

In that sense, sending a continuous function f : (X,x0) → (Y, y0) to the group
homomorphism f∗ : π1(X,x0) → π1(Y, y0) is a functor: it takes morphisms in the
category of topological spaces with base point to morphisms in the category of
groups, in a way that is compatible with composition.

Corollary 17.4. If f : X → Y is a homeomorphism with f(x0) = y0, then

f∗ : π1(X,x0)→ π1(Y, y0)

is an isomorphism of groups.

Proof. Let g : Y → X denote the inverse function; since g(y0) = x0, it induces a
homomorphism

g∗ : π1(Y, y0)→ π1(X,x0)

in the opposite direction. From the lemma, we get f∗ ◦ g∗ = (f ◦ g)∗ = id∗ = id and
g∗ ◦ f∗ = (g ◦ f)∗ = id∗ = id, and so f∗ is an isomorphism. �

Note. To make the notation less cumbersome, let us agree on the following con-
ventions. If α is a path in X that starts and ends at the point x0, we denote the
corresponding element of π1(X,x0) also by the letter α, instead of the more correct
[α]. For the product, we write αβ instead of the more correct [α] ∗ [β]; for the unit
element, we simply write e instead of the more correct [ex0

].

An example. Now let us compute our first nontrivial example, namely the fun-
damental group of the circle S1. For convenience, we use the point b0 = (1, 0) ∈ S1

as the base point; if we think of S1 as the set of all complex numbers of modulus 1,
then b0 is nothing but 1 ∈ C. Suppose we have a path α in the circle that starts and
ends at the point b0. At least intuitively, the only thing that matters is how many
times the path winds around the circle – with a plus or minus sign, depending on
the orientation – and so the answer should be the following.

Theorem 17.5. π1(S1, b0) is isomorphic to (Z,+).
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The goal is to prove that this is indeed the case. We could try to define some sort
of “winding number” for paths in S1, but the following approach is easier. Consider
the continuous function

p : R→ S1, p(x) =
(
cos 2πx, sin 2πx

)
.

Clearly, p is locally a homeomorphism: every sufficiently small neighborhood of
x ∈ R is mapped homeomorphically to its image in S1. The preimage of our base
point b0 is exactly the set of all integers Z. We can picture p by imagining an
infinite spiral in R3, winding around the cylinder S1 × R and projecting down to
the circle in R2.

Here is the idea for the proof of Theorem 17.5. We first show that every path
α : I → S1 with α(0) = b0 can be uniquely lifted to a path α̃ : I → R with α̃(0) = 0
and p ◦ α̃ = α; we also show that homotopic paths have homotopic liftings. The
endpoint α̃(1) of the lifted path belongs to the set Z ∈ p−1(0), and it turns out
that the function

π1(S1, b0)→ Z, [α] 7→ α̃(1),

is an isomorphism of groups.

Covering spaces. The function p : R→ S1 is an example of a covering space, and
for later use, we will work in this more general setting.

Definition 17.6. Let p : E → B be a surjective and continuous function. An open
subset U ⊆ B is said to be evenly covered by p if its preimage p−1(U) is a disjoint
union of open subsets of E, each of which is homeomorphic to U (via p). We say
that p : E → B is a covering space if every point of B has a neighborhood that is
evenly covered by p.

In symbols, the condition on p is that

p−1(U) =
⊔
i∈I

Vi

should be the disjoint union of open sets Vi ⊆ E, in such a way that

p
∣∣
Vi

: Vi → U

is a homeomorphism for each i ∈ I. The sets Vi are usually called the sheets of the
covering space. In particular, p is a local homeomorphism: every point in E has a
neighborhood that is mapped homeomorphically (under p) to its image in B.

Example 17.7. The function p : R → S1 is a covering space: the preimage of the
open set U = S1 \ {b0} is

p−1(U) = R \ Z =
⋃
m∈Z

(m,m+ 1),

and the restriction of p to each open interval is a homeomorphism with U . Likewise,
the preimage of V = S1 \ {−b0} is

p−1(V ) = R \
(

1
2 + Z

)
=
⋃
m∈Z

(
m− 1

2 ,m+ 1
2

)
,

and the restriction of p to each open interval is a homeomorphism with V . In this
example, every point of S1 has infinitely many preimages, and quite naturally, one
says that p is an infinite-sheeted covering space.
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Example 17.8. To get an example with finitely many sheets, think of S1 as being
a subset of C, and consider the function z 7→ zm from S1 to itself. Each point has
exactly m preimages, and one can show that this is a covering space.

Note that in a covering space, the fiber p−1(b) over any point b ∈ B is a discrete
subspace of E; this is clear because some neighborhood of b is evenly covered by p.

Lifting paths and homotopies. Now let p : E → B be a covering space. Fix
a base point b0 ∈ B; since p is surjective, we can choose a base point e0 ∈ E
such that p(e0) = b0. An important property of covering spaces is that paths (and
homotopies) in B can be lifted uniquely to E, once we decide where the starting
point should go.

Theorem 17.9. Let α : I → B be a path with α(0) = b0. Then there is a unique
path α̃ : I → E with α̃(0) = e0 and p ◦ α̃ = α.

For every s ∈ I, the point α̃(s) ∈ E lies over the corresponding point α(s) ∈ B,
and so one says that α̃ is a lifting of the path α. The assertion in the theorem is
known as the path lifting property of covering spaces.

Proof. To get the idea of the proof, suppose first that α(I) lies entirely inside an
open set U ⊆ B that is evenly covered by p. Then p−1(U) is a disjoint union of
open sets; because p(e0) = b0 = α(0) ∈ U , exactly one of these open sets contains
the point e0. If we denote this open set by V ⊆ E, then

p
∣∣
V

: V → U

is a homeomorphism. It therefore makes sense to define

α̃ =
(
p
∣∣
V

)−1 ◦ α : I → E.

This is a path in E with p◦ α̃ = α; because e0 is the unique point of V that lies over
b0, we also get α̃(0) = e0. Uniqueness is clear: any path lifting α must be contained
in p−1(U), and because we are assuming that the lifting starts at the point e0,
actually in V ; but p

∣∣
V

is a homeomorphism, and so α̃ is uniquely determined.
Now let us deal with the general case. The idea is to subdivide I into smaller

intervals I1, . . . , IN that are each mapped into an evenly covered open set, and
then construct the lifting α̃ in N steps. By assumption, every point of B has a
neighborhood that is evenly covered by p. Since α(I) is compact, it is contained
in the union of finitely many such open sets; thus we can find evenly covered open
subsets U1, . . . , Un ⊆ B such that

I =

n⋃
k=1

α−1(Uk).

Lemma 17.10 below shows that if we choose a sufficiently large integer N and
divide I into subintervals I1, . . . , IN of length 1

N , then each subinterval is contained

entirely in one open set α−1(Uk). By applying the argument from above to the
restriction of α to the first subinterval I1, we obtain a unique lifting

α̃ : I1 → E

with α̃(0) = e0; it ends at some point α̃( 1
N ) ∈ E, which lies over the point α( 1

N ) ∈
B. One the second subinterval I2, there is again a unique lifting of α : I2 → B that
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maps the left endpoint 1
N ∈ I2 to the point α̃( 1

N ); by the pasting lemma, we obtain
a continuous function

α̃ : I1 ∪ I2 → E

with p ◦ α̃ = α on I1 ∪ I2. Continuing in this manner, we obtain the desired lifting
of α (and its uniqueness) after N steps. �

During the proof, we used the following lemma; note that the same result is true
(with the same proof) for finite open coverings of arbitrary compact sets in Rn.

Lemma 17.10. Let I = U1 ∪ · · · ∪ Un be a finite open covering of the closed unit
interval I ⊂ R. Then there exists ε > 0 such that for every x ∈ I, the open ball
Bε(x) is contained entirely in some Uk.

Proof. For each k = 1, . . . , n, consider the function

fk : I → [0,∞), fk(x) = sup
{
r ≥ 0

∣∣ Br(x) ⊆ Uk
}
.

We have fk(x) = 0 if x 6∈ Uk, and fk(x) > 0 if x ∈ Uk; it is also not hard to see
that fk is continuous. If we define

f : I → [0,∞), f(x) = max
k=1,...,n

fk(x),

then the pasting lemma shows that f is continuous; we have f(x) > 0 for every
x ∈ I because the open sets U1, . . . , Un cover I. Because I is compact, f achieves a
minimum on I, and so we can find some ε > 0 such that f(x) ≥ ε for every x ∈ I.
This gives us what we want. �

A very similar construction also allows us to lift homotopies; the following result
is known as the homotopy lifting property of covering spaces.

Theorem 17.11. Let H : I × I → B be a homotopy with H(0, 0) = b0. Then there

is a unique homotopy H̃ : I × I → E with H̃(0, 0) = e0 and p ◦ H̃ = H.

Proof. When H(I×I) is contained entirely in an evenly covered open subset U ⊆ B,
this can be proved by exactly the same argument as before. In the general case,
we subdivide I × I into N2 little squares of side length 1

N ; in the notation from
above, these little squares are of the form Ij × Ik for 1 ≤ j, k ≤ N . If we choose N
sufficiently large, then each α(Ij × Ik) is contained in an evenly covered subset of

B; we can now construct the lifting H̃ (and prove its uniqueness) in N2 steps, by
going through the set of pairs (j, k) in lexicographic order. �
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Lecture 18: November 1

We are in the middle of computing the fundamental group of S1 with the help
of the covering space R → S1. With that goal in mind, we showed last time
covering spaces have the path lifting property (and the homotopy lifting property).
Let p : E → B be an arbitrary covering space, and choose base points b0 ∈ B and
e0 ∈ E with the property that p(e0) = b0. Last time, we showed that any path
α : I → B with α(0) = b0 can be uniquely lifted to a path α̃ : I → E with α̃(0) = e0;
here the word “lifting” means that p ◦ α̃ = α. If α is a loop based at the point b0,
then α̃(1) must belong to the fiber p−1(b0), because p

(
α̃(1)

)
= α(1) = b0.

The homotopy lifting property implies that the endpoint of a lifted path only
depends on the path homotopy class of the path. Let α, β : I → B be two paths with
α(0) = β(0) = b0. Denote by α̃, β̃ : I → E the liftings constructed in Theorem 17.9,

subject to the condition that α̃(0) = β̃(0) = e0.

Corollary 18.1. Suppose that α(1) = β(1) and that α ∼p β. Then we also have

α̃(1) = β̃(1) and α̃ ∼p β̃.

Proof. Let H : I × I → B be a path homotopy between α and β; if we define
b1 = α(1) = β(1), then

H(s, 0) = α(s), H(s, 1) = β(s), H(0, t) = b0, H(1, t) = b1

for every s, t ∈ I. Theorem 17.11 shows that there is a unique lifting H̃ : I× I → E
with H̃(0, 0) = e0. I claim that H̃ is a path homotopy between α̃ and β̃.

To prove this claim, we have to analyze what H̃ does on the four edges of I × I:

(1) To begin with, H̃(−, 0) : I → E is a lifting of the path α with H̃(0, 0) = e0;

the uniqueness statement in Theorem 17.9 shows that H̃(s, 0) = α̃(s).

(2) Likewise, H̃(0,−) : I → E is a lifting of the constant path b0; by uniqueness,

we must have H̃(0, t) = e0.

(3) Since H̃(0,−) : I → E is a lifting of the constant path b1, we also have

H̃(1, t) = e1 for some e1 ∈ E.

(4) Lastly, H̃(−, 1) : I → E is a lifting of the path β with H̃(0, 1) = e0; for the

same reason as before, H̃(s, 1) = β̃(s).

The conclusion is that α̃(1) = β̃(1) = e1, and that H̃ is a path homotopy between

α̃ and β̃. �

The corollary shows that the following lifting correspondence is well-defined:

` : π1(B, b0)→ p−1(b0), `(α) = α̃(1)

In certain cases, one can use it to compute the fundamental group.

Theorem 18.2. If E is path connected, the lifting correspondence ` is surjective.
If E is simply connected, ` is bijective.

Proof. Let e ∈ p−1(b0) be an arbitrary point of the fiber. Since E is path connected,
there is a path α̃ : I → E with α̃(0) = e0 and α̃(1) = e. Obviously, α̃ is a lifting of
the path α = p ◦ α̃ : I → B; moreover, α(0) = α(1) = b0. Now the definition of the
lifting correspondence shows that `(α) = α̃(1) = e, and so ` must be surjective.

If E is simply connected, we can prove moreover that ` is injective (and therefore
bijective). Suppose we have two elements α, β ∈ π1(B, b0) with `(α) = `(β). This
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means that the liftings α̃ and β̃ end at the same point. Since E is simply connected,
it follows that α̃ ∼p β̃; but then α = p ◦ α̃ ∼p p ◦ β̃ = β. �

We can now finish the computation of the fundamental group of S1.

Proof of Theorem 17.5. The covering space p : R→ S1 has the property that p−1(b0) =
Z. Since R is simply connected, the lifting correspondence

` : π1(S1, b0)→ Z

is bijective by Theorem 18.2. To conclude the proof, we have to show that ` is an
isomorphism of groups, which is to say that

`(α ∗ β) = `(α) + `(β).

Let α̃ denote the unique lifting of α with α̃(0) = 0; likewise for β̃. If we add the

number α̃(1) to the path β̃, we obtain a new path

β̃ + α̃(1) : I → R, s 7→ β̃(s) + α̃(1).

Since α̃(1) ∈ Z, this new path is still a lifting of β, but now starting at the point
α̃(1). The composition

α̃ ∗
(
β̃ + α̃(1)

)
is therefore well-defined, and clearly a lifting of the path α∗β; since it starts at the
point 0 and ends at the point α̃(1) + β̃(1), we get

`(α ∗ β) = α̃(1) + β̃(1) = `(α) + `(β),

which is the result we were after. �

Applications. The fact that the fundamental group of the circle is nontrivial
has several useful consequences. One is a topological proof for the fundamental
theorem of algebra; for that, see this week’s homework. Another one is Brouwer’s
fixed point theorem for the closed unit disk. Before we get to that, let me first
recall the following definition.

Definition 18.3. Let A ⊆ X be a subspace of a topological space X. A retraction
is a continuous function r : X → A such that r(x) = x for every x ∈ A. If such a
retraction exists, one says that A is a retract of X.

If A is a retract of X, it is somehow an essential part of X; the following lemma
shows how this manifests itself in the fundamental group.

Lemma 18.4. If A is a retract of X, then the fundamental group of A embeds into
the fundamental group of X.

Proof. Let j : A → X denote the inclusion; a retraction is a continuous function
r : X → A with r ◦ j = id. If we choose a base point a0 ∈ A, we obtain two
homomorphisms

j∗ : π1(A, a0)→ π1(X, a0) and r∗ : π1(X, a0)→ π1(A, a0).

By Lemma 17.2, we have r∗ ◦ j∗ = id, which of course means that j∗ is injective
(and that r∗ is surjective). �

We can use this to show that the circle is not a retract of the closed disk B2.

Corollary 18.5. There is no retraction of B2 onto S1.
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Proof. The group π1(S1, b0) is nontrivial, whereas the group π1(B2, b0) is trivial
(because B2 is a convex subset of R2). In particular, there is no embedding of the
former into the latter. �

We can now prove the following fixed point theorem for the closed unit ball

Bn =
{
x ∈ Rn

∣∣ ‖x‖ ≤ 1
}

in Euclidean space, at least in the special case n = 2.

Theorem 18.6 (Brouwer’s fixed point theorem). Every continuous function

f : Bn → Bn

has a fixed point: there is a point x ∈ Bn with the property that f(x) = x.

Proof for n = 2. Let f : B2 → B2 be an arbitrary continuous function; our goal is
to prove that f must have a fixed point. Suppose that it does not; then f(x) 6= x
for every x ∈ B2. We can exploit this to construct a retraction r : B2 → S1 as
follows. Given any x ∈ B2, consider the ray emanating from the point f(x) and
passing through the point x. Let r(x) be the unique point where this ray meets
the boundary of B2; since f(x) 6= x, one can easily check that r is well-defined and
continuous. For x ∈ S1, we obviously have r(x) = x, and so r is a retraction. This
contradicts what we proved above, and so f must have a fixed point after all. �

Let me briefly describe how one uses algebraic topology to prove Brouwer’s
fixed point theorem for other values of n. Given a continuous function f : Bn →
Bn without fixed points, one obtains a retraction r : Bn → Sn−1 by the same
construction as for n = 2; so the point is to show that such retractions cannot exist.
It is here that the homology groups Hn−1(X,Z) come in: just as in the case of the
fundamental group, the existence of a retraction would mean that Hn−1(Sn−1,Z)
embeds into Hn−1(Bn,Z); but this is not possible, because one can show that the
first group is isomorphic to Z whereas the second group is trivial.

The fundamental group of the n-sphere. Our next example is the n-sphere

Sn =
{
x ∈ Rn+1

∣∣ x2
1 + · · ·+ x2

n+1 = 1
}

in Rn+1. For n ≥ 2, it looks like every closed loop in Sn can be contracted to a
point, and indeed, we have the following theorem.

Theorem 18.7. For n ≥ 2, the n-sphere is simply connected.

For the proof, we will exploit the fact that Sn can be covered by two open sets
that are homeomorphic to Rn. This is of course true for every n; what makes the
case n = 1 special is that the intersection of these two open sets has two connected
components. For n ≥ 2, the intersection is path connected, and so Theorem 18.7 is
a consequence of the following more general result.

Theorem 18.8. Suppose that the topological space X is the union of two open sets
U and V whose intersection U ∩V is path connected. If x0 ∈ U ∩V , then the image
of π1(U, x0) and π1(V, x0) together generate π1(X,x0) as a group.

Recall that a nonempty subset S ⊆ G generates the group G if every element
g ∈ G can be written (not necessarily in a unique way) as a product of elements of
S and their inverses:

g = s1 · · · sn,
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where each sj ∈ S ∪ S−1.

Proof. What we have to show is that every element α ∈ π1(X,x0) can be written
(not necessarily uniquely) in the form

α = α1 ∗ · · · ∗ αn,

where the image of each path αk ∈ π1(X,x0) is contained entirely inside U or
entirely inside V . This is actually not very difficult.

The two open sets α−1(U) and α−1(V ) cover I. According to Lemma 17.10 from
last time, there is a subdivision

0 = s0 < s1 < · · · < sn = 1

of the interval I, in such a way that each little interval [si−1, si] lies entirely inside
α−1(U) or entirely inside α−1(V ). Moreover, we can arrange that each of the points
si actually belongs to α−1(U ∩ V ). Indeed, if say si 6∈ α−1(V ), both intervals
[si−1, si] and [si, si+1] are forced to lie entirely inside α−1(U). But then the same
is true for their union [si−1, si+1], and so we can get rid of the point si. After
thus removing finitely many points of our original subdivision, we end up with a
subdivision where si ∈ α−1(U) ∩ α−1(V ) for every i = 0, . . . , n.

Choosing a subdivision of I with the above properties, we now define

βi : I → X, βi(t) = α
(
si−1 + t(si − si−1)

)
.

Each βi is a path in X that starts and ends at a point of U ∩ V and whose image
lies entirely inside U or entirely inside V ; moreover,

α ∼p β1 ∗ · · · ∗ βn.

This is almost what we want, except that the βi are not elements of π1(X,x0)
because they do not start and end at the point x0. But this we can achieve with
the following trick. For each point xi = α(si), choose a path

γi : I → U ∩ V

with γi(0) = x0 and γi(1) = xi; such a path exists because U ∩V is path connected.
For γ0 and γn, we can choose the constant path ex0

, which is okay because xn = x0.
The path βi starts at the point xi−1 and ends at the point xi; therefore

αi = γi−1 ∗ βi ∗ γ̄i

is a loop based at the point x0. The image of each αi is still contained entirely
inside U or entirely inside V ; since one can easily show that

α ∼p α1 ∗ · · · ∗ αn,

the theorem is proved. �

Theorem 18.8 is a special case of the Seifert-van Kampen theorem, which com-
putes the fundamental group of X from that of U , V , and U ∩ V . We will talk
about the more general result next time. For the remainder of today’s class, let
us look at some more examples of fundamental groups of surfaces. Recall that a
surface is the same thing as a (compact and connected) two-dimensional manifold:
a second countable Hausdorff space that is locally homeomorphic to R2.
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Example 18.9. Everyone’s favorite example of a surface is the torus T = S1 × S1.
Its fundamental group can be computed with the help of one last week’s homework
problems: if we use the point t0 = (b0, b0) as a base point,

π1(T, t0) ' π1(S1, b0)× π1(S1, b0) ' Z× Z.
Note that this group is abelian: for any two elements g, h, one has gh = hg. On a
picture of the torus, the two generators of the fundamental group are represented
by loops going around the torus and around the hole in the center.

Example 18.10. Another example is the torus with two holes T2 = T#T . It is
defined as the connected sum of two copies of T : from each of the two tori, we
remove a small open disk, and then we glue the two spaces together along the
boundary circles. After smoothing out the edges, we obtain a new surface T2.

Since T2 has two holes, it seems pretty obvious that T2 is not homeomorphic
to T . How can we prove this? One thing that distinguishes the two surfaces from
each other is the fundamental group: for T , it is abelian, whereas for T2, it is not
abelian. This can be seen by the following geometric argument. T2 contains a
subspace X homeomorphic to the figure 8; the two circles in X go around the two
holes in T2. By drawing a picture, you can convince yourself that T2 retracts onto
X. This means that the fundamental group of X embeds into that of T2, and so it
is enough to show that π1(X,x0) is not abelian (where x0 denotes the center of the
figure 8). In fact, if α and β are the two obvious loops in X, then α ∗ β and β ∗ α
are not path homotopic: the reason is that there is a covering space of X where
the liftings of α ∗ β and β ∗α have different endpoints. One of the exercises on this
week’s homework will tell you more.
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Lecture 19: November 3

Another example. Let us look at one more example of a fundamental group,
namely that of the projective plane P 2. The projective plane is obtained from the
2-sphere S2 by identifying antipodal points; more precisely,

P 2 = S2/ ∼,

where x ∼ −x for every x ∈ S2. The topology on P 2 is the quotient topology, of
course. We can obtain P 2 by taking a closed disk and identifying antipodal points
on the boundary circle. A short cut-and-paste argument shows that one can also
get P 2 by gluing together a Möbius band (whose boundary is a circle) and a disk
(whose boundary is also a circle).

Theorem 19.1. P 2 is a compact surface, and the quotient map q : S2 → P 2 is a
two-sheeted covering space.

Proof. Let us denote by a : S2 → S2 the antipodal map a(x) = −x; it is a home-
omorphism of S2 with itself. The equivalence class [x] of a point x ∈ S2 is of
course exactly the two-point set {x, a(x)}. Because of how the quotient topology
is defined, q is continuous; let us show that it is also open. If U ⊆ S2 is open, then

q−1
(
q(U)

)
= U ∪ a(U),

which is open in S2; but this means exactly that q(U) is open in P 2. It follows
that P 2 is a Hausdorff space: for any two points [x] 6= [y], we can choose small
neighborhoods x ∈ U and y ∈ V such that the four open sets U, V, a(U), a(V ) are
disjoint; then q(U) and q(V ) are open sets separating [x] and [y].

Now we can show that S2 is a two-sheeted covering space. Given any point
x ∈ S2, we can choose a small neighborhood U such that U ∩ a(U) = ∅; then

q
∣∣
U

: U → q(U)

is bijective, continuous, open, and therefore a homeomorphism; the same is true for
the restriction of q to a(U). This means that the neighborhood q(U) of the point
[x] ∈ P 2 is evenly covered by two open sets; thus q is a two-sheeted covering space.

This argument also proves that P 2 is locally homeomorphic to R2, because
q(U) ' U is homeomorphic to an open set in R2. We already know that P 2 is
Hausdorff; since S2 is compact and second countable, it follows that P 2 is also com-
pact and second countable, and therefore a compact two-dimensional manifold. �

Since S2 is simply connected, Theorem 18.2 shows that the fundamental group
of P 2 is isomorphic to the cyclic group of order 2.

Deformation retracts. One can sometimes compute the fundamental group of
a space X by deforming the space continuously into another (hopefully simpler)
space A. Let me describe one particular case of this idea in detail.

Definition 19.2. Let X be a topological space. A subspace A ⊆ X is deformation
retract of X is there exists a homotopy

H : X × I → X

with the following properties: for every x ∈ X, one has H(x, 0) = x and H(x, 1) ∈
A; for every a ∈ A and every t ∈ I, one has H(a, t) = a.
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For every point x ∈ X, we get a path I → X, t 7→ H(x, t), that starts at the
point x and ends at a point of A. If we define r : X → A by r(x) = H(x, 1), then
r is clearly a retraction of X onto A. What H does is to give a homotopy between
the identity function id and the retraction r – more precisely, between id and the
composition j ◦ r, where j : A → X is the inclusion. Note the subspace A has
to stay fixed during the homotopy. A homotopy with these properties is called a
deformation retraction of X onto A.

Example 19.3. The n-sphere Sn is a deformation retract of Rn+1 \ {0}. The reason
is that we can move any point x 6= 0 in a straight line to a point on the Sn;

H :
(
Rn+1 \ {0}

)
× [0, 1]→ Rn+1 \ {0}, H(x, t) = (1− t)x+ t

x

‖x‖
is a formula for this deformation retraction.

Example 19.4. If we remove one point from the torus T = S1 × S1, the resulting
space deformation retracts onto the union of two circles; this can be most easily
seen by thinking of the torus as the square with opposite sides identified.

Deformation retractions do not change the fundamental group.

Theorem 19.5. Let X be a topological space, A ⊆ X a subspace, and a0 ∈ A a
base point. If A is a deformation retract of X, then

j∗ : π1(A, a0)→ π1(X, a0)

is an isomorphism of groups.

Proof. Let H : X × I → X be a deformation retraction. We already know that
the function r : X → A given by r(x) = H(x, 1) is a retraction; according to
Lemma 18.4, the group homomorphism

j∗ : π1(A, a0)→ π1(X,x0)

is thus injective. It remains to prove that j∗ is also surjective – concretely, this
means that every loop in X (based at the point a0) can be deformed continuously
until it lies inside A. In fact, if α : I → X is a path with α(0) = α(1) = a0, we can
easily show that α ∼p r ◦ α. Indeed, since H is a homotopy between id and j ◦ r,
the composition

F : I × I → X, F (s, t) = H
(
α(s), t

)
is a homotopy between α and j ◦r◦α; it is even a path homotopy because F (0, t) =
F (1, t) = H(a0, t) = a0. Thus

[α] = [j ◦ r ◦ α] = j∗[r ◦ α],

which shows that j∗ is surjective. �

This means for example that Rn \ {0} is simply connected for n ≥ 3 (because
it deformation retracts onto Sn−1). The same argument with homotopies that we
just gave also proves the following useful lemma.

Lemma 19.6. Let f, g : (X,x0)→ (Y, y0) be two continuous functions. If f and g
are homotopic by a homotopy H : X × I → Y with H(x0, t) = y0, then

f∗ : π1(X,x0)→ π1(Y, y0) and g∗ : π1(X,x0)→ π1(Y, y0)

are equal.
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Free products of groups. One of the most useful tools for computing fundamen-
tal groups is the Seifert-van Kampen theorem: it gives us a complete description
of the fundamental group of X when X = U ∪ V is covered by two open sets such
that U , V , and U ∩ V are all path connected. We have already seen (in Theo-
rem 18.8) that π1(X,x0) is generated as a group by the images of π1(U, x0) and
π1(V, x0), which means that every element of π1(X,x0) can be written as a product
of elements in π1(U, x0) and π1(V, x0); the Seifert-van Kampen theorem will tell us
exactly what the ambiguity is.

The statement of the theorem involves the free product of two groups, and so we
have to discuss that idea first.

Example 19.7. Let X be the figure-eight space, meaning two circles touching in
one point x0. The fundamental group of each circle is Z, and is generated by
a loop going around the circle once. Let us denote by α and β the generators
corresponding to the two circles. Any product of powers of α and β represents an
element of π1(X,x0): for instance,

α2βαβ−3

is the loop that goes twice around the first circle, once around the second circle,
then once around the first circle, and then three times around the second circle
in the opposite direction. We can always write the product in the above form,
where powers of α alternate with powers of β. We can therefore describe elements
of π1(X,x0) by such words in α and β. In fact, the set of all such words forms
a group, usually denoted by Z ∗ Z and called the free group on two generators.
Multiplication in this group is defined by juxtaposing two words and simplifying
the result:

(α2βαβ−3)(β2α) = α2βαβ−1α.

The unit element is the empty word ∅; the inverse of a word is obtained simply by
reverting the order of the letters and flipping the signs of the exponents, because

(α2βαβ−3)(β3α1β−1α−2) = ∅.
It would be nice if the fundamental group of the figure-eight space was exactly this
group; the Seifert-van Kampen theorem will say that this is the case.

Now let me introduce the free product in general. Suppose that (Gi)i∈I is a
family of groups, indexed by a (maybe infinite) set I. From the homework, we
know that the Cartesian product ∏

i∈I
Gi

is again a group; when I is infinite, we can also consider the much smaller subgroup⊕
i∈I

Gi ⊆
∏
i∈I

Gi,

consisting of all elements (gi)i∈I such that gi = e for all but finitely many i ∈ I.
Both groups contain all the original groups Gi as subgroups (by looking at those
elements that are equal to e except in the i-th coordinate). Note that the elements
of Gi and Gj commute with each other when i 6= j; sometimes, we may not want
that. The free product ∗

i∈I
Gi
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is also a group that contains all the Gi as subgroups, but in such a way that elements
of Gi and Gj do not commute. Here is the construction.

As a set, the free product consists of all words of finite length

g1g2 · · · gn,

where each gk belongs to some Gi(k). We also allow the empty word ∅ (for n = 0).
We insist that adjacent letters should belong to different groups, meaning that
i(k) 6= i(k+ 1), and that none of the gk is equal to the unit element e. Words with
this property are called reduced : the idea is that we can take an arbitrary word and,
by replacing gkgk+1 by their product in Gi(k) if i(k) = i(k + 1) and by removing
possible appearances of e, turn it into a reduced word in finitely many steps. Let
W be the set of all reduced words.

Note. We could introduce an equivalence relation that does the same thing, but it
is somehow easier to work with actual words instead of equivalence classes.

Now we define the product of two words

(g1 · · · gn)(h1 · · ·hm)

by concatenating them and reducing the result: if gn and h1 happen to belong to the
same group Gi, multiply them together; if the answer is e, remove it and continue
with gn−1 and h2. Note that there can be a lot of cancellation: for example,

(g1 · · · gn)(g−1
n · · · g−1

1 ) = ∅

produces the empty word. This procedure defines a binary operation on the set
W ; evidently, the empty word acts as the unit element, and every word g1 · · · gn
has a unique inverse g−1

n · · · g−1
1 . To show that W is a group, it remains to prove

associativity. Because of the reduction involved in computing the product of two
words, trying to prove this directly is very painful; fortunately, there is a nice trick
that gives us associativity almost for free.

Lemma 19.8. The product on W is associative.

Proof. The trick is to embed W into a space of functions, where associativity be-
comes obvious. For every g ∈ Gi, left multiplication by g defines a function

Lg : W →W.

Concretely, Lg(g1 · · · gn) is reducing the word gg1 · · · gn; convince yourself that there
are five possibilities for what can happen (depending on whether n = 0 or n ≥ 1,
on whether g = e or g 6= e, and so on). If g, h ∈ Gi, one can easily show that

Lg ◦ Lh = Lgh;

the point is that (gh)(g1 · · · gn) and g(hg1 · · · gn) reduce to the same word, because
multiplication in the groupGi is associative. Since Le is the identity onW , it follows
that Lg is bijective with inverse Lg−1 , and therefore a permutation of W . Note that
since composition of functions is associative, the set P (W ) of all permutations of
W forms a group under composition.

Now we show that W can be embedded into the group P (W ). Define a function

L : W → P (W ), g1 · · · gn 7→ Lg1 ◦ · · · ◦ Lgn ;
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of course, we use the convention that L(∅) = id. The function L is injective, because
if we evaluate L(g1 · · · gn) on the empty word, we get(

Lg1 ◦ · · · ◦ Lgn
)
(∅) = g1 · · · gn.

Moreover, L takes the product of two words to the composition of the correspond-
ing functions. To see that this is true, recall how the product was defined: we
concatenate

(g1 · · · gn)(h1 · · ·hm)

and reduce the result. During the reduction, we either multiply two elements of
the same group, or we eliminate an occurrence of e; but since Lg ◦ Lh = Lgh and
Le = id, this does not change the value of

Lg1 ◦ · · · ◦ Lgn ◦ Lh1
◦ · · · ◦ Lhm

.

Since the composition of functions in P (W ) is associative, we conclude that the
product in W must also be associative. �

In the case of finitely many groupsG1, . . . , Gn, we usually denote the free product
by the symbol

G1 ∗ · · · ∗Gn.

Example 19.9. The free product of a certain number of copies of Z is called the
free group on so many generators; for instance, Z ∗ · · · ∗ Z (with n copies) is the
free group on n generators. Of course, we have to use different symbols for the
generators, such as a, b, c, . . .

Example 19.10. Another interesting example is the free product Z2∗Z2. If we write
a and b for the two generators, then a2 = b2 = e; consequently, the elements of the
free product are

∅, a, b, ab, ba, aba, bab, abab, baba, . . .
Even though both factors have only two elements, the free product contains a
subgroup isomorphic to Z, namely the image of the homomorphism

Z→ Z2 ∗ Z2, m 7→ (ab)m.

In fact, the entire group is generated by the two elements ab and a, subject to the
two relations a2 = e and a(ab)a = ba = (ab)−1. If we also had (ab)m = e, this
would be exactly the description of the dihedral group; for that reason, Z2 ∗ Z2 is
also called the infinite dihedral group.
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Lecture 20: November 8

Let X be a topological space, and suppose that X = U ∪ V is the union of two
open sets such that U , V , and U ∩V are path connected. In this situation, one can
describe the fundamental group of X in terms of the fundamental groups of the
three open sets; this is the content of the Seifert-van Kampen theorem, the topic
of today’s class. Fix a base point x0 ∈ U ∩ V ; to simplify the notation, we put

π1(X) = π1(X,x0), π1(U) = π1(U, x0), etc.

Recall from Theorem 18.8 that π1(X) is generated, as a group, by the images of
the group homomorphisms π1(U) → π1(X) and π1(V ) → π1(X). Concretely, this
means that every element [α] ∈ π1(X) can be written as a product

[α] = [α1] · · · [αn],

where each αj is a loop based at the point x0 and contained entirely inside U or
entirely inside V . We can restate this fact using the free product construction from
last time.

Lemma 20.1. We have a surjective homomorphism Φ: π1(U) ∗ π1(V )→ π1(X).

Proof. Let us start by defining Φ. The unit element in the free product is the empty
word, so we define Φ(∅) = e, the homotopy class of the constant loop at x0. The
other elements of the free product are reduced words of the form g1 · · · g`, where
each gj belongs either to π1(U) or to π1(V ), and is therefore represented by a loop
αj in U or V . We then define Φ(g1 · · · g`) = [α1 ∗ · · · ∗ α`]. It is an easy exercise to
show that Φ is a group homomorphism. The result in Theorem 18.8 says that Φ is
surjective. �

It remains to figure out by how much the groups π1(U) ∗π1(V ) and π1(X) differ
from each other. This requires another small interlude on group theory.

Normal subgroups. Let ϕ : G→ H be a homomorphism between two groups G
and H. On the one hand, we can consider the image

imϕ =
{
φ(g)

∣∣ g ∈ G} ⊆ H.
It is a subgroup of H, in the following sense:

(1) It contains the unit element of H: indeed, e = ϕ(e) ∈ imϕ.
(2) For every h ∈ imϕ, we also have h−1 ∈ imϕ: indeed, if h = ϕ(g), then

h−1 = ϕ(g−1).
(3) If h1, h2 ∈ imϕ, then also h1h2 ∈ imϕ: indeed, if h1 = ϕ(g1) and h2 =

ϕ(g2), then h1h2 = ϕ(g1g2).

On the other hand, we can consider the kernel

kerϕ =
{
g ∈ G

∣∣ ϕ(g) = e
}
⊆ G.

For the same reasons as above, it is a subgroup of G; in fact, it is a normal subgroup.

Definition 20.2. A subgroup K ⊆ G is called normal if gkg−1 ∈ K for every
g ∈ G and every k ∈ K. In symbols, K E G.

To see that kerϕ is normal, note that if ϕ(k) = e, then we have

ϕ(gkg−1) = ϕ(g)ϕ(k)ϕ(g)−1 = ϕ(g)ϕ(g)−1 = e,
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which means that gkg−1 ∈ kerϕ. Now let me cite, without proof, two basic results
from group theory. The first says that one can take the quotient of a grouy by a
normal subgroup.

Proposition 20.3. Given K E G, let G/K be the set of all left cosets

gK =
{
gk
∣∣ k ∈ K }.

Then we have gK · hK = ghK, and this operation makes G/K into a group with
unit element eK and inverse (gK)−1 = g−1K.

The second result is the so-called first isomorphism theorem, which relates the
kernel and the image of a group homomorphism.

Proposition 20.4. Let ϕ : G→ H be a homomorphism with K = kerϕ. Then

G/K → imϕ, gK 7→ ϕ(g)

is a well-defined isomorphism of groups.

Analysis of the kernel. Recall that we have a surjective homomorphism Φ: π1(U)∗
π1(V )→ π1(X). By Proposition 20.4,

π1(X) ' π1(U) ∗ π1(V )

ker Φ
,

and so the remaining task is to compute the kernel of Φ. Certain elements of
π1(U) ∗ π1(V ) are obviously contained in ker Φ: a loop α in the intersection U ∩ V
gives rise to two elements

[α]U ∈ π1(U) and [α]V ∈ π1(V ),

and because both have the same image in π1(X), we see that [α]U [α]−1
V ∈ ker Φ.

Since ker Φ is a normal subgroup of the free product, this proves one half of the
following theorem.

Theorem 20.5. ker Φ is the smallest normal subgroup of π1(U)∗π1(V ) containing
every element of this kind.

Let N E π1(U) ∗ π1(V ) be a normal subgroup containing every element of the
form [α]U [α]−1

V . To prove Theorem 20.5, we have to show that ker Φ ⊆ N .
Suppose that g1 · · · g` is a word in ker Φ; we shall argue that g1 · · · g` ∈ N . Each

gi is represented by a loop αi based at x0 and contained entirely inside one of the
two open sets U or V . If we denote by

α1 ∗ · · · ∗ α` : I → X

the path obtained by transversing α1, . . . , α` at equal speed, i.e.,

(α1 ∗ · · · ∗ α`)(s) = αj(`s− j + 1) for s ∈
[
j − 1

`
,
j

`

]
,

then [α1 ∗ · · · ∗ α`] = [α1] ∗ · · · ∗ [α`] = e, and so α1 ∗ · · · ∗ α` is path homotopic to
the constant path at x0. Thus there exists a path homotopy H : I × I → X from
α1 ∗ · · · ∗ α` to the constant path; it satisfies

(20.6) H(s, 1) = H(0, t) = H(1, t) = x0 and H(s, 0) = (α1 ∗ · · · ∗ α`)(s)
for every s, t ∈ I. Just as in the proof of Theorem 18.8, we divide the unit square
I×I into m2 smaller squares of side length 1

m ; if we choose m sufficiently large, then
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H maps every little square entirely into one of the two open sets (by Lemma 17.10).
For the sake of convenience, we shall assume that m is a multiple of `.

Now we have a total of (m+ 1)2 points of the form

xa,b = H

(
a

m
,
b

m

)
∈ X.

For each 0 ≤ a, b ≤ m, we choose a path γa,b from the base point x0 to the point
xa,b, in the following manner: if xa,b = x0, we let γa,b be the constant path; if the
point xa,b belongs to U , V , or U ∩V , we choose γa,b in U , V , or U ∩V , respectively.
This is possible because x0 ∈ U ∩ V and all three open sets are path connected.

From the homotopy H, we now construct a large number of loops based at x0.
If we restrict H to the horizontal line segment

I → I × I, s 7→
(
a+ s

m
,
b

m

)
,

we obtain a path from the point xa,b to the point xa+1,b. By our choice of subdivi-
sion, this path stays inside U or V the whole time. We can compose it with γ̄a,b and
γa+1,b to obtain a loop based at the point x0; we shall denote it by ha,b : I → X.
Because of how we choose the paths γa,b, the loop ha,b also stays inside U or V the
whole time. Similarly, we can restrict H to the vertical line segment

I → I × I, t 7→
(
a

m
,
b+ t

m

)
,

and by composing with γ̄a,b and γa,b+1, obtain a loop va,b : I → X based at x0 that
stays inside U or V the whole time.

Lemma 20.7. For each 0 ≤ a, b ≤ m− 1, the two loops

ha,b ∗ va+1,b and va,b ∗ ha,b+1

are contained in the same open set U or V , and are path homotopic there.

Proof. Consider the restriction of H to the small square

(s, t) 7→
(
a+ s

m
,
b+ t

m

)
.

By construction, the image lies inside one of the two open sets, say U . The four
points xa,b, xa+1,b, xa,b+1, and xa+1,b+1 therefore all lie in U , and so the same is
true for the four paths γa,b, γa+1,b, γa,b+1, and γa+1,b+1. This clearly implies that
ha,b, va+1,b, va,b, and ha,b+1 are all contained in U as well. From the restriction of
H, one can easily build a path homotopy in U between ha,b∗va+1,b and va,b∗ha,b+1,
and so the lemma is proved. �

Since our homotopy H satisfies (20.6), we have

[ha,m] = [v0,b] = [vm,b] = e

for every 0 ≤ a, b ≤ m− 1. As an element of π1(X), the product

w0 = [v0,0] ∗ · · · ∗ [v0,m−1] ∗ [h0,m] ∗ · · · ∗ [hm−1,m]

is thus equal to the unit element e. By applying Lemma 20.7 for each of the m2

small squares, we can gradually rewrite this product until it becomes equal to

wm2 = [h0,0] ∗ · · · ∗ [hm−1,0] ∗ [vm,0] ∗ · · · ∗ [vm,m−1].
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In the first step, we use the relation [h0,m−1] ∗ [v1,m−1] = [v0,m−1] ∗ [h0,m] to show
that w0 is equal to the product

w1 = [v0,0] ∗ · · · ∗ [v0,m−2] ∗ [h0,m−1] ∗ [v1,m−1] ∗ [h1,m] ∗ · · · ∗ [hm−1,m].

In the second step, we use the relation [v1,m−1] ∗ [h1,m] = [h1,m−1] ∗ [v2,m−1] to
show that w1 is equal to the product

w2 = [v0,0] ∗ · · · ∗ [v0,m−2] ∗ [h0,m−1] ∗ [h1,m−1] ∗ [v2,m−1] ∗ [h2,m] ∗ · · · ∗ [hm−1,m],

and so on. After m2 steps, we finally arrive at the expression for wm2 .
Now each loop ha,b and va,b stays inside one of the two open sets, and so we can

consider the words w0, w1, . . . , wm2 (after reduction) as elements of the free product
π1(U) ∗ π1(V ). In going from wk−1 to wk, we performed the following operations:

(1) If ha,b (or va,b) lies inside U ∩ V , we may have viewed it as an element of
one of the groups π1(U) or π1(V ) in the word wk−1, and are viewing it as
an element of the other group in the word wk.

(2) We use the relation from Lemma 20.7, which holds in the group π1(U) or
π1(V ), depending on where H takes the k-th small square.

What this means is that the composition w−1
k wk−1 is the conjugate of an element

of the form [ha,b]U [ha,b]
−1
V or [va,b]U [va,b]

−1
V , and therefore contained in the normal

subgroup N . Since w0 reduces to the empty word, it follows that the reduction
of wm2 belongs to N . But because the homotopy H satisfies (20.6), the reduction
of wm2 is equal to the word g1 · · · g`, and so we conclude that g1 · · · g` ∈ N . This
finishes the proof of Theorem 20.5.

Example 20.8. The following special case may help you understand the proof. Sup-
pose that we have a single element g ∈ π1(U) such that ψ(g) = e. It is represented
by a loop α : I → U . Our goal is to prove that the word [α]U belongs to the normal
subgroup N ; we use subscripts to indicate whether a given loop is to be viewed as
an element of π1(U) or π1(V ).

Let H : I×I → X be a path homotopy between α and the constant path e = ex0 ,
and suppose that m = 2, meaning that if we subdivide I × I into four squares, the
image of each small square is contained entirely in U or V . The following schematic
picture of the homotopy H shows the loops that we constructed during the proof:

α

h0,0 h1,0

h0,1 h1,1

e e

e

e

v0,1

v1,1

e

e

VU

UV

To be specific, let us suppose that each of the four squares maps into the open set
indicated by the label. Since α is contained in the open set U , we have

[α]U = [h0,0]U [h1,0]U
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as elements in the group π1(U). The square in the bottom-right corner maps into
V , and by Lemma 20.7, this gives us the relation

[h1,0]V = [v0,1]V [h1,1]V .

Now h1,0 is a loop in U ∩ V , and so the word [h1,0]U [h1,0]−1
V belongs to the normal

subgroup N . In the free product π1(U) ∗ π1(V ), we then get

[α]U = [h0,0]U [h1,0]U · [h1,0]−1
V [h1,0]V

= [h0,0]U [h1,0]U [h1,0]−1
V [h0,0]−1

U · [h0,0]U [v0,1]V [h1,1]V .

Since the first factor is an element of the normal subgroup N , it will be enough to
show that [h0,0]U [v0,1]V [h1,1]V ∈ N .

The square in the bottom-left corner maps into U , and therefore

[h0,0]U [v0,1]U = [h0,1]U .

Since v0,1 is a loop in U ∩ V , the word [v0,1]−1
U [v0,1]V belongs to N . In the free

product, we can then rewrite the word from above as

[h0,0]U [v0,1]V [h1,1]V = [h0,1]U [v0,1]−1
U [v0,1]V [h1,1]V

= [h0,1]U [v0,1]−1
U [v0,1]V [h0,1]−1

U · [h0,1]U [h1,1]V .

This further reduces the problem to showing that [h0,1]U [h1,1]V ∈ N .
The square on the top-right gives [h1,1]U = [v1,1]U ; we can use this to rewrite

the word from the previous step as

[h0,1]U [h1,1]V = [h0,1]U [h1,1]V [h1,1]−1
U [h1,1]U

= [h0,1]U [h1,1]V [h1,1]−1
U [h0,1]−1

U · [h0,1]U [v1,1]U

The first factor belongs to N , and so it suffices to show that [h0,1]U [v1,1]U ∈ N .

Finally, the square on the top-left gives [h0,1]V = [v1,1]−1
V ; once again, we use

this to rewrite the word from the previous step as

[h0,1]U [v1,1]U = [h0,1]U [h0,1]−1
V · [v1,1]−1

V [v1,1]U ,

and now both factors belong to N . This proves that our original element g ∈ kerψ
lies in the normal subgroup N ; in fact, we have shown that

g =[h0,0]U [h1,0]U [h1,0]−1
V [h0,0]−1

U · [h0,1]U [v0,1]−1
U [v0,1]V [h0,1]−1

U

·[h0,1]U [h1,1]V [h1,1]−1
U [h0,1]−1

U · [h0,1]U [h0,1]−1
V · [v1,1]−1

V [v1,1]U

is the product of five elements in N .

The Seifert-van Kampen theorem. Let me now give the Seifert-van Kampen
theorem in its final form. Suppose that X is the union of two path connected open
sets U and V whose intersection U ∩V is also path connected. Choose a base point
x0 ∈ U ∩ V , and let i : U ∩ V → U and j : U ∩ V → V denote the two inclusions.

Theorem 20.9. We have an isomorphism of groups

π1(X,x0) '
(
π1(U, x0) ∗ π1(V, x0)

)/
N,

where N is the smallest normal subgroup of the free product containing all elements
of the form (i∗g)(j∗g)−1, for g ∈ π1(U ∩ V, x0).

There are two very useful special cases.
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Corollary 20.10. If the intersection U ∩ V is simply connected, then π1(X,x0) '
π1(U, x0) ∗ π1(V, x0).

Example 20.11. The corollary shows that the fundamental group of the figure 8 is
isomorphic to Z ∗ Z. More precisely, let X be the union of two circles meeting in a
point x0. Note that we cannot take U and V to be simply the two circles, because
U and V are supposed to be open sets. We can get around this problem with the
following trick. Let U be the open set consisting of the first circle and a small open
neighborhood of the point x0 in the second circle; similarly, let V be the open set
consisting of the second circle and a small open neighborhood of the point x0 in
the first circle. Then U deformation retracts onto the first circle, V deformation
retracts onto the second circle, and U ∩ V deformation retracts on the one-point
set {x0}, and so we get

π1(X,x0) ∼= π1(U, x0) ∗ π1(V, x0) ∼= Z ∗ Z.

Corollary 20.12. If V is simply connected, then π1(X,x0) ' π1(U, x0)/N , where
N is the smallest normal subgroup of π1(U, x0) containing the image of π1(U∩V, x0).

Example 20.13. We can use the corollary to compute the fundamental group of the
torus in a different way. The torus T can be covered by two open sets U and V ,
such that U deformation retracts onto the figure 8, and V deformation retracts to
a point; the intersection U ∩ V deformation retracts to a circle. If we denote by a
and b the two generators of π1(U) ' Z ∗ Z, the image of π1(U ∩ V ) consists of all
powers of the element aba−1b−1. In the quotient group, the two cosets aN and bN
commute, and so π1(T ) is isomorphic to Z× Z.
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Lecture 21: November 10

Surfaces and their fundamental groups. Our topic today is surfaces. We are
going to compute the fundamental groups of all surfaces, and sketch the proof of the
classification theorem. To begin with, a surface will mean a (usually compact and
connected) 2-dimensional topological manifold. Surfaces can be either orientable
(such as the sphere or the torus) or non-orientable (such as the Klein bottle or the
Möbius band). Let us first define this notion more precisely. One way to see that
the Möbius band is non-orientable is by looking at the circle in the center: if we
draw an arrow that is pointing up, and then we slide it along the circle, it will come
back pointing down. This circle is an example of a one-sided curve: if we take a
small neighborhood of the circle, and then remove the circle from it, the complement
stays connected. Compare this with what happens to a small neighborhood of a
circle going around the torus, for example.

Definition 21.1. Let S be a surface, and C ⊆ S a curve homeomorphic to S1. We
say that C is one-sided if for every path connected open set U containing C, the
complement U \ C is path connected. Otherwise, we say that C is two-sided.

We can use this to define orientability.

Definition 21.2. A surface S is called orientable if every curve on S is two-sided.
Otherwise, S is called non-orientable.

So any surface that contains a one-sided curve is non-orientable; a small neigh-
borhood of such a curve will then be homeomorphic to a Möbius band. With this
definition, it is not trivial to check that S2 or the torus are orientable, but we are
going to ignore this technical point.

Example 21.3. We can construct orientable surfaces by taking the connected sum
of g ≥ 1 copies of the torus; for g = 0, we just take the sphere. An equivalent
description is to start from the sphere S2 and to attach g handles: for each handle,
we remove two small open disks from the surface, and then attach a cylindrical tube
that joins the two boundary circles (in a way that keeps the surface orientable).
A third description (for g ≥ 1) is to take a regular 4g-gon and to glue the edges
together in pairs, as in the following picture (for g = 3):

a1

a2 a3

ā1

ā2

ā3

b1

b2

b3b̄1

b̄2

b̄3

Here we glue together edges with the same label (such as a1 and ā1); the bar means
that we use the opposite orientation, as indicated by the arrows. All 4g corners
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of the polygon therefore become a single point in the quotient space, and the 4g
edges give us 2g different loops based at this point. It is easy to see that adding the
region above the dashed line is the same thing as taking the connected sum with a
copy of the torus; the quotient space is therefore another model for the connected
sum of g copies of the torus. We denote the resulting surface by the symbol Σg.

The Seifert-van Kampen theorem makes it easy to compute the fundamental
group of the surface Σg. We view Σg as the quotient of a regular polygon with
4g edges. Let x0 ∈ Σg be the image of 4g vertices (which all become one point in
Σg). Let V be a small open disk in the center of the polygon, and let U be the
complement of a slightly smaller closed disk. Then V is simply connected; U ∩ V
deformation retracts onto a circle; and U deformation retracts onto the boundary
of the polygon, hence on the union of 2g circles joined along the point x0. It follows
that π1(U, x0) is isomorphic to the free group on 2g generators; we shall call these
generators a1, . . . , ag, b1, . . . , bg, because they are the images of the 2g edges with
those labels. The fundamental group of U ∩V is isomorphic to Z, and is generated
by a circle going around the center of the polygon once in clockwise direction; in
Σg, this is homotopic to the loop

a1b1a
−1
1 b−1

1 · · · agbga−1
g b−1

g .

With the notation [x, y] = xyx−1y−1 for the commutator, we can abbreviate this
loop as [a1, b1] · · · [ag, bg]. According to Corollary 20.12, the fundamental group
of Σg is isomorphic to the quotient of π1(U) by the smallest normal subgroup
containing the image of π1(U∩V ). (The point x0 is not contained in the intersection
U ∩ V , but this does not cause any problems because, up to isomorphism, the
fundamental group does not depend on the choice of base point.)

We conclude that π1(Σg) is isomorphic to the quotient of the free group on the 2g
letters a1, . . . , ag, b1, . . . , bg by the smallest normal subgroup containing the element

[a1, b1] · · · [ag, bg] = a1b1a
−1
1 b−1

1 · · · agbga−1
g b−1

g .

So we have 2g generators and a single relation. In group-theoretic notation, we can
express the result as follows.

Proposition 21.4. We have π1(Σg) ∼=
〈
a1, . . . , ag, b1, . . . , bg

∣∣ [a1, b1] · · · [ag, bg]
〉
.

From this description of the fundamental group, we can read off the number of
handles g, and thereby show that the number of handles is uniquely determined
by the surface. For any group G, we can consider the abelianization, which is
the quotient of G by the smallest normal subgroup containing all the commutators
[x, y] = xyx−1y−1. Since [a1, b1] · · · [ag, bg] is a product of commutators, the effect of
this operation on π1(Σg) is to make the 2g generators a1, . . . , ag, b1, . . . , bg commute;
the abelianization of π1(Σg) is therefore isomorphic to the product group Z2g. The
conclusion is that Σg and Σh are not homeomorphic for g 6= h.

Example 21.5. To construct a non-orientable surface, we can take a connected sum
of n ≥ 1 copies of the projective plane P2. An equivalent description is to start
from the sphere S2 and to attach n cross-caps: to attach a cross-cap, we remove a
small disk and identify opposite points on the resulting circle. Since P2 with a disk
removed is homeomorphic to the Möbius strip, this is the same thing as attaching
n copies of the Möbius strip. A third description is to take a regular 2n-gon and
glue the edges together in pairs, as in the following picture (for n = 5):
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a1

a1

a2

a2

a3

a3

a4

a4

a5

a5

Again, all 2g corners of the polygon become a single point in the quotient space, and
the 2g edges give us g different loops based at this point. It is also easy to see that
adding the region above the dashed line is the same thing as taking the connected
sum with P2. We denote the resulting non-orientable surface by the symbol Σ̃n.

The same argument as before proves the following result.

Proposition 21.6. We have π1(Σ̃n) ∼=
〈
a1, . . . , an

∣∣ a2
1 · · · a2

n

〉
.

Can you see how to read off the number n from this group?

The classification of surfaces. The main result in the theory of surfaces is that
every (compact and connected) surface is homeomorphic to one of the examples
constructed above.

Theorem 21.7. Let S be a compact and connected 2-dimensional topological man-
ifold. If S is orientable, then it is homeomorphic to Σg for a unique g ≥ 0; if S is

non-orientable, then it is homeomorphic to Σ̃n for a unique n ≥ 1.

This is a pretty deep theorem. All known proofs have two parts: first one shows
that a compact and connected surface has some additional structure; and then
one uses this additional structure to classify the surfaces. The first part is always
difficult; the second one is easier. The proof that I am going to present relies on
the fact that any surface can be triangulated. This is fairly difficult, and so I am
not going to talk about the proof; instead, I will show how one can classify surfaces
given a triangulation. (The best reference for the existence of triangulations is the
1992 article “The Jordan-Schoenflies Theorem and the Classification of Surfaces”
by Carsten Thomassen, see Amer. Math. Month. 99, 116–131.)

What do we mean by a triangulation? Imagine a finite number of triangles that
are glued together along their edges in order to make a compact and connected
surface; at each edge, we are only allowed to glue together two triangles. The fact
is that every (compact, connected) surface is homeomorphic to a surface made by
gluing together finitely many triangles.

Example 21.8. The sphere is homeomorphic to a tetrehedron (which consists of 4
triangles) or to an octahedron (which consists of 8 triangles), and also to a cube in
which we divide every face into two triangles (so that we get 12 triangles in total).
Here is a triangulation of the torus:
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In this picture, we need to identify opposite sides of the square in the usual way.

Let S be a (compact, connected) surface, and fix a triangulation. The triangu-
lation gives us finitely many points and paths joining these points; it divides S into
regions that are homeomorphic to a standard triangle in the plane. Let us say that
the triangulation consists of t triangles, and that we get a total of e edges and v
vertices. We can then define the Euler characteristic of the triangulation as

χ = v − e+ t ∈ Z.
The name comes from Euler’s formula, which says that for any triangulation of a
convex polyhedron, the numbers v, e, and t are related by the equation v−e+t = 2.
We will show in a little while that χ is actually the same for every triangulation of
S, and is therefore an invariant of the surface itself.

Example 21.9. If we triangulate the sphere using the tetrahedron, we have (v, e, t) =
(4, 6, 4), and therefore χ = 2. The triangulation of the torus has (v, e, t) = (4, 12, 8),
and therefore χ = 0. Let us also compute the Euler characteristic of the projec-
tive plane P2. Here we first triangulate the sphere using an octahedron, so that
(v, e, t) = (6, 12, 8). To get P2, we take the quotient by the equivalence relation
x ∼ −x. This identifies every vertex/edge/triangle with the vertex/edge/triangle
on the opposite side, and therefore gives us a triangulation of P2 in which (v, e, t) =
(3, 6, 4). Consequently, we get χ = 1 for the projective plane.

We now use the triangulation to draw two graphs on the surface. The first graph
T is a maximal tree in the triangulation, meaning a connected graph that contains
all the vertices of the triangulations but has no cycles. This tree will have v vertices
and some number e1 ≤ e of edges. The second graph G is a sort of dual graph to
the tree: we put one vertex in every triangle of the triangulation, and join two
vertices by an edge if the two triangles have a common edge that is not contained
in the tree T . The graph G will therefore have t vertices and some number e2 ≤ e
of edges; clearly, e1 + e2 = e. Here is what this looks like in the case of the torus:

T

G
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Now we observe that the graphG is connected, due to the fact that S is connected
and T is a tree. Indeed, suppose that G had more than one connected component.
If we look at the union of all the triangles that are touched by a given component of
G, then the outside boundary of this region would have to consist entirely of edges
in T (because G cannot have any edges that cross this boundary), and this would
mean that T contains a cycle; but this is not allowed because T is a tree.

For any graph G with v vertices and e edges, we define the Euler characteristic
as χ(G) = v− e. It is a simple exercise in graph theory to show that any connected
graph satisfies χ(G) ≤ 1, and that χ(G) = 1 happens if and only if G is a tree. We
can therefore rewrite the Euler characteristic of the triangulation as

χ = v − e+ t = (v − e1) + (t− e2) = χ(T ) + χ(G) = 1 + χ(G) ≤ 2.

Now there are two cases:

(1) The first case is χ = 2. We will argue that S is homeomorphic to the sphere.
From the inequality above, we get χ(G) = 1, and so G is also a tree. It is easy to see
that the tree T has a neighborhood U that is homeomorphic to the disk B2. Since
T and G are disjoint, we can also find a neighborhood V of G that is homeomorphic
to B2 and disjoint from U . Now we enlarge U and V until they fill up the entire
surface and meet exactly along their boundaries. This sounds complicated, but it
can easily be done by working in one triangle at a time. The conclusion is that S
is the union of two disks glued along their boundary circles, and so S ∼= S2.

(2) The second case is χ < 0. Now χ(G) < 1, and so G has to contain a
cycle. Pick any cycle γ in G, and suppose that γ has k vertices and k edges. Since
γ is contained in G, the complement of γ in S is connected: by construction, this
complement contains T , and we can walk along T to any vertex of the triangulation.

Let us first assume that S is orientable. Then the curve described by γ is two-
sided, and so if we make a cut along γ, we get a surface with boundary, whose
boundary consists of two copies of γ. To each of these two boundaries, we attach a
cap homeomorphic to the disk, consisting of k triangles meeting in one additional
vertex. Let us call the new surface that we obtain in this way S′; it is still compact,
connected, and orientable, and still has a triangulation. The new triangulation has
t′ = t + 2k triangles; and since all the edges and vertices in γ got duplicated, it
has v′ = v + k + 2 vertices and e′ = e + 3k edges. The Euler characteristic of the
triangulation on S′ is therefore

χ′ = v′ − e′ + t′ = (v + k + 2)− (e+ 3k) + (t+ 2k) = v − e+ t+ 2 = χ+ 2.

By induction (on the value of χ), we conclude that S′ is homeomorphic to Σg−1 for
some g ≥ 1. But S is obviously obtained from S′ by attaching a single handle, and
consequently S ∼= Σg. This argument also shows that χ = 2−2g. We already know
that the number of handles is an invariant of the surface (up to homeomorphism),
and so we may conclude that all triangulations of the surface Σg have the same
Euler characteristic, namely 2− 2g. (Euler’s formula is the special case g = 0.)

The analysis in the non-orientable case is basically the same. If the curve de-
scribed by γ is two-sided, then we cut along γ and obtain a new surface S′ with
χ′ = χ+ 2 that is still non-orientable; S is obtained from S′ by attaching a single
handle. If the curve described by γ is one-sided, then cutting along γ results in a
surface with a single boundary consisting of a cycle with 2k edges and 2k vertices.
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After gluing on a cap homeomorphic to the disk, consisting of 2k triangles meet-
ing in one additional vertex, we get a new surface S′′. The new triangulation has
t′′ = t+ 2k triangles, e′′ = e+ 3k edges, and v′′ = v + k + 1 vertices, and therefore
Euler characteristic

χ′′ = v′′ − e′′ + t′′ = (v + k + 1)− (e+ 3k) + (t+ 2k) = χ+ 1.

Moreover, S is obtained from S′′ by attaching a single cross-cap. Note that S′′

could be orientable or non-orientable. Either way, by induction (on the value of χ),
we find that S is homeomorphic to S2 with a certain number of handles (possibly
zero) and a certain number of cross-caps (at least one) attached.

We can use a trick to transform each handle into two cross-caps. Since S is
non-orientable, it contains a one-sided curve. For each handle, we take one of the
two attaching circles, move it until it meets the one-sided curve, and then slide it
along that one-sided curve until it comes back to the starting point. This has the
effect of reversing the orientation of the attaching circle, and therefore transforms
our handle, which is really the connected sum with a torus, into the connected
sum with a Klein bottle. Because we know that the Klein bottle is homeomorphic
to P2#P2, this allows us to replace each handle by two cross-caps, and therefore
proves that S ∼= Σ̃n for some n ≥ 1. From the formulas that we used during the
proof, we can again see that χ = 2 − n, and hence that every triangulation of the
non-orientable surface Σ̃n has the same Euler characteristic 2− n.
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Lecture 22: November 15

Covering spaces. We have already seen that there is a close relationship between
covering spaces and the fundamental group. Recall that a covering space of a
topological space B is a surjective continuous function p : E → B such that every
point in B has a neighborhood U that is evenly covered by p. Under some relatively
mild assumptions on B, one can classify all possible covering spaces in terms of the
fundamental group π1(B, b0); today and next time, I am going to explain how this
classification works.

The starting point is the following simple observation.

Lemma 22.1. Let p : E → B be a covering space. If b0 ∈ B and e0 ∈ E are base
points satisfying p(e0) = b0, the the induced homomorphism

p∗ : π1(E, e0)→ π1(B, b0)

is injective.

Proof. Since p∗ is a group homomorphism, it is enough to show that ker p∗ = {e}.
Suppose that [α] ∈ π1(E, e0) is an element of ker p∗, which means that p◦α is path
homotopic to the constant path at b0. Now obviously α is a lifting of p ◦α, and the
constant path at e0 is a lifting of the constant path at b0; therefore Corollary 18.1
shows that α is path homotopic to the constant path. But this means exactly that
[α] = e, which is what we wanted to show. �

From a covering space p : E → B with p(e0) = b0, we therefore obtain a subgroup

H0 = p∗
(
π1(E, e0)

)
⊆ π1(B, b0)

isomorphic to π1(E, e0); we will see below that knowing this subgroup is more or
less equivalent to knowing the original covering space. In fact, our goal will be to
prove that there is a one-to-one correspondence between covering spaces of B (up
to equivalence) and subgroups of π1(B, b0) (up to conjugacy).

The lifting lemma. In order to get a satisfactory theory, we shall assume from
now on that the space B is locally path connected. Now B is a disjoint union of
path connected open subspaces: indeed, we proved earlier in the semester that the
path components of a locally path connected space are open. Without any loss of
generality, we may therefore assume in addition that B is path connected.

Definition 22.2. A topological space is called nice if it is path connected and
locally path connected. A covering space p : E → B is called nice if E is nice; since
p is surjective and a local homeomorphism, B is then automatically nice as well.

Some time ago, we showed that paths and homotopies can be uniquely lifted to
a covering space. Those were special cases of the following lifting lemma.

Proposition 22.3. Let p : E → B be a nice covering space with p(e0) = b0. Sup-
pose that Y is a nice topological space, and that f : Y → B is a continuous function
with f(y0) = b0. Then the following two statements are equivalent:

(a) There exists a (unique) lifting f̃ : Y → E with f̃(y0) = e0 and p ◦ f̃ = f .

E

Y B

p
f̃

f
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(b) One has f∗
(
π1(Y, y0)

)
⊆ p∗

(
π1(E, e0)

)
.

The proof that (a) implies (b) is a straightforward consequence of the fact that

the fundamental group is a functor. Suppose we have a lifting f̃ : Y → E with
f̃(y0) = e0 and p ◦ f̃ = f . We obtain a commutative diagram

π1(E, e0)

π1(Y, y0) π1(B, b0)

p∗
f̃∗

f∗

of groups and group homomorphisms. Since p∗ ◦ f̃∗ = f∗, it is clear that

f∗
(
π1(Y, y0)

)
= (p∗ ◦ f̃∗)

(
π1(Y, y0)

)
⊆ p∗

(
π1(E, e0)

)
.

It is also not hard to see that the lifting f̃ is uniquely determined by f . Indeed,
given y1 ∈ Y , we can choose a path α from the base point y0 to the point y1; then
γ = f̃ ◦ α is a path from the base point e0 to the point f̃(y1). Now γ is clearly a
lifting of the path f ◦ α; since p : E → B is a covering space, Theorem 17.9 tells
us that the path f ◦ α has a unique lifting with this property. This means that
f̃(y1) = γ(1) is uniquely determined by the path f ◦ α, and so f can have at most

one lifting f̃ .
Now let us deal with the more interesting implication, namely (b) implies (a).

The first step is to construct a function f̃ : Y → E with f̃(y0) = e0 and p◦ f̃ = f .

Here we take hint from the comments above, and define f̃ by lifting paths. Given
y1 ∈ Y , choose a path α from y0 to y1; such a path exists because Y is path
connected. The image f ◦ α is a path from b0 = f(y0) to f(y1); by Theorem 17.9,
it admits a unique lifting to a path γ : I → E with

γ(0) = e0 and p ◦ γ = f ◦ α.

We would like to define f̃(y1) = γ(1). This only makes sense if we can show that
this point is independent of the path α.

Lemma 22.4. If α′ is another path from y0 to y1, then γ′(1) = γ(1).

Proof. The composition α′ ∗ ᾱ is a loop based at the point y0, hence represents an
element of π1(Y, y0). Since we are assuming that (b) holds, we have

f∗[α
′ ∗ ᾱ] ∈ f∗

(
π1(Y, y0)

)
⊆ p∗

(
π1(E, e0)

)
;

consequently, there is an element [β] ∈ π1(E, e0) such that f∗[α
′ ∗ ᾱ] = p∗[β].

Concretely, β is a loop based at the point e0 and

(f ◦ α′) ∗ (f ◦ ᾱ) ∼p (p ◦ β);

by the general properties of composition of paths, it follows that

(f ◦ α′) ∼p (p ◦ β) ∗ (f ◦ α).

Now γ and γ′ are the unique liftings of f ◦α and f ◦α′, and β is obviously a lifting
of p ◦ β; by Corollary 18.1, we get γ′ ∼p β ∗ γ and

γ′(1) = (β ∗ γ)(1) = γ(1),

which is what we had set out to show. �
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As a result, we have a well-defined function f̃ : Y → E. It is clear from the
construction that f̃(y0) = e0 (take α to be the constant path at y0); since

(p ◦ f̃)(y1) = (p ◦ γ)(1) = (f ◦ α)(1) = f(y1),

we also obtain without difficulty that p ◦ f̃ = f . What is less clear is that f̃ is
actually continuous – note that this is the only place where the assumption about
local path connectedness is used.

Lemma 22.5. The function f̃ : Y → E is continuous.

Proof. Let V be an arbitrary open set containing the point f̃(y1); to prove that f̃ is

continuous, we have to find a neighborhood W of the point y1 such that f̃(W ) ⊆ V .
Since p : E → B is a covering space, some neighborhood of f(y1) is evenly covered
by p; inside of this neighborhood, we can find a smaller neighborhood U of f(y1)
that is also path connected (because B is locally path connected). Then p−1(U) is

a disjoint union of open subsets of E; let V0 be the one containing the point f̃(y1).
After shrinking U , if necessary, we may assume that V0 ⊆ V . On the other hand,
f is continuous, and so f−1(U) is an open set containing the point y1; since Y is
locally path connected, we can find a path connected neighborhood W of y1 with
f(W ) ⊆ U .

Now I claim that f̃(W ) ⊆ V . To prove this, let y ∈ W be an arbitrary point.
Since W is path connected, there is a path β : I →W with β(0) = y1 and β(1) = y;

then α ∗ β is a path from y0 to y. To compute f̃(y), we have to lift

f ◦ (α ∗ β) = (f ◦ α) ∗ (f ◦ β)

to a path in E. Recall that γ is the unique lifting of f ◦ α with γ(0) = e0. It is
also not hard to find a lifting of the path f ◦ β: since U is evenly covered by p, the
restriction

p0 = p
∣∣
V0

: V0 → U

is a homeomorphism, and so δ = p−1
0 ◦ f ◦ β : I → V0 is a lifting of the path f ◦ β

with δ(0) = γ(1). The composition γ ∗ δ is defined, and

p ◦ (γ ∗ δ) = (p ◦ γ) ∗ (p ◦ δ) = (f ◦ α) ∗ (f ◦ β);

hence γ ∗ δ is the desired lifting of f ◦ (α ∗ β). But then

f̃(y) = (γ ∗ δ)(1) = δ(1) ∈ V0 ⊆ V,

as claimed. �

Covering spaces and subgroups, Part 1. With the covering lemma in hand,
we can now start looking at the correspondence between covering spaces of B and
subgroups of π1(B, b0). If p : E → B is a covering space with p(e0) = b0, we denote
by

H0 = p∗
(
π1(E, e0)

)
⊆ π1(B, b0)

the resulting subgroup of the fundamental group; note that it depends on the choice
of base point e0 ∈ E.
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Definition 22.6. Two covering spaces p : E → B and p′ : E′ → B are called
equivalent if there exists a homeomorphism h : E → E′ with p = p′ ◦ h.

E E′

B

p

h

p′

With this notion of equivalence, we are allowed to replace E by a homeomorphic
space E′, provided we also replace p by the function p′ = p ◦ h−1. Here is a first
result that relates covering spaces and subgroups.

Theorem 22.7. Let p : E → B and p′ : E′ → B be two nice covering spaces, with
base points e0 ∈ E and e′0 ∈ E′ satisfying p(e0) = p′(e′0) = b0. Then the following
two statements are equivalent:

(a) There exists a homeomorphism h : E → E′ with p′ ◦ h = p and h(e0) = e′0.
(b) The two groups H0 = p∗

(
π1(E, e0)

)
and H ′0 = p′∗

(
π1(E′, e′0)

)
are equal.

Proof. As in the case of the lifting lemma, one implication is straightforward. Given
a homeomorphism h : E → E′ as in (a), we get the following commutative diagram
of groups and group homomorphisms:

π1(E, e0) π1(E′, e′0)

π1(B, b0)

p∗

h∗

p′∗

Now p′∗ ◦ h∗ = p∗, and because h is a homeomorphism, h∗ is bijective. From this,
one easily deduces that H0 = H ′0.

To prove the converse, we shall use the lifting lemma – as it turns out, four
times. We are trying to find a continuous function h : E → E′ with h(e0) = e′0 and
p′ ◦ h = p, or in other words, a lifting of p to the covering space p′ : E′ → B.

E′

E B

p′
h

p

Since E and E′ are both nice, Proposition 22.3 shows that a necessary and sufficient
condition is that

H0 = p∗
(
π1(E, e0)

)
⊆ p′∗

(
π1(E′, e′0)

)
= H ′0.

Because H0 = H ′0, this condition is clearly satisfied, and so there is a (unique)
lifting h : E → E′. Since we also have H ′0 ⊆ H0, a similar argument shows that
there is a (unique) lifting k : E′ → E with k(e′0) = e0 and p ◦ k = p′.

Now I claim that both k ◦h and h◦k are equal to the identity, which means that
h is a homeomorphism with inverse k. This follows from the uniqueness statement
in Proposition 22.3. Indeed, both k ◦ h and id are liftings of p : E → B to the
covering space p : E → B; since there can be at most one lifting, k ◦ h = id.

E

E B

pk◦h=id

p
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The same argument shows that h ◦ k = id, and so h is a homeomorphism. �

This result shows that if H0 = H ′0, then the two covering spaces p : E → B
and p′ : E′ → B are equivalent. The equivalence in the theorem was not arbitary,
however, but was supposed to be compatible with a fixed choice of base points. We
should therefore figure out what happens when we change the base point. Suppose
that e1 ∈ E is another point with p(e1) = b0. Since E is path connected, the
two groups π1(E, e0) and π1(E, e1) are isomorphic. This does not mean that their
images H0 and H1 in π1(B, b0) have to be equal; but they are related in the following
way.

Definition 22.8. Two subgroups H0 and H1 of a group G are conjugate if there
is an element g ∈ G such that H1 = gH0g

−1; said differently, the isomorphism
G→ G, x 7→ gxg−1, should take one subgroup to the other.

With this definition, we can state an improved version of Theorem 22.7.

Theorem 22.9. Let p : E → B and p′ : E′ → B be two nice covering spaces, with
base points e0 ∈ E and e′0 ∈ E′ satisfying p(e0) = p′(e′0) = b0. Then the following
two statements are equivalent:

(a) There exists a homeomorphism h : E → E′ with p′ ◦ h = p.
(b) The two subgroups H0 and H ′0 of π1(B, b0) are conjugate.

We begin the proof by analyzing how the group H0 depends on the choice of
base point e0 ∈ p−1(b0).

Lemma 22.10. Let p : E → B be a nice covering space with p(e0) = b0, and define
H0 = p∗

(
π1(E, e0)

)
.

(a) If e1 ∈ p−1(b0), then the subgroup H1 = p∗
(
π1(E, e1)

)
is conjugate to H0.

(b) Conversely, if H ⊆ G is any subgroup conjugate to H0, then there is a point
e ∈ p−1(b0) such that H = p∗

(
π1(E, e)

)
.

Proof. To prove (a), choose a path ϕ : I → E with ϕ(0) = e0 and ϕ(1) = e1. We
already know from Lemma 17.1 that the function

ϕ̂ : π1(E, e0)→ π1(E, e1), [α] 7→ [ϕ̄ ∗ α ∗ ϕ]

is an isomorphism of groups. Since p(e0) = p(e1) = b0, the path β = p ◦ϕ is a loop
based at the point b0. Now we compute that

(p∗ ◦ ϕ̂)[α] = p∗[ϕ̄ ∗ α ∗ ϕ] = [p ◦ ϕ̄] ∗ [p ◦ α] ∗ [p ◦ ϕ] = [β]−1 ∗
(
p∗[α]

)
∗ [β],

and because ϕ̂ is an isomorphism, it follows that

H1 = p∗
(
π1(E, e1)

)
= (p∗ ◦ ϕ̂)

(
π1(E, e0)

)
= [β]−1 ∗H0 ∗ [β].

Because [β] ∈ π1(B, b0), this means that H1 and H0 are conjugate subgroups.
To prove (b), let [α] ∈ π1(B, b0) be some element with the property that

H = [α]−1 ∗H0 ∗ [α].

By Theorem 17.9, α can be uniquely lifted to a path α̃ : I → E with α̃(0) = e0, and
if we set e = α̃(1), the same argument as above shows that H = p∗

(
π1(E, e)

)
. �

Proof of Theorem 22.9. Let us first show that (a) implies (b). The given homeo-
morphism h : E → E′ may not take e0 to e′0, so put e′1 = h(e0). Then Theorem 22.7
shows that

H ′1 = p′∗
(
π1(E′, e′1)

)
= H0.
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By Lemma 22.10, H ′0 and H ′1 are conjugate subgroups of π1(B, b0), and (b) follows.
To prove the converse, we apply Lemma 22.10 to the subgroup H0 to conclude

that there is a point e ∈ E with H0 = p∗
(
π1(E, e)

)
. Now Theorem 22.7 shows that

there is a homeomorphism h : E → E′ with p′ ◦ h = p and h(e) = e′0; in particular,
the two covering spaces are equivalent. �

Now an obvious question is whether every subgroup of π1(B, b0) corresponds to
some covering space. Under an additional minor assumption on B, the answer is
yes; in particular, there is a simply connected covering space corresponding to the
trivial subgroup {e}, called the universal covering space. Next time, I will explain
how to construct covering spaces from subgroups.
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Lecture 23: November 17

Last time, we showed that a nice covering space p : E → B is uniquely determined
(up to homeomorphism) by the subgroup

H0 = p∗
(
π1(E, e0)

)
⊆ π1(B, b0).

If we change the base point e0 ∈ E, the subgroup may change, but only to another
subgroup that is conjugate to H0. Now the natural question is whether every
subgroup of π1(B, b0) is actually realized by some covering space.

Example 23.1. Since p∗ is injective, the trivial subgroup {e} would correspond to
a simply connected covering space. Such a covering space, if it exists, is unique up
to homeomorphism, and is called the universal covering space of B.

In this generality, the answer to the question is negative: not every nice (= path
connected and locally path connected) space has a universal covering space. The
following lemma shows that there is another necessary condition.

Lemma 23.2. If a nice topological space has a simply connected covering space
p : E → B, then every point b ∈ B has a neighborhood U such that the homomor-
phism π1(U, b)→ π1(B, b) is trivial.

Proof. Let U be any neighborhood of b that is evenly covered by p. Let V ⊆ p−1(U)
be one of the disjoint open subsets homeomorphic to U , and let e ∈ V ∩ p−1(b) be
the unique point mapping to b. We get the following diagram of groups and group
homomorphisms:

π1(V, e) π1(E, e)

π1(U, b) π1(B, b)

' p∗

Since U and V are homeomorphic, the vertical arrow on the left is an isomorphism.
Given that π1(E, e) is the trivial group, the image of π1(U, b) → π1(B, b) must be
the trivial subgroup, too. �

Example 23.3. Here is an example of a space where this property fails to hold.

Let B ⊆ R2 be the union of the circles

Cn =

{
(x, y) ∈ R2

∣∣∣∣∣
(
x− 1

n

)2

+ y2 =
1

n2

}
for n = 1, 2, . . . . Since every one of these circles gives a different nontrivial element
in π1

(
B, (0, 0)

)
, the point (0, 0) does not have any neighborhood as in the lemma,

and therefore B cannot have a universal covering space.
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Fortunately, it turns out that the property in Lemma 23.2 is also sufficient for
the existence of a universal covering space.

Definition 23.4. A nice topological space B is called semi-locally simply connected
if every point b ∈ B has a neighborhood U such that π1(U, b) → π1(B, b) is the
trivial homomorphism.

Of course, every neighborhood of b that is contained in U will have the same
property. This notion is weaker than being locally simply connected (which would
mean that U itself is simply connected).

Existence of covering spaces. The main existence result for covering spaces is
the following.

Theorem 23.5. Let B be nice and semi-locally simply connected. Then for every
subgroup H ⊆ π1(B, b0), there is a nice covering space p : E → B and a point
e0 ∈ p−1(b0) such that p∗

(
π1(E, e0)

)
= H.

The proof is somewhat long, but not very difficult. Given a subgroup H, we
have to construct a suitable covering space p : E → B; the main idea is to use the
path lifting property of covering spaces. Suppose for a moment that we already
had p : E → B. Since E is supposed to be path connected, every point e ∈ E can
be joined to e0 by a path α̃. Its image α = p ◦ α̃ is a path in B that starts at the
base point b0 and ends at the point α(1) = p(e). Now we observe two things:

(1) The path α̃ is uniquely determined by α, according to the path lifting
property of covering spaces in Theorem 17.9.

(2) If we choose a different path β̃ from e0 to e, then β = p ◦ β̃ ends at the
same point p(e); moreover [α ∗ β̄] is an element of the subgroup H, because

α̃ followed by the inverse of β̃ is an element of π1(E, e0).

This means that points in E are in one-to-one correspondence with paths that start
at the point b0, subject to the equivalence relation

(23.6) α ∼ β ⇐⇒ α(1) = β(1) and [α ∗ β̄] ∈ H.

We now use this idea to construct p : E → B from the subgroup H; for the sake of
clarity, I shall divide the proof into eight steps.

Step 1 . We define p : E → B on the level of sets. Let C0(I,B) be the set of all
paths α : I → B with α(0) = b0. It is easy to see that the conditions in (23.6)
define an equivalence relation on C0(I,B); we let α] denote the equivalence class
of the path α. Now let

E =
{
α]
∣∣ α ∈ C0(I,B)

}
be the set of equivalence classes. Since equivalent paths have the same endpoint,
the function

p : E → B, p(α]) = α(1),

is well-defined; it is also surjective, due to the fact that B is path connected.

Step 2 . We put a topology on E. There are two ways of doing this. One is to give
the space C(I,B) and its subspaces C0(I,B) the compact-open topology, and then
to give E = C0(I,B)/ ∼ the quotient toplogy. A more concrete way is by writing
down a basis. For any path α ∈ C0(I,B) and for any path connected neighborhood
U of the point α(1), let

B(U,α) =
{

(α ∗ δ)]
∣∣ δ is a path in U with δ(0) = α(1)

}
.
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Taking δ = eα(1) shows that α] ∈ B(U,α). We shall argue in a moment that these
sets form a basis for a topology on E; to make that easier, let us first prove a small
lemma.

Lemma 23.7. If β] ∈ B(U,α), then B(U,α) = B(U, β).

Proof. By assumption, β] = (α ∗ δ)] for some path δ : I → U with δ(0) = α(1).
Since δ ∗ δ̄ is path homotopic to the constant path at α(1), we have

(β ∗ δ̄)] =
(
(α ∗ δ) ∗ δ̄

)]
= α],

which means that α] ∈ B(U, β). Whenever γ is a path in U starting at the point
β(1), we compute that

(β ∗ γ)] =
(
(α ∗ δ) ∗ γ

)]
=
(
α ∗ (δ ∗ γ)

)] ∈ B(U,α),

and so B(U, β) ⊆ B(U,α); the other inclusion follows by symmetry. �

Step 3 . We show that the sets B(U,α) form a basis for a topology on E. Since
α] ∈ B(U,α) and since B is locally path connected, it is clear that the union of all
basic sets is E. It remains to show that B(U1, α1) ∩ B(U2, α2) is covered by basic
sets. If β] ∈ B(U1, α1) ∩ B(U2, α2) is an arbitrary point in the intersection, let V
be a path connected neighborhood of β(1) contained in U1 ∩ U2. Then

B(V, β) ⊆ B(U1, β) ∩B(U2, β) = B(U1, α1) ∩B(U2, α2),

where the last equality is due to the lemma. The criterion in Proposition 2.8 shows
that E has a topology in which the B(U,α) are basic open sets.

Step 4 . We argue that p : E → B is continuous and open. Openness is easy: it is
enough to show that the image of every basic open sets is open, and p

(
B(U,α)

)
= U

because U is path connected. To prove that p is continuous at the point α] ∈ E,
let V ⊆ B be an arbitrary neighborhood of p(α]) = α(1). Since B is locally path
connected, we can find a path connected neighborhood U ⊆ V ; then p

(
B(U,α)

)
=

U ⊆ V , and so p is continuous.

Step 5 . We show that p : E → B is a covering space. Given any point b1 ∈ B, let
U be a path connected neighborhood with the property that π1(U, b1)→ π1(B, b1)
is trivial. We shall argue that U is evenly covered by p. First, we have

p−1(U) =
⋃
α

B(U,α),

where the union is over all paths α : I → B with α(0) = b0 and α(1) = b1. Since
p
(
B(U,α)

)
= U , one inclusion is clear. To prove the other one, suppose that

β(1) = p(β]) ∈ U . Because U is path connected, we can choose a path δ in U from
the point b1 to the point β(1); then

α = β ∗ δ̄
is a path from b0 to b1, and β] = (α ∗ δ)] ∈ B(U,α). By the lemma, distinct sets of
the form B(U,α) are disjoint; thus p−1(U) is a disjoint union of open sets.

Lemma 23.8. p induces a homeomorphism between B(U,α) and U .

Proof. We already know that p is continuous and open; moreover p
(
B(U,α)

)
= U .

It remains to show that the restriction of p to B(U,α) is injective. Suppose that

p
(
(α ∗ δ1)]

)
= p
(
(α ∗ δ2)]

)
.
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Then δ1(1) = δ2(1), and so δ1 ∗ δ̄2 is a loop in U based at the point b1. Because
π1(U, b1)→ π1(B, b1) is the trivial homomorphism, we have [δ1 ∗ δ̄2] = e; but then

[(α ∗ δ1) ∗ δ̄2 ∗ ᾱ] = [α] ∗ [δ1 ∗ δ̄2] ∗ [ᾱ] = [α] ∗ [ᾱ] = e,

which proves that (α ∗ δ1)] = (α ∗ δ2)]. �

We conclude that p : E → B is a covering space. Let e0 be the equivalence class
of the constant path at b0; obviously, p(e0) = b0.

Step 6 . We give a formula for the lifting of paths from B to E. Suppose that
α : I → B is a path with α(0) = b0. Since p : E → B has the path lifting property,
we know that there is a unique lifting α̃ : I → E with α̃(0) = e0. We shall validate
the original idea for the construction by showing that this lifting ends at the point
α]. For any c ∈ I, define

αc : I → B, αc(t) = α(ct);

it is simply the portion of the path α between α(0) and α(c). Note that α0 is the
constant path at b0, whereas α1 = α. Now define

α̃ : I → E, α̃(c) = α]c.

Then α̃(0) = e0, and since p
(
α̃(c)

)
= αc(1) = α(c), this must be the desired lifting

of α, provided we can prove continuity.

Lemma 23.9. α̃ is continuous.

Proof. To show that α̃ is continuous at the point c ∈ I, let B(U,αc) be one of the
basic open sets containing the point α]c. Since α is continuous, we can certainly
choose some ε > 0 so that α(d) ∈ U whenever |c− d| < ε; now it is not hard to see

that α]d ∈ B(U,αc) for every such d. �

Step 7 . We conclude that p : E → B is a nice covering space. This is immediate,
because for any α] ∈ E, the lifting α̃ from Step 6 is a path that connects the base
point e0 to the point α]. Consequently, E is path connected; it is also locally path
connected (because it is locally homeomorphic to B by Step 5).

Step 8 . We show that H = p∗
(
π1(E, e0)

)
. Let α be an arbitrary loop in B based

at b0, and let α̃ : I → E be the lifting constructed in Step 6. By the uniqueness
of liftings, we have α ∈ p∗

(
π1(E, e0)

)
if and only if α̃ starts and ends at the point

e0. Because α̃(1) = α], this is the same as saying that α] = e0, which by (23.6) is
equivalent to [α] ∈ H.

This concludes the proof of Theorem 23.5. In the case H = {e}, the equivalence
relation is just that of path homotopy; in the model we have constructed, the points
of the universal covering space are therefore path homotopy classes of paths starting
at the point b0. Note that p−1(b0) is exactly the set π1(B, b0), as it should be.

Corollary 23.10. If B is nice and semi-locally simply connected, then we have a
bijective correspondence between nice covering spaces of B (up to equivalence) and
subgroups of π1(B, b0) (up to conjugacy).

Example 23.11. The description of the covering space in terms of paths can be used
to visualize the universal covering space. If X is the union of two circles a and b,
touching at a single point x0, the universal covering space has the following shape:
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Every horizontal line goes around the circle a, every vertical line around the circle
b, with left/right and up/down corresponding to the two possible orientations. The
crossing points are naturally labeled by the elements of the free group on two
generators; since these are exactly the points that map to the base point x0, this
shows again that the fundamental group of X is Z ∗ Z.
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Lecture 24: November 22

Deck transformations. When we studied the correspondence between subgroups
of the fundamental group and covering space, we introduced the notion of equiva-
lence for covering spaces. Our goal today is to describe all possible self-equivalences
of a given covering space.

Definition 24.1. Let p : E → B be a nice covering space. A deck transformation
is a homeomorphism h : E → E with p ◦ h = p.

E E

B

p

h

p

The set of all deck transformations of a given covering space is a group under
composition; the unit element is the identity idE : E → E. We denote this group
by AutB(E). Our goal is to describe AutB(E) in terms of the fundamental group.

Deck transformations on the universal covering space. Let us begin by
looking at the special case where p : E → B is the universal covering space of B.
As usual, we choose base points b0 ∈ B and e0 ∈ E such that p(e0) = b0. Since E
is simply connected, the subgroup

H0 = p∗
(
π1(E, e0)

)
⊆ π1(B, b0)

is of course trivial.
Now if e1 ∈ E is a second point with p(e1) = b0, then the subgroup

H1 = p∗
(
π1(E, e1)

)
⊆ π1(B, b0)

is also trivial, and so H0 = H1. According to Theorem 22.7, there is a unique
homeomorphism h : E → E such that p ◦ h = p and h(e0) = e1. Thus for every
point e1 ∈ p−1(b0) in the fiber over b0, there is a unique deck transformation that
takes the base point e0 to the point e1. Said differently, the function

ε0 : AutB(E)→ p−1(b0), h 7→ h(e0)

is a bijection. The lifting correspondence in Theorem 18.2 gives us another bijection

` : π1(B, b0)→ p−1(b0), `(α) = α̃(1);

here α is any loop based at the point b0, and α̃ is its unique lifting to a path
starting at e0. By composing ε0 and `−1, we get a bijection between the group of
deck transformations and the fundamental group:

AutB(E) p−1(b0)

π1(B, b0)

ε0

`−1◦ε0
`

Proposition 24.2. The bijection

`−1 ◦ ε0 : AutB(E)→ π1(B, b0)

is an isomorphism of groups.
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Proof. It suffices to show that `−1 ◦ ε0 is a group homomorphism. Let h1, h2 ∈
AutB(E) be two deck transformations, and put

e1 = ε0(h1) = h1(e0) and e2 = ε0(h2) = h2(e0).

Choose paths α̃1 from e0 to e1 and α̃2 from e0 to e2; then α̃1 is a lifting of the loop
α1 = p ◦ α̃1 and α̃2 is a lifting of α2 = p ◦ α̃2; consequently,

`−1(e1) = [α1] and `−1(e2) = [α2].

To prove that `−1 ◦ ε0 is a homomorphism, we have to show that(
`−1 ◦ ε0

)
(h1 ◦ h2) = [α1 ∗ α2].

Now ε0(h1 ◦h2) = (h1 ◦h2)(e0) = h1(e2), and so we will be done once we show that

(24.3) `(α1 ∗ α2) = h1(e2).

We already have a path α̃2 from the base point e0 to the point e2; if we apply the
deck transformation h1 : E → E to it, we obtain a path h1 ◦ α̃2 from the point
e1 = h1(e0) to the point h1(e2). The composed path

α̃1 ∗ (h1 ◦ α̃2)

is still a lifting of the loop α1 ∗ α2 because

p ◦
(
α̃1 ∗ (h1 ◦ α̃2)

)
= (p ◦ α̃1) ∗ (p ◦ h1 ◦ α̃2) = α1 ∗ (p ◦ α̃2) = α1 ∗ α2.

Since it starts at the point e0 and ends at the point h1(e2), the definition of the
lifting correspondence shows that (24.3) is satisfied. �

To summarize: The group of deck transformations of the universal covering space
is isomorphic to the fundamental group; moreover, for any two points in the same
fiber, there is a unique deck transformation taking one to the other. (One says that
the group of deck transformations acts simply transitively on the fibers.)

Example 24.4. The universal covering space of the circle is p : R → S1; here the
fundamental group is Z, and since p(x+n) = p(x), the group of deck transformations
is also Z.

Example 24.5. The real projective plane P 2 was the quotient of S2 by the equiv-
alence relation x ∼ −x. Here the fundamental group is Z2, and there are exactly
two deck transformations: the identity and the antipodal map x 7→ −x.

The fundamental group π1(B, b0) therefore acts on the universal covering space
by homeomorphisms; you can find some more information about this on the home-
work for next week.

Deck transformations and regular covering spaces. Now let us return to the
general case where p : E → B is a nice covering space and b0 ∈ B and e0 ∈ E are
base points with p(e0) = b0. Let

H0 = p∗
(
π1(E, e0)

)
⊆ π1(B, b0)

be the corresponding subgroup. We would like to relate the group of deck transfor-
mations to H0, only this time, the relationship will not be quite as straightforward.
We again consider the function

ε0 : AutB(E)→ p−1(b0), ε0(h) = h(e0).
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The uniqueness statement in Theorem 22.7 means that a deck transformation is
completely determined by where it takes the point e0; thus ε0 is injective. As
before, we also have the lifting correspondence

` : π1(B, b0)→ p−1(b0),

which is surjective since E is path connected.

Lemma 24.6. Let α be a loop based at b0. The point `(α) belongs to the image of
ε0 if and only if [α] ∗H0 ∗ [α]−1 = H0.

Proof. Let α̃ denote the unique lifting of α to a path starting at e0; then e1 = α̃(1) =
`(α) belongs to the fiber p−1(b0). By Theorem 22.7, there is a deck transformation
h with ε0(h) = h(e0) = e1 if and only if

p∗
(
π1(E, e1)

)
= H0

Since α̃ is a path from e0 to e1, we have

[α̃] ∗ π1(E, e1) = π1(E, e0) ∗ [α̃];

after applying the homomorphism p∗, this becomes

[α] ∗ p∗
(
π1(E, e1)

)
= H0 ∗ [α],

and so a suitable deck transformation exists if and only if [α] ∗H0 = H0 ∗ [α]. �

The property in the lemma already has a name in group theory.

Definition 24.7. Let H be a subgroup of a group G. The subgroup

N(H) =
{
g ∈ G

∣∣ gHg−1 = H
}

is called the normalizer of H in G.

Note that H is a normal subgroup of N(H); in fact, it is not hard to see that
N(H) is the largest subgroup of G that contains H as a normal subgroup. For
example, H is normal in G if and only if N(H) = G.

Returning to the case of covering spaces, Lemma 24.6 tells us that

ε0 : AutB(E)→ `
(
N(H0)

)
is a bijection. To complete our description of the group AutB(E), it remains to
compute `

(
N(H0)

)
in terms of the subgroup H0.

Lemma 24.8. The lifting correspondence ` induces a bijection

˜̀: N(H0)/H0 → `
(
N(H0)

)
.

Proof. Recall that the elements of the quotient N(H0)/H0 are the left cosets [α]∗H0

for [α] ∈ N(H0); since H0 E N(H0) is normal, the quotient is itself a group.
Obviously, ` : N(H0)→ `

(
N(H0)

)
is surjective; thus it suffices to show that two

elements [α], [β] ∈ N(H0) have same image under ` if and only if [α]∗H0 = [β]∗H0.

Let α̃ and β̃ be the unique liftings to paths starting at e0; then

`(α1) = `(α2) ⇐⇒ α̃(1) = β̃(1).

If α̃(1) = β̃(1), then the composition of α̃ and the inverse of β̃ is a loop based at
e0, and so [α] ∗ [β]−1 ∈ H0. That being the case, we compute that

[α] ∗H0 = H0 ∗ [α] = H0 ∗ [α] ∗ [β]−1 ∗ [β] = H0 ∗ [β] = [β] ∗H0,

where the first and last equalities hold because [α], [β] ∈ N(H0). To prove the
converse, run the same argument backwards. �
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We can now consider the composition

˜̀−1 ◦ ε0 : AutB(E)→ N(H0)/H0,

and for the same reason as in Proposition 24.2, this bijection is actually a group
isomorphism. Let me state the final conclusion in the form of a theorem.

Theorem 24.9. Let p : E → B be a nice covering space. If H0 = p∗
(
π1(E, e0)

)
denotes the corresponding subgroup of π1(B, b0), then

AutB(E) ' N(H0)/H0.

In words, the group of deck transformations is isomorphic to the quotient of the
normalizer of H0 by its normal subgroup H0.

Unlike for the universal covering space, the group of deck transformations no
longer acts transitively on the fibers in general. For example, if N(H0) = H0, then
the only deck transformation of the corresponding covering space is the identity.

Definition 24.10. A nice covering space p : E → B is called regular if the group
of deck transformations acts transitively on the fibers: for every two points e0, e1 ∈
p−1(b0), there is a deck transformation taking e0 to e1.

This use of the word “regular” is different from the separation axioms, of course.
The proof of the theorem shows that there is a deck transformation taking e0

to e1 if and only if e1 ∈ `
(
N(H0)

)
. If the subgroup H0 is normal in G, then

N(H0) = π1(B, b0), and so `
(
N(H0)

)
= p−1(b0); the proof of the converse is an

easy exercise.

Corollary 24.11. A nice covering space p : E → B is a regular covering space if
and only if the corresponding subgroup H0 of π1(B, b0) is normal. In that case, the
group of deck transformations is isomorphic to the quotient group π1(B, b0)/H0.

In particular, the fundamental group acts on any regular covering space.

Note. The correspondence between covering spaces and the fundamental group is
basically the same as the correspondence between field extensions and subgroups
of the Galois group. Since you may already know some Galois theory, let me
briefly summarize what happens there. Given a field k, let k̄ denote its (separable)
algebraic closure; its analogue in topology is the universal covering space. The
Galois group G = Gal(k̄/k) consists of all field automorphisms of k̄ that fix k; its
analogue in topology is the group of deck transformations of the universal covering
space (which, as we have seen, is isomorphic to the fundamental group). The
Galois correspondence is a bijection between (separable) algebraic field extensions
and subgroups of G: a field extension k ⊆ L ⊆ k̄ corresponds to the subgroup
H = Gal(k̄/L) of all those field automorphisms that fix L. A field extension is
called “normal” if every automorphism of k̄ maps L into itself; in that case, L/k
is itself a Galois extension. In terms of G, this is equivalent to H E G, and one
has the isomorphism Gal(L/k) ' G/H. All of these facts have their analogues in
topology.
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Lecture 25: November 29

Scheduling. On December 6 (Tuesday), we are going to have an additional lecture
(at 9:45 in P–117), to make up for the lecture I had to cancel due to COVID. The
final exam is scheduled for the morning December 13 (Tuesday); more details about
that to follow.

Homology. Our last topic this semester is homology theory. I will use the re-
maining three lectures to give a brief introduction to homology and discuss some
applications (such as Brouwer’s fixed point theorem and the Jordan curve theorem).

The most basic object in algebraic topology is the fundamental group. The prob-
lem with the fundamental group is that it is not that easy to compute, and that
it only detects certain “low-dimensional” features of a space, basically because we
are using loops (= images of S1) to probe the space. For instance, the fundamental
group cannot distinguish spheres of dimension ≥ 2 from each other, because they
are all simply connected. There is a higher-dimensional generalization of the funda-
mental group, the so-called higher homotopy groups; these are defined by looking
at maps from Sn into a given space, up to homotopy. While relatively easy to
define, the higher homotopy groups are very hard to compute: for example, people
still do not know all the higher homotopy groups of spheres. The homology groups
of a space are another invariant that is relatively easy to compute and that still
contains a lot of higher-dimensional information about the space. (The drawback
is that the definition of homology is more complicated.)

Today, I am going to describe how homology theory works, and what sort of
properties it has, without saying anything about how it is defined. Next time, I
will try to sketch the construction and the proofs of one or two of the basic theorems;
and in the final lecture next week, I will give a few interesting applications.

Six properties of homology. Homology theory assigns to every topological space
X a sequence of abelian groups Hn(X), indexed by n ∈ N, called its homology
groups. The general idea is that the n-th homology group Hn(X) contains some
information about the n-dimensional features of X. I am now going to list six
important properties of homology groups; when we talk about the definition of
homology next time, we will see that each of these properties is really a (sometimes
quite long) theorem.

The first property is functoriality. This is something that we already know from
the fundamental group. It says that if f : X → Y is a continuous function, then
one has induced group homomorphisms

f∗ : Hn(X)→ Hn(Y ),

one for each n ∈ N. This assignment is compatible with composition: if f : X → Y
and g : Y → Z are two continuous functions, then (g ◦ f)∗ = g∗ ◦ f∗. Moreover,
the homomorphism assigned to the identity function id: X → X is the identity
homomorphism: id∗ = id. (In other words, Hn is a functor from the category of
topological spaces to the category of abelian groups.)

Example 25.1. Functoriality implies that homeomorphic spaces have isomorphic
homology groups. Indeed, suppose that f : X → Y is a homeomorphism with
inverse g : Y → X. Then g ◦ f = id and f ◦ g = id, and therefore

g∗ ◦ f∗ = id∗ = id and f∗ ◦ g∗ = id∗ = id .
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This means that f∗ : Hn(X)→ Hn(Y ) and g∗Hn(Y )→ Hn(X) are inverse to each
other, and so they are both isomorphisms.

The second property is a sort of normalization, to make sure that the theory
does what it is supposed to do. It says that if X is the one-point space, then

Hn(X) ∼=

{
Z if n = 0,

0 if n 6= 0.

Here 0 means the trivial group (with one element). This is sensible because a point
is a 0-dimensional space with no higher-dimensional features.

Example 25.2. The second property implies that any nonempty topological space
X has nontrivial 0-th homology. To see why, let x ∈ X be an arbitrary point, and
consider the inclusion i : {x} → X and the constant function r : X → {x}. Then
r ◦ i = id, and so by functoriality r∗ ◦ i∗ = id. Consequently, the homomorphism

i∗ : H0({x})→ H0(X)

must be injective, and so H0(X) always contains a subgroup isomorphic to Z.

The third property is called additivity. It says that if a topological space X is a
disjoint union of open subspaces Xi, indexed by some set I, then

Hn(X) ∼=
⊕
i∈I

Hn(Xi)

for every n ∈ N. The isomorphism is not just an abstract one, but it is given as
follows: for each i ∈ I, the homomorphism Hn(Xi)→ Hn(X) is the one associated
to the inclusion Xi → X by functoriality, and the statement is that the sum of all
these homomorphisms is an isomorphism.

Example 25.3. If X is a space with the discrete topology, we get

Hn(X) ∼=

{⊕
X Z if n = 0,

0 if n 6= 0,

by combining the second and third property.

The fourth property is homotopy invariance, which is again something that we
have seen already in the case of the fundamental group. It says that if f, g : X → Y
are two continuous functions such that f ∼ g, meaning f and g are homotopic,
then f∗ = g∗. Just like the fundental group, homology groups therefore only see a
space up to homotopy.

Example 25.4. A contractible space has the same homology as a point. Recall that
X is contractible if it there is a deformation retraction to a point x0 ∈ X. If we
let i : {x0} → X be the inclusion, and r : X → {x0} the retraction, then i ◦ r ∼ id.
Combining the first and fourth property, we get

i∗ ◦ r∗ = (i ◦ r)∗ = id∗ = id,

and so i∗ : Hn({x0}) → Hn(X) must be surjective. At the same time, r is a
retraction, which means that r◦i = id. By the first property, this implies r∗◦i∗ = id,
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and so i∗ is also injective, hence an isomorphism. Since we know the homology of
a one-point space from the second property, we conclude that

Hn(X) ∼=

{
Z if n = 0,

0 if n 6= 0.

This applies for example to Rd, or to any convex subset of Rd.

The remaining two properties are more complicated to state. They both involve
the so-called “relative” homology groups. Let X be a topological space, and A ⊆ X
an arbitrary subset. In that situation, one also has a sequence of abelian groups
Hn(X,A), indexed by n ∈ N, and called the relative homology groups of the pair
(X,A). Roughly speaking, the relative homology groups only see the part of X
that lies outside of A, and completely ignore what is happening inside the set A.
(This is not the same as looking at the homology of the complement X \A, though;
a better approximation is to think of relative homology as the homology of the
quotient space X/∼, where the equivalence relation ∼ identifies all points of A with
each other.)

Relative homology is again functorial: if we have two pairs (X,A) and (Y,B),
and if f : X → Y is a continuous function with f(A) ⊆ B, then we get a sequence
of group homomorphisms

f∗ : Hn(X,A)→ Hn(Y,B),

compatible with composition. The relative homology groups include the usual (or
“absolute”) homology groups because Hn(X) = Hn(X, ∅). In particular, functori-
ality for the identity function (X, ∅)→ (X,A) gives us homomorphisms

Hn(X)→ Hn(X,A)

from homology to relative homology.
The fifth property is called excision. It says that if A,B ⊆ X are two subsets

such that X = intA ∪ intB, then the inclusion i : (B,A ∩ B) → (X,A) induces
isomorphisms on relative homology, meaning that

i∗ : Hn(B,A ∩B)→ Hn(X,A)

is an isomorphism for every n ∈ N. Let me try to explain the intuition behind this.
Since X = intA ∪ intB, we have

X \B ⊆ X \ intB ⊆ intA ⊆ A.

Excision is saying that we can excise (or cut out) the subset X \ B from both A
and X without changing the relative homology. This makes sense because relative
homology is supposed to ignore what is going on inside the subset A. For technical
reasons, we are not allowed to remove an arbitrary subset of A though – for example,
removing all of A is forbidden because Hn(X \A) 6= Hn(X,A) in general. Instead,
the chain of inclusions from above shows that the closure of the set X \B that we
are removing needs to be contained in the interior intA, and must therefore stay
away from the boundary of A.

The sixth and final property relates the homology groups of X and A to the
relative homology groups of the pair (X,A), but in a way that mixes together
homology in different degrees. To state it properly, we first need to introduce
“exact sequences”, which is a very important concept in algebraic topology.
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Definition 25.5. Suppose we have a sequence of homomorphisms of abelian groups

· · · Cn+1 Cn Cn−1 · · ·fn+1 fn

meaning that each Cn is an abelian group, and each fn : Cn → Cn−1 is a group
homomorphism. We say that such a sequence is exact if ker fn = im fn+1 for all n.

In other words, if we have an element x ∈ Cn with fn(x) = 0, then there should
exist some element y ∈ Cn+1 such that x = fn+1(y). Exactness implies also that
compositions of successive homomorphisms are trivial: fn ◦ fn+1 = 0.

Example 25.6. Exactness can be used to restate many properties of group homo-
morphisms. For instance, consider a sequence of the form

0 A B.
f

As the image of the trivial homomorphism 0→ A is the trivial subgroup, exactness
means that ker f = 0, hence that f is injective. Similarly, a sequence of the form

B C 0
g

is exact iff g is surjective, and a sequence of the form

0 A B 0
f

is exact iff f is an isomorphism.

Example 25.7. A exact sequence of the form

0 A B C 0
f g

is called a short exact sequence. Exactness means that f is injective, g is surjective,
and that ker g = im f . By the first isomorphism theorem, A is isomorphic to the
subgroup f(A) ⊆ B, and B/f(A) ∼= C, and so the short exact sequence expresses
the fact that C is isomorphic to the quotient of B by a subgroup isomorphic to A.

The sixth property of homology is the long exact sequence. It says that if X is
a topological space, and A ⊆ X any subset, then the homology groups of X and A
are related to the relative homology groups of (X,A) by an exact sequence

· · · → Hn(A)→ Hn(X)→ Hn(X,A)→ Hn−1(A)→ Hn−1(X)→ · · ·
This sequence is called a long exact sequence because it extends infinitely in both
directions, with the convention that the (relative) homology groups are 0 for n < 0.
Here Hn(A) → Hn(X) is induced by the inclusion A → X (by functoriality), and
Hn(X)→ Hn(X,A) is the homomorphism from absolute to relative homology. The
remaining morphism δ : Hn(X,A)→ Hn−1(A) is new, and is called the connecting
homomorphism. The connecting homomorphisms is functorial, in the sense that if
f : (X,A) → (Y,B) is continuous function with f(A) ⊆ B, then δ ◦ f∗ = f∗ ◦ δ.
This makes the entire long exact sequence functorial: in the diagram

· · · Hn(A) Hn(X) Hn(X,A) Hn−1(A) · · ·

· · · Hn(B) Hn(Y ) Hn(Y,B) Hn−1(B) · · ·

f∗ f∗

δ

f∗ f∗

δ

all squares “commute”, meaning that any compositions that start at the same group
and end at the same group are equal.
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Homology groups of spheres. We will see the definition of homology next time.
In the remainder of today’s class, I want to show you how to use the six properties
to compute the homology groups of spheres. Here is the result.

Theorem 25.8. Let Sd be the unit sphere in Rd+1, and let Bd be the closed unit
ball in Rd. Then for d ≥ 1, the following is true:

(a) Hn(Sd) ∼=

{
Z if n = 0 or n = d,

0 otherwise.

(b) Hn(Bd,Sd−1) ∼=

{
Z if n = d,

0 otherwise.

In (a), the case d = 0 is of course special: the 0-sphere has just two points, and
so H0(S0) ∼= Z⊕ Z (by properties two and three from above).

Proof. The proof is by induction on d ≥ 1, using the long exact sequence and
excision. We really care only about (a), but (b) is needed along the way to make
the induction work out.

Let us start by showing that (a) in dimension d− 1 implies (b) in dimension d.
Consider the long exact sequence for the pair (Bd,Sd−1). It reads

· · · → Hn(Sd−1)→ Hn(Bd)→ Hn(Bd,Sd−1)→ Hn−1(Sd−1)→ Hn−1(Bd)→ · · ·

By induction on d ≥ 1, we may assume that we already know all the homology
groups of Sd−1. Let us first consider the portion

· · · → H0(Sd−1)→ H0(Bd)→ H0(Bd,Sd−1)→ 0

of the long exact sequence. As Bd is contractible, we know that H0(Bd) ∼= Z. If we
choose the point in the deformation retraction to lie on the boundary Sd−1, then
the argument we gave above shows that

H0(Sd−1)→ H0(Bd)

must be surjective. The exactness of the squence now implies that the image of the
homomorphism H0(Bd) → H0(Bd,Sd−1) must be trivial; since it is also surjective
(because of the 0 at the right end), it follows that H0(Bd,Sd−1) ∼= 0.

Next, we consider the portion

H1(Bd)→ H1(Bd,Sd−1)→ H0(Sd−1)→ H0(Bd)→ H0(Bd,Sd−1)

of the long exact sequence. The two groups on the outside are both trivial, and
we have H0(Bd) ∼= Z and H0(Sd−1) ∼= Z if d ≥ 2, and Z ⊕ Z if d = 1. In the first
case, exactness of the sequence implies that H1(Bd,Sd−1) ∼= 0; in the second case,
it implies that H1(B1,S0) ∼= Z. This already proves (b) when d = 1.

To complete the proof of (b), we now consider (for n ≥ 2) the portion

Hn(Bd)→ Hn(Bd,Sd−1)→ Hn−1(Sd−1)→ Hn−1(Bd)

of the long exact sequence. The two groups on the outside are again trivial, and so
exactness, together with the inductive hypothesis, gives us

Hn(Bd,Sd−1) ∼= Hn−1(Sd−1) ∼=

{
Z if n = d,

0 otherwise.

We are done with the proof of the implication from (a) to (b).
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The second half of the proof consists in showing that (b) in dimension d implies
(a) in dimension d. We cover Sd by two closed sets A and B that are homeomor-
phic to Bd and that contain open neighborhoods of the upper respectively lower
hemisphere. Since Sd = intA ∪ intB, excision gives us

Hn(Sd, A) ∼= Hn(B,A ∩B).

The intersection A ∩ B deformation retracts onto the boundary of B, which is
homeomorphic to Sd−1. This means that we can use exactly the same argument as
in the proof that (b) implies (a) to show that

Hn(Sd, A) ∼= Hn(B,A ∩B) ∼=

{
Z if n = d,

0 otherwise.

Now consider the long exact sequence for the pair (Sd, A), namely

· · · → Hn(A)→ Hn(Sd)→ Hn(Sd, A)→ Hn−1(A)→ Hn−1(Sd)→ · · ·
Suppose first that d = 1. In that case, for n ≥ 2, the sequence

Hn(A)→ Hn(S1)→ Hn(S1, A)

is exact, and because the two groups at the end are trivial, we get Hn(S1) ∼= 0 for
n ≥ 2. The rest of the long exact sequence reads

0→ H1(S1)→ H1(S1, A)→ H0(A)→ H0(S1)→ 0,

using the fact that H1(A) and H0(Sd, A) are trivial. We know that H0(A) ∼= Z,
and that H0(S1) contains a subgroup isomorphic to Z. Since the homomorphism
H0(A)→ H0(S1) is surjective (because of the 0 at the right end), it is then forced
to be an isomorphism. By exactness, this means that H1(S1, A) → H0(A) must
be the zero homomorphism; but then H1(S1) → H1(S1, A) is also surjective, and
therefore also an isomorphism. This proves (a) when d = 1.

The remaining case d ≥ 2 is much easier. The long exact sequence reads in part

Hn+1(Sd, A)→ Hn(A)→ Hn(Sd)→ Hn(Sd, A)→ Hn−1(A)

For n = 0, both groups on the outside are trivial, and since H0(Sd, A) ∼= 0, we get
H0(Sd) ∼= H0(A) ∼= Z. For n = d, both groups on the outside are again trivial, and
since Hd(A) ∼= 0, we get Hd(Sd) ∼= Hd(Sd, A) ∼= Z. For all other values of n, both
Hn(A) and Hn(Sd, A) are trivial, and therefore Hn(Sd) must also be trivial. This
concludes the proof of (a) in all cases. �

Topological consequences. The computation of the groups Hn(Sd) has several
nice consequences. First, it shows that homology is strong enough to distinguish
spheres of different dimensions from each other. Even though Rn has no interesting
homology, we can also use this fact to distinguish Rn for different values of n.

Corollary 25.9. If Rn ∼= Rm, then n = m.

Proof. If Rn and Rm are homeomorphic, then their one-point compactifications Sn
and Sm are also homeomorphic; by Theorem 25.8, this is only possible if n = m. �

Another application is that there are no retractions from the unit ball to its
boundary; we had proved this earlier (in Corollary 18.5) for d = 2 with the help of
the fundamental group.

Corollary 25.10. There is no retraction of Bd onto Sd−1 for d ≥ 1.
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Proof. This is true for d = 1 because B1 is connected. Assume now that d ≥ 2. The
homology group Hd−1(Sd−1) ∼= Z is nontrivial, whereas the group Hd−1(Bd) ∼= 0 is
trivial. If we had a retraction r : Bd → Sd−1, then r◦ i = id, and so by functoriality,
r∗ ◦ i∗ = id. This would mean that the homomorphism

r∗ : Hd−1(Bd)→ Hd−1(Sd−1)

is surjective, which is clearly impossible. �

The same argument as in Lecture 18 now proves Brouwer’s fixed point theorem
in all dimensions.

Theorem 25.11 (Brouwer’s fixed point theorem). Every continuous function

f : Bd → Bd

has a fixed point: there is a point x ∈ Bd with the property that f(x) = x.
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Lecture 26: December 1

Definition of homology. Today, I want to show you the definition of (singular)
homology and explain how some of the properties from last time are proved. Very
vaguely, the idea is that the n-th homology group Hn(X) is looking at continuous
functions from n-dimensional shapes into X, but where we only use those shapes
that can be assembled from simplices. For example, I mentioned in Lecture 21 that
every compact surface can be triangulated; instead of mapping arbitrary compact
surfaces into X, it is therefore enough to consider only triangles. As with the
fundamental group, we also want to ignore those n-dimensional shapes that arise
as the boundary of an (n+ 1)-dimensional shape.

Now let us see how homology theory makes this vague idea precise. We first
define the standard n-simplex ∆n ⊆ Rn+1 as the convex hull of the n + 1 unit
vectors e0, e1, . . . , en. We use the notation ∆n = [e0, e1, . . . , en] to indicate that we
are taking the convex hull, but that we are also remembering the order of the n+ 1
vectors; this gives us something like an orientation of the simplex.

e0

e1

∆1 e0

e1

e2

∆2

The boundary of ∆n consists of n+ 1 copies of the (n− 1)-dimensional simplex
∆n−1, up to identifying each of the n + 1 coordinate hyperplanes with Rn. If we
use the induced ordering on each simplex in the boundary, we can write the i-th
boundary simplex concisely as

[e0, . . . , êi, . . . , en]

where the hat means that we drop the vector ei from the list.

Definition 26.1. A singular n-simplex in a topological space X is just a continuous
function σ : ∆n → X.

The word “singular” comes from the fact that the image σ(∆n) may not look
at all like a simplex: for example, a singular 1-simplex can be something like the
Peano curve (that fills a whole square).

For each n ∈ N, we then define Sn(X) as the free abelian group generated by all
singular n-simplices in X. In symbols,

Sn(X) =
⊕

σ : ∆n→X
Zσ,

and so elements of Sn(X) are finite sums of the form a1σ1 + · · · + akσk where
a1, . . . , ak are integers and σ1, . . . , σk are singular n-simplices. The idea is that if
we have an n-dimensional space Y that is made by gluing together n-simplices, and
a continuous function f : Y → X, then the restriction of f to each simplex is a
singular n-simplex in X, and instead of the function f , we consider the sum of all
these singular n-simplices in the group Sn(X).
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Next, we have to deal with boundaries. Let σ : ∆n → X be a singular n-simplex.
Restricting the function σ to the boundary of ∆n gives us an element

∂σ =

n∑
i=0

(−1)iσ
∣∣
[e0,...,êi,...,en]

∈ Sn−1(X).

Extended linearly, this defines the so-called boundary operator

∂ : Sn(X)→ Sn−1(X).

For example, the boundary of a singular 1-simplex σ : [e0, e1] → X is just the
difference ∂σ = σ(e1) − σ(e0) between the two end points; this is the reason for
putting the sign factor (−1)i. The key point is that the composition

Sn(X) Sn−1(X) Sn−2(X)∂ ∂

of two boundary operators is equal to zero (because of the signs).

Lemma 26.2. We have ∂ ◦ ∂ = 0.

Proof. Since ∂ is a homomorphism, it is enough to show that ∂(∂σ) = 0 for any
singular n-simplex σ : [e0, . . . , en]→ X. But

∂(∂σ) = ∂

(
n∑
i=0

(−1)iσ
∣∣
[e0,...,êi,...,en]

)

=

n∑
i=0

(−1)i

i−1∑
j=0

(−1)jσ
∣∣
[e0,...,êj ,...,êi,...,en]

+

n∑
j=i+1

(−1)j−1σ
∣∣
[e0,...,êi,...,êj ,...,en]


=
∑
j<i

(−1)i+jσ
∣∣
[e0,...,êj ,...,êi,...,en]

−
∑
i<j

(−1)i+jσ
∣∣
[e0,...,êi,...,êj ,...,en]

= 0,

because the two sums are equal to each other. �

Definition 26.3. A sequence of homomorphisms of abelian groups

· · · Cn+1 Cn Cn−1 · · ·fn+2 fn+1 fn fn−1

is called a complex if fn ◦ fn+1 = 0 for all n. The individual homomorphisms fn
are called the differentials in the complex, and we use the abbreviated notation
C• or (C•, f•) to refer to the complex. The condition fn ◦ fn+1 = 0 means that
im fn+1 ⊆ ker fn, and we define the n-th homology group of the complex as

Hn(C•) = Hn(C•, f•) = ker fn/ im fn+1 =
ker fn : Cn → Cn−1

im fn+1 : Cn+1 → Cn
.

In particular, Hn(C•) ∼= 0 if and only if the complex is exact at Cn.

The singular chain complex of a topological space X is the complex

· · · Sn(X) Sn−1(X) · · · S1(X) S0(X) 0,∂ ∂ ∂ ∂ ∂

usually abbreviated as S•(X). The n-th singular homology group of X is defined
as the n-th homology group of this complex:

Hn(X) = Hn

(
S•(X), ∂

)
=

ker ∂ : Sn(X)→ Sn−1(X)

im ∂ : Sn+1(X)→ Sn(X)
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The elements in the kernel of ∂ are called n-cycles, and the elements in the image
of ∂ are called n-boundaries.

Example 26.4. It is often easy to find elements in homology. For example

σ : ∆1 → S1, σ
(
(1− t)e0 + te1

)
=
(
cos(2πt), sin(2πt)

)
is a singular 1-simplex with ∂σ = (1, 0) − (1, 0) = 0, and so it defines an element
in H1(S1). Similarly, the two-sphere S2 is homeomorphic to the surface of a cube,
and if we decompose the six sides of the cube into a total of 12 triangles, we get a
2-cycle σ1 + · · · + σ12 ∈ S2(S2), and therefore an element in H2(S2). Of course, it
is less easy to show that these elements are nonzero!

Even though the individual groups in the singular chain complex are gigantically
large, the (singular) homology of reasonably nice spaces (such as manifolds) tends
to be quite small. For nice spaces, singular homology is also very computable in
practice, and often turns out to contain a lot of information. Very often, one can
also find a much smaller complex whose homology groups are isomorphic to the
singular homology groups: for example, if X can be triangulated, meaning glued
together from simplices, then it is enough to use only the simplices that actually
show up in the triangulation. The big advantage of the above definition is that it
works for arbitrary topological spaces, which makes the theory very flexible.

About the only thing that we can compute directly from the definition is the
0-th homology group. It is related to the path components of the space X.

Lemma 26.5. A topological space X is path connected iff H0(X) ∼= Z.

Proof. For the purposes of this proof, we are going to replace the 1-simplex ∆1 by
the unit interval I = [0, 1]. Then S0(X) is the free abelian group generated by the
points of X, and S1(X) is the free abelian group generated by paths σ : I → X.
The boundary operator is

∂ : S1(X)→ S0(X), ∂(a1σ1 + · · ·+ akσk) =

k∑
i=1

ai
(
σi(1)− σi(0)

)
,

and the 0-th homology group is therefore H0(X) = S0(X)/∂
(
S1(X)

)
. Let us first

reformulate the condition that H0(X) ∼= Z. Adding the coefficients of a 0-cycle
defines a group homomorphism

ε : S0(X)→ Z, ε(a1x1 + · · ·+ akxk) = a1 + · · ·+ ak,

and it is easy to see that ε is surjective, and that ε ◦ ∂ = 0. It therefore induces
a surjective homomorphism H0(X) → Z. Now if H0(X) ∼= Z, then this surjective
homomorphism must be an isomorphism, which means that for any two points
x, y ∈ X, the difference y − x is zero in H0(X). But then

y − x =

k∑
i=1

ai
(
σi(1)− σi(0)

)
for some element a1σ1 + · · ·+ akσk ∈ S1(X), and this implies that there is a path
(made by joining some of the paths σi) connecting x and y. The converse is proved
by running the same argument backwards. �
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Functoriality. Let us now take a look at some of the six properties from last time.
The first property that we used was functoriality: A continuous function f : X → Y
gives rise to group homomorphisms f∗ : Hn(X) → Hn(Y ) in a way that respects
composition. This is very easy. If we have a singular n-simplex σ : ∆n → X, then
the composition f ◦ σ : ∆n → Y is a singular n-simplex in Y . This defines

f] : Sn(X)→ Sn(Y ), f](σ) = f ◦ σ,

and it is easy to see from the formula for the boundary operator that ∂ ◦ f] =
f] ◦ ∂. Because of this identity, f] takes n-cycles to n-cycles, and n-boundaries to
n-boundaries, and so it descends to a group homomorphism

f∗ : Hn(X)→ Hn(Y ).

The identity (f ◦ g)∗ = f∗ ◦ g∗ is then just a consequence of fact that composition
of functions is associative: (f ◦ g) ◦ σ = f ◦ (g ◦ σ).

In fact, f] is an example of a morphism of complexes.

Definition 26.6. Let (A•, ∂) and (B•, ∂) be two complexes. A morphism of com-
plexes (or chain map) is a collection of group homomorphisms fn : An → Bn that
commute with the differentials in the two complexes: ∂ ◦ fn+1 = fn ◦ ∂ for every n.
If this is the case, one says that the diagram

· · · An+1 An An−1 · · ·

· · · Bn+1 Bn Bn−1 · · ·

∂ ∂

fn+1

∂

fn

∂

fn−1

∂ ∂ ∂ ∂

is commutative, meaning that the result of composing homomorphisms only de-
pends on the source and the target group.

Any morphism of complexes f : A• → B• induces a homomorphism

f : Hn(A•)→ Hn(B•)

between the homology groups of the two complexes, again because f(ker ∂) ⊆ ker ∂
and f(im ∂) ⊆ im ∂.

The long exact sequence. I also want to talk about the sixth property from last
time, namely the long exact sequence in homology. For that, we first need to define
the relative homology groups Hn(X,A), where X is a topological space and A ⊆ X
a subset. Let i : A→ X be the inclusion. The induced homomorphism

i] : Sn(A)→ Sn(X)

is injective (because A ⊆ X), and we define

Sn(X,A) = Sn(X)/i]
(
Sn(A)

)
as the quotient group. Since ∂ ◦ i] = i] ◦ ∂, the boundary operator ∂ induces
homomorphisms

∂ : Sn(X,A)→ Sn−1(X,A),

and of course we still have ∂ ◦∂ = 0. The singular chain complex of the pair (X,A)
is the complex

· · · Sn(X,A) Sn−1(X,A) · · · S1(X,A) S0(X,A) 0,∂ ∂ ∂ ∂ ∂
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and the n-th relative homology group is defined to be

Hn(X,A) = Hn

(
S•(X,A), ∂

)
.

Because Sn(X,A) is defined as the quotient of Sn(X) by the subgroup i]
(
Sn(A)

)
,

the sequence of group homomorphisms

0 Sn(A) Sn(X) Sn(X,A) 0
i]

is a short exact sequence for every n ∈ N. Together with three boundary operators,
this gives us a big commutative diagram

...
...

...

0 Sn+1(A) Sn+1(X) Sn+1(X,A) 0

0 Sn(A) Sn(X) Sn(X,A) 0

0 Sn−1(A) Sn−1(X) Sn−1(X,A) 0

...
...

...

∂ ∂ ∂

i]

∂ ∂ ∂

i]

∂ ∂ ∂

i]

∂ ∂ ∂

in which all the rows are short exact sequences, and in which the three columns
are the three complexes S•(A), S•(X), and S•(X,A). This is called a short exact
sequence of complexes, and is usually abbreviated as

0 S•(A) S•(X) S•(X,A) 0.
i]

The long exact sequence in homology is now a consequence of the following algebraic
fact about complexes.

Theorem 26.7. A short exact sequence of complexes

0 A• B• C• 0i p

induces a long exact sequence

· · · Hn(A•) Hn(B•) Hn(C•) Hn−1(A•) · · ·i∗ p∗ δ

among the homology groups of the three complexes.

Proof. The homomorphisms i∗ : Hn(A•)→ Hn(B•) and p∗ : Hn(B•)→ Hn(C•) are
induced by the morphisms of complexes i : A• → B• and p : B• → C•. Let me start
by explaining the construction of δ : Hn(C•) → Hn−1(A•), which is again called
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the connecting homomorphism. For that, we need to draw another big diagram:

...
...

...

0 An+1 Bn+1 Cn+1 0

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

0 An−2 Bn−2 Cn−2 0

...
...

...

∂ ∂ ∂

i

∂

p

∂ ∂

i

∂

p

∂ ∂

i

∂

p

∂ ∂

i

∂

p

∂ ∂

I repeat that the diagram is commutative, and that all the rows are short exact
sequences. We need to construct a homomorphism

δ :
ker ∂ : Cn → Cn−1

im ∂ : Cn+1 → Cn
→ ker ∂ : An−1 → An−2

im ∂ : An → An−1
.

This is done by a method called “diagram chasing”. Let c ∈ Cn be an element such
that ∂c = 0. Since p : Cn → Bn is surjective, we can find b ∈ Bn with p(b) = c;
because the n-th row is exact at Bn, the choice of b is unique up to elements of the
form i(a) for a ∈ An. Now ∂b ∈ Bn−1 satisfies

p(∂b) = ∂p(b) = ∂c = 0,

and by exactness of the (n − 1)-th row, there is a unique element a′ ∈ An−1 with
the property that i(a′) = ∂b. We have

i(∂a′) = ∂i(a′) = ∂(∂b) = 0,

and since i : An−2 → Bn−2 is injective, it follows that ∂a′ = 0, and so a′ gives us
an element in Hn−1(A•). We now want to set

δ[c] = [a′],

where the brackets stand for homology classes. Why is this well-defined? There are
two choices involved in the construction. First, we can change the element b ∈ Bn
to something of the form b+ i(a), where a ∈ An. But then

∂
(
b+ i(a)

)
= ∂b+ i(∂a) = i(a′ + ∂a),

and as [a′] = [a′ + ∂a], the resulting homology class is the same. Second, we could
choose a different representative in the homology class [c], adding to c ∈ Cn any
element of the form c′′ ∈ Cn+1. As before, c′′ = p(b′′) for some b′′ ∈ Bn+1, and
since

p(b+ ∂b′′) = c+ ∂p(b′′) = c+ ∂c′′,

we need to change b ∈ Bn into b + ∂b′′. But ∂(b + ∂b′′) = ∂b, and so the element
a′ ∈ An−1 is unchanged. This shows that δ is independent of any choices.
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One then has to check that the sequence of homology groups is exact in every
place. As an example, let me show why

ker δ = im p∗.

Suppose that we have a homology class [c] ∈ Hn(C•) for which δ[c] = [a′] = 0. This
means that a′ = ∂a for some a ∈ An. We then have

∂b = i(a) = i(∂a) = ∂i(a),

and so the element b − i(a) ∈ Bn is in the kernel of ∂, and therefore defines a
homology class [b− i(a)] ∈ Hn(B•). But

p
(
b− i(a)

)
= p(b) = c,

and this gives us p•[b− i(a)] = [c], as required. �

The diagram chasing in the proof is typical for what is called “homological alge-
bra”, which studies algebraic properties of complexes and their homology groups.

Homotopy invariance. In class, I did not have enough time to talk about the
fourth property of homology, namely homotopy invariance. Recall that if f, g : X →
Y are homotopic, then f∗ = g∗. The idea of the proof is quite simple. By as-
sumption, there is a homotopy H : X × I → Y such that H(x, 0) = f(x) and
H(x, 1) = g(x). Now for any singular n-simplex σ : ∆n → X, the function

∆n × I → Y, (x, t) 7→ H
(
σ(x), t

)
,

continuously deforms f ◦ σ (at t = 0) into g ◦ σ (at t = 1), and this process should
not change homology classes. But homology is defined in terms of simplices, and so
we need to subdivide ∆n× I into (n+ 1)-simplices. This can be done as follows. In
the product ∆n×I ⊆ Rn+1×R, we label the n+1 vertices of ∆n×{0} as e0, . . . , en,
and the n+1 vertices of ∆n×{1} as e′0, . . . , e

′
n. We then get a subdivision of ∆n×I

into n+ 1 copies of ∆n+1, which look like

[e0, . . . , ei, e
′
i, . . . , e

′
n] for i = 0, . . . , n.

Here are two pictures of what this looks like for n = 1 and n = 2:

e0 e1

e′0 e′1

e2

e1

e0

e′2

e′1

e′0

Using this subdivision of the prism ∆n×I, we can now define the prism operator

P : Sn(X)→ Sn+1(Y )

with the help of the homotopy H : X × I → Y by the formula

P (σ) =

n∑
i=0

(−1)iH ◦ (σ × id)
∣∣
[e0,...,ei,e′i,...,e

′
n]
.
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Here H ◦ (σ × id) is the composition ∆n × I → X × I → Y . A slightly lengthy
computation then gives the fundamental identity

∂ ◦ P = g] − f] − P ◦ ∂.
Roughly speaking, the left-hand side represents the boundary of the prism, and the
three summands on the right-hand side represent the top, bottom, and sides of the
prism. The identity is saying that the two morphisms of complexes f], g] : S•(X)→
S•(Y ) are chain homotopic, in the following sense.

Definition 26.8. Let f : A• → B• be a morphism of complexes. We say that
f is null homotopic, in symbols f ∼ 0, if there is a collection of homomorphisms
P : An → Bn+1 with the property that

f = ∂ ◦ P + P ◦ ∂.
We say that two morphisms of complexes f and g are chain homotopic if their
difference f − g is null homotopic, meaning that f − g ∼ 0.

Schematically, a null homotopy looks like the following:

· · · An+1 An An−1 · · ·

· · · Bn+1 Bn Bn−1 · · ·

∂

f

∂

f
P

f
P

∂ ∂

So the existence of a homotopy between f, g : X → Y means that the two morphisms
of complexes f], g] : S•(X) → S•(Y ) are chain homotopic. The identity f∗ = g∗ is
then a consequence of the following algebraic lemma.

Lemma 26.9. Let f : A• → B• be a morphism of complexes. If f ∼ 0, then the
induced homomorphism on homology satisfies f∗ = 0.

Proof. Let [a] ∈ Hn(A•) be an arbitrary homology class, represented by an element
a ∈ An with ∂a = 0. Since f ∼ 0, there are homomorphisms P : An → Bn+1 for
which f = ∂ ◦ P + P ◦ ∂. Consequently,

f(a) = ∂P (a) + P (∂a) = ∂P (a),

and on the level of homology, this gives f∗[a] = [f(a)] = [∂P (a)] = 0. �
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Lecture 27: December 6

The Jordan curve theorem. In this final lecture, I want to show you how ho-
mology can be used to prove two classical results from topology: the Jordan curve
theorem and Brouwer’s theorem on the invariance of domain. Let us start with the
Jordan curve theorem. I am sure all of you have heard about this result at some
point: any closed curve in R2 divides the plane into two regions, one inside the
curve, the other outside the curve.

More precisely, a closed curve in the plane is a continuous function f : [0, 1]→ R2

with f(0) = f(1); if we identify the two endpoints of the interval, we obtain a
circle, and so we can just as well say that a closed curve is a continuous function
f : S1 → R2. This definition includes space-filling curves: the image of the Peano
curve, for example, would be the entire unit square, which obviously fails to divide
R2 into two regions. Jordan discovered that this problem goes away if we consider
simple closed curves (also called Jordan curves), where the function f : S1 → R2 is
injective. Note that for such curves, the image f(S1) is homeomorphic to S1, due
to the compactness of S1. Jordan curves are closer to our intuitive notion of curve.

Theorem 1 (Jordan). If C ⊆ R2 is a simple closed curve, then R2 \C has exactly
two connected components, each of which has C as its boundary.

This theorem was proved by Jordan in the late 19th century. One often reads
that his proof was unsatisfactory and that the first correct one is due to Veblen; but
Hales, who wrote the first computer-checkable proof of the Jordan curve theorem,
says that: “In view of the heavy criticism of Jordan’s proof, I was surprised when
I sat down to read his proof to find nothing objectionable about it.”

The tricky thing is that most simple closed curves do not look at all like a circle.
There are fractal curves (like the Koch snowflake, pictured above), and even for
curves that are not fractals, it can be very hard to decide by looking at the curve
whether a given point lies inside or outside the curve.

Here are some basic observations. Let h : S1 → R2 be a simple closed curve, and
denote by C = h(S1) its image in R2.

(1) The curve C is compact, and h is a homeomorphism between S1 and C;
in particular, we can forget about the parametrization and remember only
the subset C ⊆ R2. This follows immediately from Corollary 7.2.

(2) The complement R2\C is open and locally path connected; every connected
component of R2 \ C is thus open and path connected (Proposition 6.7).

(3) Exactly one of the connected components of R2 \ C is unbounded. The
reason is that C is contained in a large disk, whose complement is path
connected, hence contained in exactly one connected component of R2 \C.
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(4) After replacing R2 by its one-point compactification S2, we may assume
that h : S1 → S2 is a simple closed curve on the sphere; the unbounded
component of R2 \C then becomes the component containing the point at
infinity.

The Mayer-Vietoris sequence. The proof I am going to present uses the so-
called “Mayer-Vietoris sequence”, which is an analogue of the Seifert-van Kampen
theorem for homology groups. Let X be a topological space, and let U, V ⊆ X be
two open subsets such that X = U ∪V . Let us denote by i : U → X and j : V → X
the two inclusions. The excision property for homology says that

i∗ : Hn(U,U ∩ V ) ∼= Hn(X,V )

is an isomorphism for every n ≥ 0. From the two pairs (U,U ∩ V ) and (X,V ), we
also get two long exact sequences

· · · Hn(U ∩ V ) Hn(U) Hn(U,U ∩ V ) Hn−1(U ∩ V ) · · ·

· · · Hn(V ) Hn(X) Hn(X,V ) Hn−1(V ) · · ·

j∗

i∗ i∗

δ

i∗ i∗

j∗ δ

in homology; here I am using the same letters i : U ∩V → V and j : U ∩V → U for
the inclusions of U ∩ V into U and V . The diagram above is again commutative,
because of the functoriality of the long exact sequence.

Theorem 27.1. In the situation above, one gets a long exact sequence

· · · Hn(U ∩ V ) Hn(U)⊕Hn(V ) Hn(X) Hn−1(U ∩ V ) · · ·α β γ

where the individual morphisms are

α : Hn(U ∩ V )→ Hn(U)⊕Hn(V ), α(x) =
(
j∗(x), i∗(x)

)
,

β : Hn(U)⊕Hn(V )→ Hn(X), β(y, z) = j∗(y)− i∗(z),
and where γ : Hn(X)→ Hn−1(U ∩ V ) is another connecting homomorphism.

The exact sequence in the theorem is called the Mayer-Vietoris sequence.

Proof. This is another general result in homological algebra. Suppose that we have
a commutative diagram of abelian groups

· · · A′n B′n C ′n A′n−1 · · ·

· · · An Bn Cn An−1 · · ·

i′

f

p′

g

δ′

h

i p δ

in which both rows are long exact sequences, and in which all the homomorphisms
h : C ′n → Cn are isomorphisms. In this situation, we get a long exact sequence

(27.2) · · · A′n An ⊕B′n Bn A′n−1 · · ·α β γ

in which α(x) =
(
f(x), i′(x)

)
and β(y, z) = i(y) − g(z). The proof is another

application of “diagram chasing”.
Let me explain how the connecting homomorphism γ : Bn → A′n−1 is constructed

in this case. Take an element b ∈ Bn. Then p(b) ∈ Cn, and since h : C ′n → Cn is
an isomorphism, one has p(b) = h(c′) for a unique element c ∈ C ′n, and we define
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γ(b) = δ′(c) ∈ A′n−1. The rest of the proof consists in checking that the sequence
in (27.2) is exact in all places.

For the sake of illustration, let me show you why ker γ = imβ. Suppose that
b ∈ Bn satisfies γ(b) = δ′(c) = 0. Since the top row is exact, we have ker δ′ = im p′,
and so there is an element b′ ∈ B′n with p′(b′) = c′. The difference b− g(b′) satisfies

p
(
b− g(b′)

)
= p(b)− p

(
g(b′)

)
= c− h

(
p′(b′)

)
= c− h(c′) = 0,

and therefore lies in ker p = im i (by exactness of the bottom row). This gives us
an element a ∈ An such that b− g(b′) = i(a); but then

b = i(a) + g(b′) = β(a,−b′)

belongs to the image of β, as claimed. �

The generalized Jordan curve theorem. We can use the Mayer-Vietoris se-
quence to prove the following generalization of the Jordan curve theorem.

Theorem 27.3. Let n ≥ 1 be an integer.

(a) If h : Bn−1 → Sn is injective and continuous, then

Hi

(
Sn \ h(Bn−1)

) ∼= {Z for i = 0,

0 otherwise.

(b) If h : Sn−1 → Sn is injective and continuous, then

Hi

(
Sn \ h(Sn−1)

) ∼= {Z⊕ Z for i = 0,

0 otherwise.

Since Sn−1 is compact and Sn is Hausdorff, every injective continuous function
h : Sn−1 → Sn is a homeomorphism between Sn−1 and its image h(Sn−1). The
image h(Sn−1) is therefore a higher-dimensional version of a Jordan curve, and
the theorem is saying that the complement of h(Sn−1) has exactly two connected
components (by Lemma 26.5).

Proof. In the interest of time, I will give the proof only for n = 2; the general case
is similar. Let us first prove (a). When n = 2, the closed unit ball is B1 = [−1, 1].
Consider then an injective continuous function h : [−1, 1] → S2. The image h(B1)
is an arc, and the main point is that the complement of an arc in S2 remains
connected.

The proof uses a nice trick. By dividing the interval [−1, 1] into the two halves
[−1, 0] and [0, 1], we get two open sets

U = S2 \ h([−1, 0]) and V = S2 \ h([0, 1]).

The intersection is U ∩V = S2 \h(B1), and the union is U ∪V = S2 \ {h(0)} ∼= R2.
For i ≥ 0, the Mayer-Vietoris sequence gives us an exact sequence

Hi+1(U ∪ V )→ Hi(U ∩ V )→ Hi(U)⊕Hi(V ),

and since we know the homology of R2, this becomes

0→ Hi

(
S2 \ h(B1)

)
→ Hi

(
S2 \ h([−1, 0])

)
⊕Hi

(
S2 \ h([0, 1])

)
.
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In other words, the homomorphism in the center is injective. If x ∈ Hi

(
S2 \h(B1)

)
is an arbitrary element, then its image under at least one of the two homomorphisms

Hi

(
S2 \ h(B1)

)
→ Hi

(
S2 \ h([−1, 0])

)
Hi

(
S2 \ h(B1)

)
→ Hi

(
S2 \ h([0, 1])

)
must be nonzero, unless x = 0.

We can repeat this process, and in this way, we obtain a nested chain

I0 = [−1, 1] ⊇ I1 ⊇ I2 ⊇ · · ·

in which Ik is a closed interval of length 21−k, such that the image of our fixed
element x ∈ Hi

(
S2 \ h(B1)

)
under the homomorphism

Hi

(
S2 \ h(B1)

)
→ Hi

(
S2 \ h(Ik)

)
is nonzero for every k ≥ 0, except if x = 0. Let t ∈ I0 be the unique point in the
intersection of all the intervals Ik. Note that S2 \ h(t) is homeomorphic to R2.

We can now use what we know about homology groups to deduce (a). Consider
first the case i > 0. Our homology class x is represented by an i-cycle x ∈ Si

(
S2 \

h(B1)
)
. Since Hi(R2) ∼= 0, the image of x under the homomorphism

Hi

(
S2 \ h(B1)

)
→ Hi

(
S2 \ h(t)

)
is zero, and so there is some y ∈ Si+1

(
S2 \h(t)

)
such that x = ∂y. But the image of

y is compact, and since S2 \ h(t) is the union of the open sets S2 \ h(Ik), it follows
that y ∈ Si+1

(
S2 \ h(Ik)

)
for some k ≥ 0. But then x = ∂y means that the image

of x in Hi

(
S2 \ h(Ik)

)
is zero, and by construction, this implies that x = 0. The

conclusion is that Hi

(
S2 \ h(B1)

) ∼= 0 for i > 1.
In the remaining case i = 0, we know from Lemma 26.5 that the 0-th homology

of S2 \ h(B1) is always at least Z. After subtracting from x ∈ S0

(
S2 \ h(B1)

)
a

suitable multiple of the homology class of a point, we may therefore assume that
the coefficients of the 0-cycle x add up to zero. Now H0(R2) ∼= Z, and so the image
of x under the homomorphism

H0

(
S2 \ h(B1)

)
→ H0

(
S2 \ h(t)

)
is equal to zero. We can then argue as before to show that x = 0, and hence that
H0

(
S2 \ h(B1)

) ∼= Z. This proves (a) for n = 2.

Now let us deal with (b). Suppose that h : S1 → S2 is continuous and injective,
and denote by C = h(S1) the image curve. Pick two distinct points p, q ∈ C, and
let A be the portion of the curve from p to q, and B the remaining portion from q
to p. Then C = A ∪B and A ∩B = {p, q}. This gives us two open sets

U = S2 \A and V = S2 \B

with U ∩V = S2 \C and U ∪V = S2 \ {p, q}. Observe that U ∪V is homeomorphic
to R2 minus a point, and therefore deformation retracts onto S1. From the Mayer-
Vietoris sequence, we get an exact sequence

H1(U)⊕H1(V )→ H1(U ∪V )→ H0(U ∩V )→ H0(U)⊕H0(V )→ H0(U ∪V )→ 0,

and since we know the homology of U and B by part (a), this becomes

0→ Z→ H0(S2 \ C)→ Z⊕ Z→ Z→ 0.
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It is then a simple algebra exercise to deduce that H0(S2 \ C) ∼= Z⊕ Z. For i > 0,
the Mayer-Vietoris sequence gives the exactness of

Hi+1(U ∪ V )→ Hi(U ∩ V )→ Hi(U)⊕Hi(V ),

and since the two groups on the outside are trivial by (a), we get Hi(S2 \ C) ∼= 0
for i > 0. �

The two connected components in the Jordan curve theorem are therefore ex-
plained by the fact that H0(S2 \C) ∼= Z⊕Z. Homology theory gives a very natural
proof of this fact.

Invariance of domain. Another classical result that can be proved in this manner
is Brouwer’s theorem about the invariance of domain. It is a generalization of the
fact that Rn and Rm are not homeomorphic when m ∼= n, but Brouwer’s result is
much stronger.

Theorem 27.4 (Invariance of Domain). Let U ⊆ Rn be an open subset. If h : U →
Rn is injective and continuous, then h(U) is also an open subset of Rn.

Proof. After replacing Rn by its one-point compactification, we may assume that
h : U → Sn is injective and continuous. It is enough to show that for any point
x ∈ U , the image h(U) contains an open neighborhood of h(x). Let B ⊆ U be
a closed ball of positive radius containing the point x, and let S = ∂B be its
boundary; then B ∼= Bn and S ∼= Sn−1. We have

Sn \ h(S) = h(B \ S) t Sn \ h(B).

Now h(B \S) is path connected (because B \S is path connected), and Sn \h(B) is
path connected (because H0

(
Sn \ h(B)

) ∼= Z). Therefore Sn \ h(S) has exactly two
path connected components, and since Sn is locally path connected, both of them
must be open. Therefore h(B \ S) is an open neighborhood of the point h(x) that
is contained in h(U), and so h(U) is open. �

Recall that the word “domain” is used in analysis to refer to open subsets of Rn.
Brouwer’s result tells us that if we take an open subset in Rn and embed it into Rn
in a possibly different way, the image will again be an open subset.

Corollary 27.5. If U ⊆ Rn is a nonempty open subset, then U is not homeomor-
phic to a subset of Rm for m < n.

Proof. Suppose to the contrary that we had a homeomorphism h : U → V for some
V ⊆ Rm. Now Rm is a proper linear subspace of Rn, and so we obtain an injective
continuous function

f : U → Rn, f(x) =
(
h1(x), . . . , hm(x), 0, . . . , 0

)
.

The image is obviously not an open subset of Rn, in contradiction to Brouwer’s
theorem. �
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Extra Lecture: Invariance of Domain

Invariance of domain. The next topic I wish to discuss is a famous result called
the invariance of domain; roughly speaking, it says that Rm and Rn are not homeo-
morphic unless m = n. This result is of great importance in the theory of manifolds,
because it means that the dimension of a topological manifold is well-defined. Re-
call that an m-dimensional manifold is a (second countable, Hausdorff) topological
space in which every point has a neighborhood homeomorphic to an open subset of
Rm. If an open set in Rm could be homeomorphic to an open set in Rn, it would
not make sense to speak of the dimension of a manifold.

The first person to show that this cannot happen was the Dutch mathematician
Brouwer (who later became one of the founders of “intuitionist mathematics”); in
fact, he proved the following stronger theorem.

Theorem 2 (Invariance of Domain). Let U ⊆ Rn be an open subset. If f : U → Rn
is injective and continuous, then f(U) is also an open subset of Rn.

Recall that the word “domain” is used in analysis to refer to open subsets of Rn.
Brouwer’s result tells us that if we take an open subset in Rn and embed it into Rn
in a possibly different way, the image will again be an open subset.

Corollary 3. If U ⊆ Rn is a nonempty open subset, then U is not homeomorphic
to a subset of Rm for m < n. In particular, Rn is not homeomorphic to Rm for
m < n.

Proof. Suppose to the contrary that we had a homeomorphism h : U → V for some
V ⊆ Rm. Now Rm is a proper linear subspace of Rn, and so we obtain an injective
continuous function

f : U → Rn, f(x) =
(
h1(x), . . . , hm(x), 0, . . . , 0

)
.

The image is obviously not an open subset of Rn, in contradiction to Brouwer’s
theorem. �

Intuitively, it seems quite obvious that there cannot be a continuous injective
function from Rn to Rm when m < n; the problem is that it is equally obvious
that there cannot be a surjective continuous function from Rm to Rn, but the
Peano curve in analysis does exactly that! (The moral is that there are a lot more
continuous functions than one might expect.)

We know how to prove that R is not homeomorphic to Rn unless n = 1, using
connectedness. Traditionally, the invariance of domain theorem in higher dimen-
sions is proved by using methods from algebraic topology; but my plan is to present
an elementary proof that only requires the theorems and definitions that we have
talked about so far. I learned the details for some of the steps from Terry Tao’s
blog. The broad outline is the following:

(1) We prove a combinatorial result about triangulations of simplices, called
Sperner’s lemma.

(2) From Sperner’s lemma, we deduce Brouwer’s fixed point theorem: every
continuous function from the closed ball in Rn to itself has a fixed point.

(3) The fixed point theorem can then be used to prove the invariance of domain
theorem.
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Sperner’s lemma. Our starting point is a combinatorial result about colorings of
simplices, due to Sperner. Let ∆n be an n-dimensional simplex: a closed interval
if n = 1, a triangle if n = 2, etc. Such a simplex has n + 1 vertices v1, . . . , vn+1,
and n + 1 faces F1, . . . , Fn+1; we label the faces in such a way that Fk is the face
opposite the vertex vk. We also take n+1 different colors, and color the k-th vertex
using the k-th color. Now we consider a triangulation, that is to say, a subdivision
of ∆n into smaller n-simplices. The following picture shows an example with n = 2:
the first color is red, the second color green, the third color blue.

Suppose that all the vertices in the triangulation are also colored, in such a way
that on every face, we only use the colors from the n vertices on that face; another
way to say this is that we do not use the k-th color for vertices that lie on the face
Fk. The following picture shows an example of such a coloring.

Theorem 4 (Sperner’s lemma). In this situation, there is at least one small simplex
all of whose vertices have different colors; in fact, the number of simplices with this
property is always odd.

In the example above, there are five such simplices.

Proof. The proof is by induction on n ≥ 0; because a 0-simplex is just a single
point, the case n = 0 is trivial. Suppose then that we already know the result in
dimension n − 1 ≥ 0, and let us prove it in dimension n. Given a triangulation of
∆n and a coloring as above, let N be the number of small simplices all of whose
vertices have different colors. Our goal is to show that N ≡ 1 mod 2.
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Put a dot in every simplex of the triangulation, and connect two dots by an edge
iff the two simplices in question have a common face whose n vertices are colored
using each of the colors 1, . . . , n exactly once. Also put an additional dot outside
of ∆n, and connect this dot with a dot in a small simplex iff one of the faces of
the small simplex lies on the boundary of ∆n and the n vertices of that face are
colored using each of the colors 1, . . . , n exactly once. (By our assumptions on the
coloring, every such face has to lie on Fn.) In this way, we obtain a graph; here is
what it looks like in the example from above.

The degree of a dot is by definition the number of edges going into the dot. In our
graph, every dot inside a small simplex has degree 0, 1, or 2, because a simplex can
have at most two faces whose vertices use all the colors 1, . . . , n exactly once; the
degree is 1 precisely when all vertices of the corresponding simplex have different
colors. What this means is that N is congruent, modulo 2, to the sum of the degrees
of all the dots inside ∆n.

Now a basic fact in graph theory is that, in every graph, the sum of all the
degrees must be an even number; this is due to the fact that every edge has exactly
two endpoints. Consequently, N is also congruent, modulo 2, to the degree of the
outside dot. That degree is nothing but the number of (n − 1)-simplices on Fn
all of whose vertices have different colors. Since Fn also satisfies the assumptions
of Sperner’s lemma (in dimension n − 1), the inductive hypothesis shows that the
number of such simplices is odd; but then N must be an odd number, too. �

The case n = 1 of Sperner’s lemma is a sort of discrete version of the intermediate
value theorem: it says that if the two endpoints of an interval have different colors,
then there must be at least one small interval where the color changes from one
endpoint to the other. In fact, for many purposes in topology, Sperner’s lemma can
serve as a replacement for results that can otherwise be proved only with the help
of algebraic topology.

Brouwer’s fixed point theorem. Now we come back to topology: with the help
of Sperner’s lemma and some basic analysis, we can prove the following fixed point
theorem for the closed unit ball

Bn =
{
x ∈ Rn

∣∣ ‖x‖ ≤ 1
}

in Euclidean space.
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Theorem 5 (Brouwer’s fixed point theorem). Every continuous function

f : Bn → Bn

has a fixed point: there is a point x ∈ Bn with the property that f(x) = x.

Somebody asked whether there are fixed point theorems in infinite-dimensional
spaces. The answer is yes: there is a generalization of Brouwer’s theorem, due to
Schauder, for closed unit balls in arbitrary Banach spaces.

The fact that every continuous function from Bn to itself has a fixed point is
a purely topological property of Bn; any topological space homeomorphic to Bn

(such as the closed unit cube or a closed n-simplex) has exactly the same property.

Proof. Let ∆n denote the closed convex hull of the n+1 coordinate vectors in Rn+1;
this is of course an n-dimensional simplex. To prove the fixed point theorem, it is
enough to show that every continuous function f : ∆n → ∆n has a fixed point; this
is because ∆n and Bn are homeomorphic.

If we use coordinates x = (x1, . . . , xn+1) on Rn+1, points x ∈ ∆n are character-
ized by the conditions xi ≥ 0 for all i, and x1 + · · · + xn+1 = 1. These also hold
for the coordinates f1(x), . . . , fn+1(x) of the point f(x). Writing Fk for the face
opposite the vertex ek, points x ∈ Fk satisfy the additional equation xk = 0.

The idea of the proof is to consider subdivisions of ∆n and to apply Sperner’s
lemma to them. To begin with, let T be an arbitray triangulation. We color its
vertices with n+ 1 colors, taking care to use the i-th color for a vertex v only if it
satisfies fi(v) ≤ vi. This requirement can always be satisfied: it cannot be the case
that fi(v) > vi for every i, because then

1 =

n+1∑
i=1

fi(v) >

n+1∑
i=1

vi = 1.

We are also allowed to use the k-th color for the vertex ek, because the k-th coor-
dinate of ek is equal to 1. In fact, it is possible to choose the coloring in such a
way that the assumptions of Sperner’s lemma are satisfied: if v ∈ Fk a vertex on
the k-th face, then vk = 0, and because

n+1∑
i=1

fi(v) =

n+1∑
i=1

vi,

we must have fi(v) ≤ vi for at least one i 6= k. Sperner’s lemma therefore guarantees
the existence of a small simplex in T , all of whose vertices have different colors.

To find the desired fixed point of f , we now apply this result to triangulations by
smaller and smaller simplices. To be precise, let us define the mesh of a triangulation
to be maximum of the diameters of all the simplices in the triangulation. Pick a
sequence T m of triangulations of ∆n whose mesh converges to zero. For each
triangulation, we choose an arbitrary coloring subject to the condition above; let
δm be a small simplex in T m, all of whose vertices have different colors. Inside
each δm, choose a point xm. These points form a sequence in ∆n; because ∆n is
compact, we may pass to a convergent subsequence (that we denote by the same
symbol) with limit x ∈ ∆n.

Now I claim that x is a fixed point of f . By our choice of coloring, the simplex
δm has, for each i = 1, . . . , n + 1, at least one vertex v with fi(v) ≤ vi. Since we
assumed that the mesh of the triangulations goes to zero, the vertices of δm converge
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to the point x as well; because f is continuous, this implies that fi(x) ≤ xi for all
i. But since

n+1∑
i=1

fi(x) =

n+1∑
i=1

xi,

all those inequalities must be equalities, and so f(x) = x. �

Proof of the invariance of domain theorem. It is pretty easy to see that
Theorem 2 is a consequence of the following result.

Theorem 6. If f : Bn → Rn is continuous and injective, then f(0) is an interior
point of f(Bn).

Indeed, to show that f(U) is an open subset whenever f : U → Rn is continuous
and injective, we have to prove that f(x) is an interior point of f(U) whenever

x ∈ U . For some r > 0, the closed ball Br(x) is contained in U ; by applying the
theorem to the restriction of f to this closed ball (which is clearly homeomorphic to
Bn), we obtain that f(x) is an interior point of f

(
Br(x)

)
, and hence also of f(U).

The proof of Theorem 6 takes several steps; the fixed point theorem will make
an appearance in the second step.

Step 1. By assumption, the function f : Bn → f(Bn) is continuous and bijective.
Since Bn is compact and Rn is Hausdorff, f must be a homeomorphism (by Corol-
lary 7.2). In other words, the inverse function f−1 : f(Bn)→ Bn is also continuous.
Now the set f(Bn) may be very complicated, and so we don’t really know what the
domain of f−1 looks like – but we can always extend f−1 to a continuous function
G : Rn → Rn by appealing to the Tietze extension theorem! Indeed, each of the
n components of f−1 is a continuous function from f(Bn) to the closed interval
[−1, 1]; because f(Bn) is compact Hausdorff and hence normal, Theorem 13.4 al-
lows us to extend them to continuous functions from Rn to [−1, 1]. Putting these
n functions together, we obtain the desired extension G. By construction, we have

G
(
f(x)

)
= f−1

(
f(x)

)
= x

for every x ∈ Bn.

Step 2. Next, we observe that the function G has precisely one zero on the com-
pact set f(Bn), namely at the point f(0). This is a consequence of the identity
G
(
f(x)

)
= x. We can use the fixed point theorem to prove that this zero is “stable”

under small perturbations of G, in the following sense.

Proposition 7. If G̃ : f(Bn)→ Rn is a continuous function such that

‖G(y)− G̃(y)‖ ≤ 1 for every y ∈ f(Bn),

then G̃ also has at least one zero on the compact set f(Bn).

What this means is that, even if we jiggle the function G slightly, the zero of G
cannot disappear into nowhere.

Proof. Consider the continuous function

Bn → Bn, x 7→ x− G̃
(
f(x)

)
= G

(
f(x)

)
− G̃

(
f(x)

)
;

the assumptions on G̃ guarantee that it maps Bn into itself. According to Theo-
rem 5, there must be at least one fixed point x ∈ Bn; but then

x = x− G̃
(
f(x)

)
,



6

which obviously means that the point f(x) is a zero of G̃. �

Step 3. Let me now explain the strategy for proving Theorem 6. Suppose that
the result was false, in other words, suppose that f(0) was not an interior point
of f(Bn). Then f(0) has to lie on the boundary of f(Bn), and so the function
G has a zero on the boundary. The idea is that a zero on the boundary is un-
stable: by jiggling things slightly, one can push the zero outside of f(Bn), which
then contradicts Proposition 7. More precisely, we would like to construct a small
perturbation G̃ that no longer has any zeros on f(Bn). Let us start turning this
idea into a rigorous proof.

ε

0

f(0)

f(Bn)

Recall that G
(
f(0)

)
= 0; because G is continuous, we can choose ε > 0 such that

‖G(y)‖ ≤ 1
10 whenever ‖y − f(0)‖ ≤ 2ε. Since we are assuming that f(0) is not an

interior point of f(Bn), there has to be some point c ∈ Rn with ‖c− f(0)‖ < ε but
c 6∈ f(Bn). We can translate the whole picture so that c gets moved to the origin,
which allows us to assume that c = 0. We have arranged that

0 6∈ f(Bn), ‖f(0)‖ < ε, ‖G(y)‖ ≤ 1
10 if ‖y‖ ≤ ε.

The third item is because ‖y‖ ≤ ε means that ‖y−f(0)‖ ≤ ‖y‖+‖f(0)‖ ≤ 2ε. The
picture above should help you visualize what is going on.

Step 4. Let me now explain how to push the set f(Bn) away from the point f(0).
Define two closed sets

Σ1 =
{
y ∈ f(Bn)

∣∣ ‖y‖ ≥ ε} and Σ2 =
{
y ∈ Rn

∣∣ ‖y‖ = ε
}
.

Here Σ2 is the boundary of the ball of radius ε around the origin, and Σ1 is the
part of f(Bn) that lies outside that ball; since f(Bn) is compact, both Σ1 and Σ2

are also compact. Note that the function G has no zeros on the compact set Σ1.
The important thing is that we can write down a continuous function that maps
f(Bn) into the set Σ1 ∪ Σ2, namely

φ : f(Bn)→ Σ1 ∪ Σ2, φ(y) = max

(
ε

‖y‖
, 1

)
· y.

This function is well-defined and continuous, due to the fact that 0 6∈ f(Bn). For
a point y ∈ Σ1, we have ‖y‖ ≥ ε, and so φ(y) = y; therefore φ does nothing to the
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points of f(Bn) outside the ε-ball. For a point y ∈ f(Bn) with ‖y‖ ≤ ε, we get

φ(y) = ε · y

‖y‖
∈ Σ2,

and so φ takes those points to the boundary of the ε-ball. Intuitively, the effect
of φ is to push the part of f(Bn) that lies inside the ε-ball to the boundary. In
particular, the point f(0) does not belong to the image of f(Bn) under φ.

Step 5. We would like to use the continuous function G ◦ φ : f(Bn) → Rn as our
perturbation of G. For y ∈ Σ1, we have (G◦φ)(y) = G(y) 6= 0, and so this function
has no zeros on Σ1. It is however possible that G ◦φ might vanish at some point of
f(Bn) inside the ε-ball; this can happen for instance if G has zeros on Σ2. There
is not much we can do about this: G was an arbitrary continuous extension of f−1,
and so we have no control over its zeros on Σ2. Now the idea is to replace G by
a function that is better-behaved: a polynomial function. This can be done with
the help of the Weierstrass approximation theorem and some measure theory, both
results from analysis. (The homework for this week explains a purely topological
argument for achieving the same thing.)

Recall that G has no zeros on the compact set Σ1, which means that ‖G(y)‖ > 0
for every y ∈ Σ1. By compactness, we can therefore find a real number δ > 0 such
that ‖G(y)‖ ≥ δ for every y ∈ Σ1; without loss of generality, we may assume that
δ ≤ 1

10 . According to the Weierstrass approximation theorem, there is a polynomial
function P : Rn → Rn with the property that

‖G(y)− P (y)‖ < δ for every y ∈ Σ1 ∪ Σ2.

Observe that P still does not have any zeros on f(Bn): if we had P (y) = 0,
then ‖G(y)‖ < δ, contradicting the fact that ‖G(y)‖ ≥ δ. If we are unlucky, it
may happen that P has a zero somewhere on Σ2, but we can easily fix this by
the following measure-theoretic argument. The set Σ2 obviously has measure zero;
because P is a polynomial function, one can prove that the image P (Σ2) also has
measure zero. By choosing a sufficiently small vector v ∈ Rn \ P (Σ2), and by
replacing P by the polynomial function P −v, we can arrange that P does not have
any zeros on Σ1 ∪ Σ2.

Step 6. Now we are basically done. Let us define a function

G̃ : f(Bn)→ Rn, G̃(y) = P
(
φ(y)

)
.

This function is continuous, and by what we said above, has no zeros on the compact
set f(Bn). Let us show that G̃ is a small perturbation of G. Let y ∈ f(Bn) be an
arbitrary point; there are two cases. (1) If ‖y‖ ≥ ε, then φ(y) = y, and so

‖G(y)− G̃(y)‖ = ‖G(y)− P (y)‖ < δ ≤ 1

10
.

(2) If ‖y‖ ≤ ε, then φ(y) ∈ Σ2 and ‖φ(y)‖ = ε, and so we get

‖G(y)− G̃(y)‖ = ‖G(y)− P (φ(y))‖ = ‖G(y)−G(φ(y)) +G(φ(y))− P (φ(y))‖
≤ ‖G(y)‖+ ‖G(φ(y))‖+ ‖G(φ(y))− P (φ(y))‖

≤ 1

10
+

1

10
+ δ ≤ 3

10
.
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In both cases, the distance between G(y) and G̃(y) is less than 1, and so Proposi-

tion 7 says that G̃(y) has a zero somewhere on f(Bn). This is a contradiction, and
so we have proved Theorem 6.

Exercises.

1. Use the invariance of domain theorem to show that an n-dimensional manifold
can never be homeomorphic to an m-dimensional manifold with m 6= n.

2. This exercise will tell you how, in proving the invariance of domain theorem,
one can bypass the use of Weierstrass approximation.

Theorem (Kulpa). Let f : X → Rn \ {0} be a continuous function defined on a
compact subset X ⊆ Rn. Then for each ε > 0 and every compact subset Y ⊆ Rn
with empty interior, there is a continuous function F : X ∪Y → Rn \ {0} such that
‖F (x)− f(x)‖ < ε for all x ∈ X.

Convince yourself that this result can take the place of Weierstrass approximation
in our proof of the invariance of domain theorem. (Hint : In the notation from class,
take X = Σ1 and Y = Σ2.) Then prove the following lemma.

Lemma. Let ∆ ⊆ Rn be an n-dimensional simplex with vertices v1, . . . , vn. Given
a continuous function g : ∆→ Rn, show that the formula

h(x) =

n∑
i=1

tig(vi), where x =

n∑
i=1

tivi,

defines a continuous function h : ∆→ Rn. We call it the linearization of g on ∆.

The idea behind the proof of Kulpa’s theorem is to approximate the given func-
tion by piecewise linear functions instead of by polynomials. Now prove Kulpa’s
theorem in the following steps.

(a) Since X ∪ Y is bounded, it is contained in the n-dimensional box In =
[−R,R]n for some R > 0. Show that f can be extended to a continuous
function g : In → Rn.

(b) Choose δ > 0 with 2δ < ε such that f(X)∩B2δ(0) = ∅. Show that one can
subdivide In into n-dimensional simplices ∆1, . . . ,∆N , in such a way that
the image g(∆k) of every simplex ∆k has diameter at most δ.

(c) Let h : In → Rn be the piecewise linear function whose restriction to each
∆k is the linearization of g on ∆k. Show that h is continuous, and that
‖f(x)− h(x)‖ ≤ δ for every x ∈ X.

(d) Show that h(Y ) ⊆ Rn is a compact set with empty interior. Conclude that
there is a point c ∈ Bδ(0) \ h(X ∪ Y ).

(e) Now define F : X ∪ Y → Rn as F (z) = h(z) − c, and prove that it has all
the required properties.
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Extra Lecture: The Jordan Curve Theorem

The Jordan curve theorem. Instead of homology, one can also use some of the
ideas about paths and fundamental groups to prove the Jordan curve theorem. I
am sure all of you have heard about this result at some point in your life: any
closed curve in R2 divides the plane into two regions, one inside the curve, the
other outside the curve.

More precisely, a closed curve in the plane is a continuous function h : [0, 1]→ R2

with h(0) = h(1); if we identify the two endpoints of the interval, we obtain a
circle, and so we can just as well say that a closed curve is a continuous function
h : S1 → R2. This definition includes space-filling curves: the image of the Peano
curve, for example, would be the entire unit square, which obviously fails to divide
R2 into two regions. Jordan discovered that this problem goes away if we consider
simple closed curves (also called Jordan curves), where the function h : S1 → R2 is
injective. Note that for such curves, the image h(S1) is homeomorphic to S1, due
to the compactness of S1. Jordan curves are closer to our intuitive notion of curve.

Theorem 27.1 (Jordan). If C ⊆ R2 is a simple closed curve, then R2 \ C has
exactly two connected components, each of which has C as its boundary.

This theorem was proved by Jordan in the late 19th century. One often reads
that his proof was unsatisfactory and that the first correct one is due to Veblen; but
Hales, who wrote the first computer-checkable proof of the Jordan curve theorem,
says that: “In view of the heavy criticism of Jordan’s proof, I was surprised when
I sat down to read his proof to find nothing objectionable about it.”

The tricky thing is that most simple closed curves do not look at all like a circle.
There are fractal curves (like the Koch snowflake, pictured above), and even for
curves that are not fractals, it can be very hard to decide by looking at the curve
whether a given point lies inside or outside the curve.

Some observations. The argument I am going to present uses basic algebraic
topology, and especially some ideas from our proof of the Seifert-van Kampen the-
orem. Let f : S1 → R2 be a simple closed curve, and denote by C = f(S1) its image
in R2. To get started, here are some observations:

(1) The curve C is compact, and f is a homeomorphism between S1 and C;
in particular, we can forget about the parametrization and remember only
the subset C ⊆ R2. This follows immediately from Corollary 7.2.

(2) The complement R2\C is open and locally path connected; every connected
component of R2 \ C is thus open and path connected (Proposition 6.7).
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(3) Exactly one of the connected components of R2 \ C is unbounded. The
reason is that C is contained in a large disk, whose complement is path
connected, hence contained in exactly one connected component of R2 \C.

Let us first show that C is the common boundary of every connected component
of R2 \ C. For the time being, we assume that the complement of C has at least
two connected components; we will show later that this is always the case.

Lemma 1. Let C ⊆ R2 be a simple closed curve. If R2 \ C is not connected, then
every connected component has C as its boundary.

Proof. Let U ⊆ R2 \ C be one of the connected components. Since the other
connected components are open, we have ∂U = Ū \U ⊆ C. Suppose that ∂U 6= C;
we shall argue that this leads to a contradiction. Since C is homeomorphic to a
circle, ∂U is homeomorphic to a proper closed subset of the circle, and therefore
contained in a subset homeomorphic to a closed interval. In other words, we have
∂U ⊆ A, where A ⊆ C is a closed subspace homeomorphic to [0, 1]; a subspace
homeomorphic to the closed unit interval is called an arc.

By assumption, R2\C has at least two connected components, and so at least one
of its connected components must be bounded. After translating C by some finite
distance, if necessary, we can arrange that the origin lies in a bounded component;
if U itself happens to be bounded, we may assume that 0 ∈ U . Let D be a closed
disk of sufficiently large radius centered at 0, such that the curve C is contained in
D; its boundary ∂D is clearly contained in the unbounded component of R2 \ C.

Now we use the Tietze extension theorem to extend the identity idA : A→ A to
a continuous function g : D → A. Recall that A is homeomorphic to [0, 1]; since D
is normal, Theorem 13.4 says that any homeomorphism h : A → [0, 1] extends to
a continuous function h′ : D → [0, 1], and then g = h−1 ◦ h′ does the job. So far,
nothing seems to be wrong – but in fact, such a function g cannot exist, because
one can use it to build a retraction from the disk D onto its boundary circle!

There are two cases. If U is bounded, define

r : D → D \ {0}, r(x) =

{
g(x) if x ∈ U ,

x if x ∈ R2 \ U ;

this is continuous because both sets are closed and g(x) = x for every x ∈ ∂U ⊆ A.
If U is unbounded, define

r : D → D \ {0}, r(x) =

{
g(x) if x ∈ R2 \ U ,

x if x ∈ U ,

which is continuous for the same reason. Because ∂D is contained in the unbounded
component of R2 \ C, we have r(x) = x for every x ∈ ∂D. If we now compose r
with the obvious retraction of D \ {0} onto its boundary, we obtain a retraction of
D onto ∂D; but such a retraction cannot exist by Corollary 18.5.

The conclusion is that ∂U = C, which is what we wanted to show. �

If you look at the proof carefully, you will see that we have actually proved the
following additional result.

Corollary 27.2. The complement of any arc A ⊆ R2 is path connected.
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Proof. The complement is open and locally path connected; if it has more than one
connected component, we can use the same argument as above to build a retraction
from a disk onto its boundary. �

The complement is not connected. The next step is to show that the com-
plement R2 \ C is not connected. It will be more convenient to replace R2 by its
one-point compactification S2. It is easy to see that R2 \C and S2 \C have exactly
the same number of connected components: the unique unbounded component of
R2 \ C corresponds to the unique component of S2 \ C containing the extra point
at infinity. We may therefore look at a simple closed curve C on the sphere.

Choose two points p, q ∈ C; they divide C into two arcs A and B, both of which
have p and q as their endpoints. Consider the two open sets U = S2 \ A and
V = S2 \ B; since they are both complements of arcs, Corollary 27.2 shows that
they are both path connected. Now

U ∩ V = S2 \ C
U ∪ V = S2 \ {p, q}

and so if S2 \C was connected (and hence path connected), the fundamental group
of X = U ∪ V would be governed by the Seifert-van Kampen theorem. But X is
just the complement of two points on the sphere, and so

π1(X,x0) ' Z
for any choice of base point x0 ∈ U ∩ V .

Lemma 2. The homomorphisms π1(U, x0)→ π1(X,x0) and π1(V, x0)→ π1(X,x0)
are both trivial.

Proof. Given any loop α : I → U based at the point x0, we have to show that it is
path homotopic, in X = S2 \ {p, q}, to the constant path at x0. Let g : S1 → U be
the induced continuous function from the circle; then [α] ∈ π1(X,x0) is the image
of the generator of π1(S1, b0) under the homomorphism g∗; by Lemma 19.6, it will
be enough to show that f is homotopic to a constant function.

By construction, g(S1) is disjoint from the arc A; because p, q ∈ A, this means
that p and q belong to the same connected component of S2 \ g(S1). Now S2 \ {q}
is homeomorphic to R2, and so we may assume without loss of generality that
g : S1 → R2 \ {p} is a continuous function with the property that p ∈ R2 lies in the
unbounded component of R2 \ g(S1). After translating everything by −p, we can
arrange furthermore that p = 0.

Now let D be a disk of sufficiently large radius containing g(S1), and choose a
point v ∈ R2 \D. Let γ : I → R2 \ g(S1) be a path from the origin to the point v;
such a path exists because the origin lies in the unbounded component. Consider
the homotopy

G : S1 × I → R2 \ {0}, G(x, t) = g(x)− γ(t);

note that G(x, t) 6= 0 because the path γ is contained in the complement of g(S1).
This shows that g is homotopic to the function g − v; the point is that the image
of g − v stays far away from the origin. We can then use a second homotopy

H : S1 × I → R2 \ {0}, H(x, t) = tg(x)− v
to deform g − v continuously into the constant function −v. This shows that g is
homotopic to a constant function, as needed. �
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The lemma shows that π1(U, x0) and π1(V, x0) generate the trivial subgroup of
π1(X,x0). If U ∩V was path connected, Theorem 18.8 would imply that π1(X,x0)
is itself trivial; since this is not the case, it follows that U ∩ V = S2 \ C must have
at least two connected components.

Exactly two connected components. The remainder of the proof consists in
exploiting the fact that π1(X,x0) ' Z to prove that S2 \ C can have at most two
connected components. The idea is that each additional component gives a new
element in π1(X,x0); since the group has rank 1, there can be only 2 components.

Let me first explain how the existence of more than one connected component
produces nontrivial elements in the fundamental group of X. We already have a
base point x0 ∈ U∩V ; let x1 ∈ U∩V be a point in a different connected component.
Since U and V are both path connected, we can choose a path α in U and a path
β in V that join the two points x0 and x1. Then α ∗ β̄ is a loop in X based at the
point x0.

Lemma 3. The element [α ∗ β̄] ∈ π1(X,x0) is nontrivial.

Proof. Suppose to the contrary that the element was trivial. Then there would be
a path homotopy H : I × I → X from α ∗ β̄ to the constant path at x0. As in
the proof of the Seifert-van Kampen theorem, we choose a sufficiently large even
integer N and divide I × I into N2 little boxes, each of which is mapped by H into
one of the two open sets U or V . We then label each box either with the letter
U or the letter V, depending on whether its image under H lies in U or V ; if the
image happens to lie in U ∩ V , we simply choose one of the two. Since α(I) ⊆ U ,
we can clearly arrange that the first N/2 boxes in the topmost row are labeled U;
similarly, we can arrange that the remaining N/2 boxes are labeled V.

x0 x0

x0

α β̄

U U U U U U V V V V V V

x1

U U

V V

U U

U U

U

UV

V

U U

U V

Now we construct a graph whose vertices are the (N + 1)2 points on the grid;
we include only those edges into the graph whose two adjacent boxes have different
labels. It is easy to see that the degree of any vertex inside (= not on the boundary
of) the square has degree 0, 2, or 4. By construction, there is exactly one vertex
of degree 1 on the top boundary, namely the midpoint (which is mapped to the
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point x1 by H). Consider the connected component of our graph containing this
vertex. For degree reasons, it has to meet the boundary of the square in an even
number of vertices, so it has to contain at least one vertex on the left, bottom, or
right boundary of the square (which are mapped to the point x0 by H). But then
the image of this component under H is a connected subset of U ∩ V containing
the two points x0 and x1, contradicting the fact that these two points belonged to
different connected components. �

We can use the same strategy to prove that U ∩ V = S2 \ C can have at most
two connected components. Suppose by way of contradiction that there were three
or more components. We could then choose a point x2 ∈ U ∩V so that x0, x1, and
x2 belong to three different connected components; if γ and δ are paths in U and
V connecting the two points x0 and x2, then γ ∗ δ̄ is a second loop based at x0.
The two classes [α ∗ β̄] and [γ ∗ δ̄] are linearly independent, in the following sense.

Lemma 4. If [α ∗ β̄]m = [γ ∗ δ̄]n in π1(X,x0), then m = n = 0.

Proof. Suppose that there was such a relation with m,n 6= 0. Then there would be
a homotopy H : I × I → X from the loop

α ∗ β̄ ∗ · · · ∗ α ∗ β̄,

where each of the 2m individual loops is parametrized by an interval of length 1
2m ,

to the loop

γ ∗ δ̄ ∗ · · · ∗ γ ∗ δ̄,
where each of the 2n individual loops is parametrized by an interval of length 1

2n .
As before, we choose a sufficiently large integer N that is divisible by both m and
n, and subdivide I × I into N2 little boxes that we label either with U or with
V, depending on where they are mapped under H. We also construct a graph by
exactly the same procedure.

x0 x0

U U U U U UV V V V V V

x1 x1 x1x0 x0

U U U U U UV V V V V V
x2 x2x0

Again, every vertex inside the square has even degree, and so any connected com-
ponent of the graph has to meet the boundary of the square in an even number of
vertices. Now there are two cases. If m is even (as in the picture above), there is
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an odd number of vertices of degree 1 that get mapped to the point x1; for degree
reasons, at least one of the connected components containing these vertices has to
meet the boundary of the square in a vertex that gets mapped to the point x0 or to
the point x2; but then we get a path in U ∩ V joining these points, contradiction.
The same argument works of course when n is even.

If n is odd (as in the picture above), there is an even number of vertices of degree
1 that get mapped to the point x2. We get the same contradiction as above, except
in the case where all such vertices belong to one connected component of the graph.
But then every vertex of degree 1 on the bottom boundary has to belong to that
same component, because a connected component that starts at such a vertex still
has to meet the boundary of the square in an even number of vertices. We thus get
a path in U ∩V joining the point x0 to the point x2, which is again a contradiction.
The same argument works when m is odd. �

Since π1(X,x0) ' Z, both elements [α ∗ β̄] and [γ ∗ δ̄] are nonzero multiples of
the generator; this means that there is a relation of the form

[α ∗ β̄]m = [γ ∗ δ̄]n

for some (m,n) 6= (0, 0). Since the lemma tells us that this is not possible, the
only conclusion is that U ∩ V must have exactly two connected components. This
finishes the proof of Theorem 1.
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