
Lecture 1

Introduction. Our topic this semester is the “generic vanishing theorem” and
its applications. In the late 1980s, Green and Lazarsfeld studied the cohomology
of topologically trivial line bundles on smooth complex projective varieties (and
compact Kähler manifolds). The generic vanishing theorem is one of their main
results: it says that, under certain conditions on the variety, the cohomology of a
generically chosen line bundle is trivial in all degrees less than the dimension of
the variety. This theorem, and related results by Green and Lazarsfeld, are a very
useful tool in the study of irregular varieties and abelian varieties. Here are some
examples of its applications:

(1) Singularities of theta divisors on principally polarized abelian varieties (Ein-
Lazarsfeld).

(2) Numerical characterization of abelian varieties up to birational equivalence
(Chen-Hacon)

(3) Birational geometry of varieties of Kodaira dimension zero (Ein-Lazarsfeld,
Chen-Hacon)

(4) Inequalities among Hodge numbers of irregular varieties (Lazarsfeld-Popa)
(5) M-regularity on abelian varieties (Pareschi-Popa)
(6) Holomorphic one-forms on varieties of general type (Popa-Schnell, Villad-

sen)

There are now two completely different proofs for the generic vanishing theorem.
The original one by Green and Lazarsfeld used deformation theory and classical
Hodge theory; there is also a more recent one by Hacon, based on derived categories
and Mukai’s “Fourier transform” for abelian varieties. Here is a list of the sources:

[GL87] M. Green and R. Lazarsfeld, Deformation theory, generic vanishing theo-
rems, and some conjectures of Enriques, Catanese and Beauville, Invent.
Math. 90 (1987), no. 2, 389–407.

[GL91] , Higher obstructions to deforming cohomology groups of line bun-
dles, J. Amer. Math. Soc. 4 (1991), no. 1, 87–103.

[Sim93] C. Simpson, Subspaces of moduli spaces of rank one local systems, Ann.

Sci. École Norm. Sup. (4) 26 (1993), 361–401.

[Hac04] C. D. Hacon, A derived category approach to generic vanishing, J. Reine
Angew. Math. 575 (2004), 173–187.

[PS13] M. Popa and C. Schnell, Generic vanishing theory via mixed Hodge mod-
ules, Forum Math. Sigma 1 (2013), e1, 60.

The following articles contain various examples and applications of the theory.
We will be discussing most of them over the course of the semester.

[Bea92] A. Beauville, Annulation du H1 pour les fibrés en droites plats, Complex
algebraic varieties (Bayreuth, 1990), Lecture Notes in Math., vol. 1507,
Springer, Berlin, 1992, pp. 1–15.

[EL97] L. Ein and R. Lazarsfeld, Singularities of theta divisors and the birational
geometry of irregular varieties, J. Amer. Math. Soc. 10 (1997), no. 1, 243–
258.

[CH01] J. A. Chen and C. D. Hacon, Characterization of abelian varieties, Invent.
Math. 143 (2001), no. 2, 435–447.

[Par12] G. Pareschi, Basic results on irregular varieties via Fourier-Mukai methods,
Current developments in algebraic geometry, Math. Sci. Res. Inst. Publ.,
vol. 59, Cambridge Univ. Press, Cambridge, 2012, pp. 379–403.

[PS14] M. Popa and C. Schnell, Kodaira dimension and zeros of holomorphic one-
forms, Ann. of Math. (2) 179 (2014), no. 3, 1109–1120.
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[Sch22] C. Schnell, The Fourier-Mukai transform made easy, Pure Appl. Math. Q.
18 (2022), no. 4, 1749–1770.

[CJ18] J. A. Chen and Z. Jiang, Positivity in varieties of maximal Albanese di-
mension, J. Reine Angew. Math. 736 (2018), 225–253.

Vanishing theorems and their applications. Before I introduce the work of
Green and Lazarsfeld, let me say a few words about the role of vanishing theorems
in modern algebraic geometry. Vanishing theorems are very important because
many questions can be phrased in terms of coherent sheaves, their global sections,
and their cohomology. Here are three typical cases:

(1) Lifting sections. Suppose we have a short exact sequence of coherent sheaves

0 → F ′ → F → F ′′ → 0

on an algebraic variety X, and need to know whether or not every global
section of F ′′ can be lifted to a global section of F . The long exact sequence

· · · → H0(X,F ) → H0(X,F ′′) → H1(X,F ′) → · · ·

in cohomology shows that the vanishing of H1(X,F ′) is sufficient.
(2) Existence of sections. Suppose we have a coherent sheaf F on an alge-

braic variety X, and need to know whether or not F has nontrivial global
sections. If Hi(X,F ) happens to vanish for every i > 0, then

dimH0(X,F ) = χ(X,F )

is equal to the Euler characteristic of F , which can typically be computed
with the help of the Riemann-Roch theorem.

(3) Vanishing of obstructions. Suppose we need to do some global construction
on an algebraic variety X, but only know that it works locally. In this
situation, the obstruction to the global problem is often an element of some
sheaf cohomology group; the vanishing of this cohomology group is therefore
sufficient to get a solution.

The most famous vanishing theorem is the Kodaira vanishing theorem for ample
line bundles on complex projective varieties. (In this course, we will only consider
algebraic varieties that are defined over the complex numbers; I will therefore not
explicitly mention that assumption from now on.)

Kodaira Vanishing Theorem. Let L be an ample line bundle on a smooth pro-
jective variety X. Then Hi(X,ωX ⊗ L) = 0 for every i > 0.

The Nakano vanishing theorem extends this to the other sheaves of differential
forms ΩpX , but the result is not as strong as in the case of the canonical bundle.

Nakano Vanishing Theorem. Under the same assumptions on X and L, one
has Hq(X,ΩpX ⊗ L) = 0 for every p, q ∈ N with p+ q > dimX.

Here are a few elementary applications, along the lines of what I said above.

Example 1.1. If L is an ample line bundle on an abelian variety A, then H0(A,L) ̸=
0. Indeed, the canonical bundle ωA is trivial, and so all higher cohomology groups
of L vanish by Kodaira’s theorem. Together with the Riemann-Roch theorem,

dimH0(A,L) = χ(A,L) =
Lg

g!
̸= 0,

where g = dimA.
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Example 1.2. Infinitesimal deformations of a smooth projective variety are parametrized
by H1(X,TX), where TX is the tangent sheaf; the obstructions to extending an
infinitesimal deformation to an actual deformation lie in H2(X,TX). Suppose that
X is a Fano manifold of dimension n, which means that ω−1

X is an ample line bundle.

Because ωX ⊗ TX ≃ Ωn−1
X , we obtain

H2(X,TX) ≃ H2(X,Ωn−1
X ⊗ ω−1

X ) = 0

from the Nakano vanishing theorem. Fano manifolds are therefore unobstructed.

It turns out that one can relax the assumptions in the Kodaira vanishing theorem
and allow L to be only nef and big (= a birational version of being ample). Recall
that L is nef if, for every curve C ⊆ X, the intersection number L · C ≥ 0. It is
called big if the function m 7→ dimH0(X,L⊗m) grows like mdimX ; when L is nef,
this is equivalent to having LdimX > 0 (by the Riemann-Roch theorem).

Kawamata-Viehweg Vanishing Theorem. Let X be a smooth projective vari-
ety. If L is nef and big, then Hi(X,ωX ⊗ L) = 0 for every i > 0.

This result has had a great influence on birational geometry; in fact, there is even
a more general version of the Kawamata-Viehweg vanishing theorem that involves
R-divisors and multiplier ideals.

The generic vanishing theorem. All of the vanishing theorems above depend
on the fact that the first Chern class c1(L) is (in some sense) positive. The ques-
tion that motivated the generic vanishing theorem is what happens when we con-
sider instead line bundles with c1(L) = 0. We may call such line bundles “topo-
logically trivial”, because the underlying smooth line bundle is trivial. They are
parametrized by the points of Pic0(X), which is an abelian variety of dimension
dimH1(X,OX) when X is smooth and projective (and a compact complex torus
when X is a compact Kähler manifold).

To get a feeling for what can happen, let us consider a few simple examples.

Example 1.3. We clearly have H0(X,L) = 0 unless L ≃ OX ; in fact, any nontrivial
global section must be everywhere nonzero because c1(L) = 0.

Example 1.4. Let n = dimX. Serre duality shows that

dimHn(X,L) = dimH0(X,ωX ⊗ L−1),

and in many situations (for example, on curves of genus at least two), the coho-
mology group on the right is nonzero for every L ∈ Pic0(X).

Example 1.5. Let X be a smooth projective variety, and suppose that we have a
morphism f : X → C with connected fibers to a curve of genus at least two. Then
f∗OX ≃ OC , and if we look at the first cohomology of f∗L, we get (from the Leray
spectral sequence) an exact sequence

0 → H1
(
C,L

)
→ H1

(
X, f∗L

)
→ H0

(
C,R1f∗OX ⊗ L

)
→ 0.

Since H1(C,L) is nonzero for every L ∈ Pic0(C), this means that Pic0(X) contains
a whole subvariety isomorphic to Pic0(C) where the first cohomology is nontrivial.
This example was studied very carefully by Beauville; it will appear again later in
the course.

The lesson to draw from these three examples is that we cannot expect to have
a good vanishing theorem that works for every L ∈ Pic0(X), because there may
be special line bundles whose cohomology does not vanish for geometric reasons.
Moreover, even if we exclude those special line bundles, the group HdimX(X,L)
will typically be nonzero. The following example shows another interesting phe-
nomenon.
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Example 1.6. Suppose that X = C × Y , where C is a curve of genus at least two,
and H1(Y,OY ) = 0. In that case, any topologically trivial line bundle on X is of
the form p∗1L, for some L ∈ Pic0(C), and consequently

H1
(
X, p∗1L

)
≃ H1

(
C,L⊗ p1∗OX

)
≃ H1(C,L) ̸= 0.

Of course, X is “one-dimensional”, at least from the point of view of Pic0(X).

We can make this last observation more precise. Recall that the Albanese variety
Alb(X) is the abelian variety dual to Pic0(X); after choosing a base point on X,
one has a canonical morphism

alb: X → Alb(X),

with the property that alb∗ : Pic0
(
Alb(X)

)
→ Pic0(X) is an isomorphism. As far

as topologically trivial line bundles are concerned, what matters is therefore not the
dimension of X, but the so-called Albanese dimension dimalb(X). (In the example
above, Alb(X) is the Jacobian of C, and alb(X) is isomorphic to the curve C.)
With that in mind, here is the result by Green and Lazarsfeld.

Generic Vanishing Theorem. Let X be a compact Kähler manifold. Then one
has Hi(X,L) = 0 for 0 ≤ i < dimalb(X) and general L ∈ Pic0(X).

In the course of the semester, we are going to see three different proofs for this
theorem, including the original one by Green and Lazarsfeld, which is based on
Hodge theory. The generic vanishing theorem suggests to look at the exceptional
sets

Sim(X) =
{
L ∈ Pic0(X)

∣∣ dimHi(X,L) ≥ m
}
;

note that they are closed analytic subsets of Pic0(X) by the semicontinuity theorem
(and algebraic when X is projective). Green and Lazarsfeld proved several other
remarkable results about the structure of those sets; their results, in turn, led to
many spectacular applications in algebraic geometry, especially for abelian varieties
and irregular varieties (= varieties that admit nontrivial morphisms to abelian
varieties).

Outline of the course. Let me now give a brief outline of what we are going to
do this semester. First, we will review in some detail the basic results of Hodge
theory on compact Kähler manifolds, including the case of coefficients in a topo-
logically trivial line bundle. Next, we will prove the generic vanishing theorem and
several other results about the sets Sim(X), following the two papers by Green and
Lazarsfeld. We will then discuss geometric applications of the theory, for example,
the famous paper by Ein and Lazarsfeld in which they study singularities of theta
divisors on principally polarized abelian varieties. Up to this point, we will mostly
be working with complex manifolds.

In the second part of the course, we will switch over to algebraic varieties. After
a brief review of some technical results about derived categories, we will discuss
another proof of the generic vanishing theorem, due to Hacon, that uses Mukai’s
“Fourier transform” on the derived category of an abelian variety. The proof singles
out a certain class of coherent sheaves on abelian varieties, called GV-sheaves,
and after studying their properties, we shall go over some additional geometric
applications, including the birational characterization of abelian varieties by Chen
and Hacon.
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Lecture 2

The idea behind Hodge theory. We shall begin with a review of basic Hodge
theory, in the setting of a compact Kähler manifold X. In the process, we will also
review the analytic description of topologically trivial line bundles on X, and of
Pic0(X) and Alb(X). A good knowledge of Hodge theory is useful not only for
this course, but for every algebraic geometer who works with complex algebraic
varieties.

Here is a brief outline of what we will need:

(1) Hodge theory on compact oriented Riemannian manifolds. The main the-
orem is that classes in de Rham cohomology are uniquely represented by
harmonic forms; this fundamental fact is proved using results about partial
differential equations from analysis.

(2) Hodge theory on compact Kähler manifolds. The Kähler condition guar-
antees that the harmonic theory is compatible with the complex structure;
this is proved with the help of the Kähler identities, which are identities
between certain operators on differential forms.

(3) Hodge theory with coefficients in a line bundle whose first Chern class is
zero. This case is very similar to the previous one, because the Kähler
identities can easily be generalized to this setting.

Let us begin by discussing the case of a compact smooth manifold. Hodge theory
tries to solve the problem of finding good representatives for classes in de Rham
cohomology. Recall that if M is a smooth manifold, we have the space of smooth
real-valued k-forms Ak(M,R), and the exterior derivative d maps Ak(M,R) to
Ak+1(M,R). The de Rham cohomology groups of M are

Hk
dR(M,R) =

ker
(
d : Ak(M,R) → Ak+1(M,R)

)
im

(
d : Ak−1(M,R) → Ak(M,R)

) .
A class in Hk

dR(M,R) is represented by a closed k-form ω, but ω is far from unique,
since ω+dψ represents the same class for every ψ ∈ Ak−1(M,R). The only exception
is the group H0

dR(M,R), whose elements are the locally constant functions.
From now on, we shall assume that M is compact and oriented, of dimension

n = dimM . Then Hn
dR(M,R) ≃ R, and once we choose a Riemannian metric g on

M , we have the volume form vol(g) ∈ An(M,R); because∫
M

vol(g) = vol(M) ̸= 0,

its class in Hn
dR(M,R) is nonzero. Every class in Hn

dR(M,R) therefore does have a
distinguished representative, namely a multiple of vol(g). It turns out that, once we
have chosen a Riemannian metric, the same is actually true for every cohomology
class. Let me explain why.

Recall that g defines an inner product on every tangent space TpM . It induces in-

ner products on the spaces
∧k

T ∗
pM , and by integrating overM , we obtain an inner

product on the space of forms Ak(M,R). Given a cohomology class in Hk
dR(M,R),

we can then look for a representative of minimal norm. It is not clear that such a
representative exists, but suppose for a moment that we have ω ∈ Ak(M,R) with
dω = 0, and such that ∥ω∥ ≤ ∥ω + dψ∥ for every ψ ∈ Ak−1(M,R). From the
inequality

∥ω∥2 ≤ ∥ω + tdψ∥2 = (ω + tdψ, ω + tdψ) = ∥ω∥2 + 2t(ω, dψ) + t2∥dψ∥2,

valid for every t ∈ R, we deduce that (ω, dψ) = 0. Consequently, ω has minimal size
iff it is perpendicular to the space dAk−1(M,R) of d-exact forms. This shows that
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ω is unique in its cohomology class, because an exact form that is perpendicular to
the space of exact forms is necessarily zero.

An equivalent (but more useful) formulation is the following: Define the adjoint
operator d∗ : Ak(M,R) → Ak−1(M,R) by the condition that

(d∗α, β) = (α, dβ)

for all α ∈ Ak(M,R) and all β ∈ Ak−1(M,R). Then ω is perpendicular to the space
of d-exact forms iff d∗ω = 0. Since also dω = 0, we can combine both conditions
into one by defining the Laplacian ∆ = d ◦ d∗ + d∗ ◦ d; from

(∆ω, ω) = (dd∗ω + d∗dω, ω) = ∥dω∥2 + ∥d∗ω∥2,

we see that ω is d-closed and of minimal norm iff ω is harmonic, in the sense that
∆ω = 0. To summarize:

Proposition 2.1. Let (M, g) be a compact connected Riemannian manifold, and
let ω ∈ Ak(M,R) be smooth k-form. The following conditions are equivalent:

(1) dω = 0 and ω is of minimal norm in its cohomology class.
(2) dω = 0 and ω is perpendicular to the space of d-exact forms.
(3) dω = 0 and d∗ω = 0, or equivalently, ∆ω = 0.

If ω satisfies any of these conditions, it is unique in its cohomology class, and is
called a harmonic form with respect to the given metric.

On Rn with the usual Euclidean metric, ∆f = −
∑
i ∂

2f/∂x2i for f ∈ A0(M,R),
which explains the terminology. In general, the Laplacian ∆: Ak(M,R) → Ak(M,R)
is an example of an elliptic differential operator, and this fact plays a key role in
the theory.

Some linear algebra. Let us pause for a moment and examine the definition of the
inner product on the space of forms. This is basically a problem in linear algebra.
Let V be a real vector space of dimension n, with inner product g : V × V → R.
(The example we have in mind is V = TpM , with the inner product gp coming from
the Riemannian metric.) The inner product yields an isomorphism

ε : V → V ∗, v 7→ g(v,−),

between V and its dual space V ∗ = Hom(V,R). If e1, . . . , en is an orthonormal basis
for V , then ε(e1), . . . , ε(en) is the dual basis in V

∗. It becomes an orthonormal basis
if we endow V ∗ with the inner product induced by the isomorphism ε.

All the spaces
∧k

V also acquire inner products, by setting

g(u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk) = det
(
g(ui, vj)

)k
i,j=1

and extending bilinearly. These inner products have the property that, for any
orthonormal basis e1, . . . , en ∈ V , the vectors

ei1 ∧ · · · ∧ eik

with i1 < i2 < · · · < ik form an orthonormal basis for
∧k

V .
Now suppose that V is in addition oriented, which means that we choose a gen-

erator of the one-dimensional real vector space
∧n

V . Recall that the fundamental
element ϕ ∈

∧n
V is the unique positive vector of length 1; we have ϕ = e1∧· · ·∧en

for any positively-oriented orthonormal basis.

Definition 2.2. The ∗-operator is the unique linear operator ∗ :
∧k

V →
∧n−k

V

with the property that α ∧ ∗β = g(α, β) · ϕ for any α, β ∈
∧k

V .
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Note that α∧∗β belongs to
∧n

V , and is therefore a multiple of the fundamental
element ϕ. The ∗-operator is most conveniently defined using an orthormal basis
e1, . . . , en for V : for any permutation σ of the set {1, . . . , n}, we have

eσ(1) ∧ · · · ∧ eσ(n) = sgn(σ) · e1 ∧ · · · ∧ en = sgn(σ) · ϕ,

and consequently

∗
(
eσ(1) ∧ · · · ∧ eσ(k)

)
= sgn(σ) · eσ(k+1) ∧ · · · ∧ eσ(n).

This relation shows that ∗ takes an orthonormal basis to an orthonormal basis, and
is therefore an isometry: g(∗α, ∗β) = g(α, β).

Lemma 2.3. We have ∗ ∗ α = (−1)k(n−k)α for any α ∈
∧k

V .

Proof. Let α, β ∈
∧k

V . By definition of the ∗-operator, we have

(∗ ∗ α) ∧ (∗β) = (−1)k(n−k)(∗β) ∧ (∗ ∗ α) = (−1)k(n−k)g(∗β, ∗α) · ϕ

= (−1)k(n−k)g(α, β) · ϕ = (−1)k(n−k)α ∧ ∗β.

This being true for all β, we conclude that ∗ ∗ α = (−1)k(n−k)α. □

It follows that ∗ :
∧k

V →
∧n−k

V is an isomorphism; this may be viewed as an
abstract form of Poincaré duality (which says that on a compact oriented manifold,

Hk
dR(M,R) and Hn−k

dR (M,R) are dual vector spaces for every 0 ≤ k ≤ n).

Harmonic forms and the Hodge theorem. Let (M, g) be a Riemannian man-
ifold that is compact, oriented, and of dimension n. At every point p ∈ M , we
have an inner product gp on the real tangent space TpM , and therefore also on the

cotangent space T ∗
pM and on each

∧k
T ∗
pM . In other words, each vector bundle∧k

T ∗M carries a natural Euclidean metric g. This allows us to define an inner
product on the space of smooth k-forms Ak(M,R) by the formula

(α, β)M =

∫
M

g
(
α, β

)
vol(g).

The individual operators ∗ :
∧k

T ∗
pM →

∧n−k
T ∗
pM at each point p ∈M deter-

mine a a linear mapping

∗ : Ak(M,R) → An−k(M,R).

By definition, we have α ∧ ∗β = g(α, β)vol(g) as elements of An(M,R), and so the
inner product can also be expressed by the simpler formula

(α, β)M =

∫
M

α ∧ ∗β.

It has the advantage of hiding the terms coming from the metric.
We already know that the exterior derivative d is a first-order linear differential

operator. Since the bundles in question carry Euclidean metrics, there is a unique
adjoint; the ∗-operator allows us to write down a simple formula for it.

Proposition 2.4. The adjoint d∗ : Ak(M,R) → Ak−1(M,R) is given by

d∗ = −(−1)n(k+1) ∗ d ∗ .

Proof. Fix α ∈ Ak−1(M,R) and β ∈ Ak(M,R). By Stokes’ theorem, the integral
of d

(
α ∧ ∗β

)
= dα ∧ ∗β + (−1)k−1α ∧ d(∗β) over M is zero, and therefore

(dα, β)M =

∫
M

dα ∧ ∗β = (−1)k
∫
M

α ∧ d ∗ β = (−1)k
∫
M

α ∧ ∗
(
∗−1d ∗ β

)
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This shows that the adjoint is given by the formula d∗β = (−1)k ∗−1 d ∗ β. Since
d ∗ β ∈ An−k+1(M,R), we can use the identity from Lemma 2.3 to compute that

d∗β = (−1)k(−1)(n−k+1)(k−1) ∗ d ∗ β,

from which the assertion follows because k2 + k is an even number. □

The same method can be used to find adjoints for other operators.

Definition 2.5. For each 0 ≤ k ≤ n, we define the Laplace operator

∆: Ak(M,R) → Ak(M,R)

by the formula ∆ = d ◦ d∗ + d∗ ◦ d. A k-form ω ∈ Ak(M,R) is called harmonic if
∆ω = 0, and we let Hk(M,R) = ker∆ be the space of all harmonic k-forms.

More precisely, ∆ is a second-order linear differential operator from the vector

bundle
∧k

T ∗M to itself. It is easy to see that ∆ is formally self-adjoint; indeed,
the adjointness of d and d∗ shows that

(∆α, β)M = (dα, dβ)M + (d∗α, d∗β)M = (α,∆β)M .

By computing a formula for ∆ in local coordinates, one shows that ∆ is an elliptic
operator. Because M is compact, one can then apply several deep theorems about
elliptic operators from analysis and obtain the following result.

Theorem 2.6. The space of harmonic k-forms Hk(M,R) is finite-dimensional.
Moreover, one has a direct-sum decomposition

(2.7) Ak(M,R) = Hk(M,R)⊕ im
(
∆: Ak(M,R) → Ak(M,R)

)
,

orthogonal with respect to the inner product on Ak(M,R).

This is the only point where hard analysis is needed; all the other results in
Hodge theory follow from this one by more-or-less algebraic methods. For example,
we can now state and prove the Hodge theorem.

Theorem 2.8. Let (M, g) be a compact and oriented Riemannian manifold. Then
the natural map Hk(M,R) → Hk

dR(M,R) is an isomorphism; in other words, every
de Rham cohomology class contains a unique harmonic form.

Proof. Recall that a form ω is harmonic if and only if dω = 0 and d∗ω = 0; this
follows from the identity (∆ω, ω)M = ∥dω∥2M + ∥d∗ω∥2M . In particular, harmonic
forms are automatically closed, and therefore define classes in de Rham cohomology.
We have to show that the resulting map Hk(M,R) → Hk

dR(M,R) is bijective.
To prove the injectivity, suppose that ω ∈ Hk(M,R) is harmonic and d-exact,

say ω = dψ for some ψ ∈ Ak−1(M,R). Then

∥ω∥2M = (ω, dψ)M = (d∗ω, ψ)M = 0,

and therefore ω = 0. Note that this part of the proof is elementary.
To prove the surjectivity, take an arbitrary cohomology class and represent it by

some α ∈ Ak(M,R) with dα = 0. The decomposition in (2.7) shows that we have

α = ω +∆β = ω + dd∗β + d∗dβ.

with ω ∈ Hk(M,R) harmonic and β ∈ Ak(M,R). Since dω = 0, we get 0 = dα =
dd∗dβ, and therefore

∥d∗dβ∥2M = (d∗dβ, d∗dβ)M = (dβ, dd∗dβ)M = 0,

proving that d∗dβ = 0. This shows that α = ω + dd∗β, and so the harmonic form
ω represents the original cohomology class. □
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Note. The space of harmonic forms Hk(M,R) depends on the Riemannian metric,
because the definition of the operators d∗ and ∆ involves the metric. The result
above shows that, nevertheless, the dimension of Hk(M,R) is independent of the
choice of metric.

Hodge theory on complex manifolds. Let X be a complex manifold of di-
mension n. We denote by Ak(X) the space of smooth complex-valued differential
k-forms on X. Because of the complex structure, we get a decomposition

Ak(X) =
⊕
k=p+q

Ap,q(X),

where Ap,q(X) is the space of differential forms of type (p, q); recall that a differ-
ential form has type (p, q) if, in local holomorphic coordinates z1, . . . , zn, it can be
expressed as

α =
∑

i1,...,ip,j1,...,jq

αi1,...,ip,j1,...,jqdzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq

with smooth functions αi1,...,ip,j1,...,jq . This does not depend on the particular choice
of coordinates, because we are only considering holomorphic coordinate changes.
The exterior derivative

d : Ak(X) → Ak+1(X)

decomposes by type into d = ∂ + ∂̄, with

∂ : Ap,q(X) → Ap+1,q(X) and ∂̄ : Ap,q(X) → Ap,q+1(X).

From d2 = 0 one gets ∂2 = 0, ∂̄2 = 0, and ∂∂̄ + ∂̄∂ = 0.
Using those differential operators, one can define two kinds of cohomology groups

on a complex manifold X. The first is de Rham cohomology, defined as

Hk
dR(X,C) =

ker
(
d : Ak(X) → Ak+1(X)

)
im

(
d : Ak−1(X) → Ak(X)

) .
By the Poincaré lemma, the complex of sheaves of smooth forms is a soft resolution
of the constant sheaf C; this makes Hk

dR(X,C) canonically isomorphic to Hk(X,C).
The second is Dolbeault cohomology, defined as

Hp,q(X) =
ker

(
∂̄ : Ap,q(X) → Ap,q+1(X)

)
im

(
∂̄ : Ap,q−1(X) → Ap,q(X)

) .
By the holomorphic version of the Poincaré lemma, one has

Hp,q(X) ≃ Hq(X,ΩpX).

We are now going to extend Hodge theory to this setting.
To begin with, we need a Hermitian metric h on the holomorphic tangent bundle

of X; in other words, a smoothly varying family of Hermitian inner products on
the holomorphic tangent spaces. It induces a Riemannian metric g on the tangent
bundle of the smooth manifold X. In local holomorphic coordinates z1, . . . , zn, the
metric h is given by an n× n-matrix H of complex numbers

hj,k = h

Å
∂

∂zj
,
∂

∂zk

ã
,

Hermitian symmetric and positive definite at every point. If we let zj = xj+iyj , and
agree that x1, . . . , xn, y1, . . . , yn is a positively oriented coordinate system on the
underlying smooth manifold, then the corresponding Riemannian metric is given
by the matrix Å

ReH ImH
− ImH ReH

ã
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with respect to the frame ∂/∂x1, . . . , ∂/∂xn, ∂/∂y1, . . . , ∂/∂yn. In particular, X is
also a compact oriented Riemannian manifold.

Now back to Hodge theory and the problem of choosing good representative
for cohomology classes. Using the Riemannian metric induced by h, we define
the Laplace operator ∆: Ak(X) → Ak(X) and the subspace of harmonic forms
Hk(X) ⊆ Ak(X) in the same way as last time, and Theorem 2.8 (with coefficients
in C) shows that

Hk(X,C) ≃ Hk
dR(X,C) ≃ Hk(X).

Now we would like our theory of harmonic forms to interact nicely with the com-
plex structure on X: for instance, if α ∈ Hk(X) is harmonic, we would like each
summand in the decomposition α =

∑
αp,q to be harmonic, too. But there is no

reason why this should be the case if h is an arbitrary Hermitian metric. What we
should do instead is to consider only Hermitian metrics that are compatible with
the complex structure; they are called Kähler metrics. Next time, we will see how
the Kähler condition leads to many nice results about harmonic forms, including
the Hodge decomposition.

Exercises.

Exercise 2.1. Let x1, . . . , xn be a local coordinate system on a Riemannian manifold
(M, g); the Riemannian metric can then be described by the n × n-matrix with
entries

gi,j = g

Å
∂

∂xi
,
∂

∂xj

ã
.

Using the local trivialization of
∧k

T ∗M by the set of k-forms dxi1 ∧· · ·∧dxik with
i1 < · · · < ik, find formulas for d∗ and ∆. Conclude that ∆ is an elliptic differential
operator of second order.

Exercise 2.2. Show that the two operators ∗ and ∆ commute with each other. Use
this to prove the Poincaré duality theorem: on a compact oriented Riemannian
manifold of dimension n, the pairing

Hk
dR(M,R)⊗Hn−k

dR (M,R) → R, (α, β) 7→
∫
X

α ∧ β,

is nondegenerate.
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Lecture 3

Hodge theory on complex manifolds. Let X be a compact complex manifold
of dimension n. Our task today is to extend Hodge theory to this setting. We
choose a Hermitian metric h on the holomorphic tangent bundle of X. Considered
as a real vector space of dimension 2n, the holomorphic tangent space is canonically
isomorphic to the tangent space of X, viewed as a smooth manifold of dimension
2n. Under this identification, our Hermitian metric induces a Riemannian metric
g = Reh on the tangent bundle of the smooth manifold X, as well as a differential
form ω = − Imh ∈ A2(X,R)∩A1,1(X). In local holomorphic coordinates z1, . . . , zn,
the metric h is given by an n× n-matrix H of complex numbers

hj,k = h

Å
∂

∂zj
,
∂

∂zk

ã
,

Hermitian symmetric and positive definite at every point. Then

ω =
i

2

n∑
j,k=1

hj,kdzj ∧ dz̄k,

and g is given by the matrix Å
ReH ImH
− ImH ReH

ã
with respect to the basis ∂/∂x1, . . . , ∂/∂xn, ∂/∂y1, . . . , ∂/∂yn, where zj = xj + iyj .

We showed last time that Hk
dR(X,C) is isomorphic to the space of harmonic

forms Hk(X) (with respect to the Riemannian metric g). In order for the theory
of harmonic forms to interact well with the complex structure on X, it is necessary
to assume that the Hermitian metric h is Kähler. We shall see below how this
condition leads to the following results about harmonic forms:

(1) Every harmonic form α ∈ Hk(X) is both ∂-closed and ∂̄-closed.
(2) If we expand α ∈ Hk(X) by type as

α =
∑
p+q=k

αp,q,

then each αp,q is again harmonic.
(3) Every class in Hp,q(X) contains a unique harmonic (p, q)-form; in particu-

lar, all holomorphic (p, 0)-forms are harmonic.

Kähler manifolds. In this section, we recall the definition of a Kähler metric and
discuss some of its consequences.

Definition 3.1. A Kähler metric on a complex manifold is a Hermitian metric
whose associated (1, 1)-form is closed. A complex manifold that admits at least one
Kähler metric is called a Kähler manifold.

This condition is easy to write down—it only takes four symbols—but hard to
understand. An equivalent condition is that the complex structure, viewed as an
endomorphism of the tangent bundle, should be parallel with respect to the Levi-
Cività connection of g; this means that, as we move from point to point, the complex
structure changes in a way that is compatible with the Riemannian metric g.

Example 3.2. The standard Euclidean metric on Cn has associated (1, 1)-form

i

2

n∑
j=1

dzj ∧ dz̄j ,

and is therefore Kähler.
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Example 3.3. A typical example is the Fubini-Study metric on complex projective
space Pn. The associated (1, 1)-form is, after pulling back via the quotient map
q : Cn+1 \ {0} → Pn, given by the formula

q∗ωPn =
i

2π
∂∂̄ log

(
|z0|2 + |z1|2 + · · ·+ |zn|2

)
.

The formula shows that dωPn = 0, which means that ωPn is a closed form.

Example 3.4. It is easy to see that a complex submanifold of a Kähler manifold is
again Kähler; in fact, the restriction of a Kähler metric remains a Kähler metric.
It follows that every projective complex manifold is a compact Kähler manifold.

We shall now look at the Kähler condition in local holomorphic coordinates
z1, . . . , zn on X. With hj,k = h(∂/∂zj , ∂/∂zk), the associated (1, 1)-form is given
by the formula

ω =
i

2

n∑
j,k=1

hj,kdzj ∧ dz̄k.

Note that the matrix with entries hj,k is necessarily Hermitian-symmetric, and

therefore, hk,j = hj,k. Now we compute that

dω =
i

2

∑
j,k,l

∂hj,k
∂zl

dzl ∧ dzj ∧ dz̄k +
i

2

∑
j,k,l

∂hj,k
∂z̄l

dzj ∧ dz̄k ∧ dz̄l,

and so dω = 0 iff ∂hj,k/∂zl = ∂hl,k/∂zj and ∂hj,k/∂z̄l = ∂hj,l/∂z̄k. The second
condition is actually equivalent to the first (which can be seen by conjugating), and
this proves that the metric h is Kähler iff

(3.5)
∂hj,k
∂zl

=
∂hl,k
∂zj

for every j, k, l ∈ {1, . . . , n}. We can use this condition to show that, in suitable
local coordinates, any Kähler metric looks to first order like the Euclidean metric
on Cn.

Lemma 3.6. A Hermitian metric h is Kähler iff, at every point x ∈ X, there is a
holomorphic coordinate system z1, . . . , zn centered at x such that

ω =
i

2

n∑
j=1

dzj ∧ dz̄j +O(|z|2).

Proof. One direction is very easy: If we can find such a coordinate system centered
at a point x, then dω vanishes at x; this being true for every x ∈ X, it follows that
dω = 0, and so h is Kähler.

Conversely, assume that dω = 0, and fix a point x ∈ X. Let z1, . . . , zn be
arbitrary holomorphic coordinates centered at x, and set hj,k = h(∂/∂zj , ∂/∂zk);
since we can always make a linear change of coordinates, we may clearly assume
that hj,k(0) = idj,k is the identity matrix. Using that hj,k = hk,j , we then have

hj,k = idj,k +Ej,k + Ek,j +O(|z|2),

where each Ej,k is a linear form in z1, . . . , zn. Since h is Kähler, (3.5) shows that
∂Ej,k/∂zl = ∂El,k/∂zj ; this condition means that there exist quadratic functions
qj(z) such that Ek,j = ∂qj/∂zk and qj(0) = 0. Now let

wj = zj + qj(z);
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because the Jacobian ∂(w1, . . . , wn)/∂(z1, . . . , zn) is the identity matrix at z = 0,
the functions w1, . . . , wn give holomorphic coordinates in a small enough neighbor-
hood of the point x. By construction,

dwj = dzj +

n∑
k=1

∂qj
∂zk

dzk = dzj +

n∑
k=1

Ek,jdzk.

and so we have, up to second-order terms,

i

2

n∑
j=1

dwj ∧ dw̄j ≡
i

2

n∑
j=1

dzj ∧ dz̄j +
i

2

n∑
j,k=1

dzj ∧ Ek,jdz̄k +
i

2

n∑
j,k=1

Ek,jdzk ∧ dz̄j

=
i

2

n∑
j=1

dzj ∧ dz̄j +
i

2

n∑
j,k=1

(
Ej,k + Ek,j

)
dzj ∧ dz̄k

≡ i

2

n∑
j,k=1

hj,kdzj ∧ dz̄k.

which shows that ω = i
2

∑
j,k dwj∧dw̄k+O(|w|2) in the new coordinate system. □

This lemma is extremely useful for proving results about arbitrary Kähler met-
rics. One consequence is that any statement about a Kähler manifold that involves
the metric and its first derivatives (but no derivatives of higher order) is true in
general once it is true for the Euclidean metric on Cn. We shall use this method
below to prove the so-called Kähler identities.

The Kähler identities. Let (X,h) be a Kähler manifold, and denote by g = Reh
the associated Riemannian metric; we sometimes refer to the associated (1, 1)-form
ω ∈ A1,1(X) as the Kähler form. Since ω is closed, it defines a class in H2

dR(X,C);
if X is compact, this class is necessarily nonzero. Indeed, a local calculation shows
that ω∧n = n!vol(g) is a multiple of the volume form; if we integrate this identity
over X, we get

∫
X
ω∧n = n! vol(X) ̸= 0, and so ω cannot be exact.

In fact, we have a whole collection of operators on X; our next goal is to establish
several relations among them, collectively known as the Kähler identities. To begin
with, we have the operators

d : Ak(X) → Ak+1(X), ∂ : Ap,q(X) → Ap+1,q(X), ∂̄ : Ap,q(X) → Ap,q+1(X).

There are also the adjoints

d∗ : Ak(X) → Ak−1(X), ∂∗ : Ap,q(X) → Ap−1,q(X), ∂̄∗ : Ap,q(X) → Ap,q−1(X)

with respect to the inner product g(α, β) =
∫
X
α ∧ ∗β. We also get two additional

operators from the Kähler form ω: taking the wedge product with ω defines the
so-called Lefschetz operator

Lω : A
p,q(X) → Ap+1,q+1(X), α 7→ ω ∧ α;

note that ω has type (1, 1). We also define its adjoint

Λω : A
k(X) → Ak−2(X)

by the condition that g(Lωα, β) = g(α,Λωβ); we can get a formula for Λω involving
the ∗-operator by noting that

g(Lωα, β) · vol(g) = ω ∧ α ∧ ∗β = α ∧ (ω ∧ ∗β) = α ∧ (Lω ∗ β);

consequently, Λωβ = ∗−1Lω ∗ β = (−1)k ∗ Lω ∗ β because ∗2 = (−1)k id by
Lemma 2.3. Now it turns out that when the metric is Kähler, the adjoints ∂∗

and ∂̄∗ can be expressed in terms of ∂, ∂̄, and Λω.
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Theorem 3.7. On a Kähler manifold (X,h), the following identities are true:

[Λω, ∂̄] = −i∂∗ and [Λω, ∂] = i∂̄∗.

Since the two identities are conjugates of each other, it suffices to prove the
second one. Moreover, both involve only the metric h and its first derivatives, and
so they hold on a general Kähler manifold as soon as they are known on Cn with
the Euclidean metric h. In this metric, dzj is orthogonal to every dz̄k, and to every
dzk with k ̸= j, while

h(dzj , dzj) = h(dxj + idyj , dxj + idyj) = g(dxj , dxj) + g(dyj , dyj) = 2.

More generally, we have h(dzJ ∧ dz̄K , dzJ ∧ dz̄K) = 2|J|+|K| for any pair of multi-
indices J,K ⊆ {1, . . . , n}.

To facilitate the computation, we introduce a few additional but more basic
operators on the spaces Ap,q = Ap,q(Cn). First, define

ej : A
p,q → Ap+1,q, α 7→ dzj ∧ α

as well as its conjugate

ēj : A
p,q → Ap,q+1, α 7→ dz̄j ∧ α.

We then have

Lωα = ω ∧ α =
i

2

n∑
j=1

dzj ∧ dz̄j ∧ α =
i

2

n∑
j=1

ej ējα.

Using the induced Hermitian inner product on forms, we then define the adjoint

e∗j : A
p,q → Ap−1,q

by the condition that h(ejα, β) = h(α, e∗jβ).

Lemma 3.8. The adjoint e∗j has the following properties:

(1) If j ̸∈ J , then e∗j (dzJ ∧ dz̄K) = 0, while e∗j (dzj ∧ dzJ ∧ dz̄K) = 2dzJ ∧ dz̄K .
(2) eke

∗
j + e∗jek = 2 id in case j = k, and 0 otherwise.

Proof. By definition, we have

h(e∗jdzJ ∧ dz̄K , dzL ∧ dz̄M ) = h(dzJ ∧ dz̄K , dzj ∧ dzL ∧ dz̄M ),

and since dzj occurs only in the second term, the inner product is always zero,
proving that e∗jdzJ ∧ dz̄K = 0. On the other hand,

h(e∗jdzj ∧ dzJ ∧ dz̄K , dzL ∧ dz̄M ) = h(dzj ∧ dzJ ∧ dz̄K , dzj ∧ dzL ∧ dz̄M )

= 2h(dzJ ∧ dz̄K , dzL ∧ dz̄M ),

which is nonzero exactly when J = L and K = M . From this identity, it follows
that e∗jdzj ∧ dzJ ∧ dz̄K = 2dzJ ∧ dz̄K , establishing (1).

To prove (2) for j = k, observe that since dzj ∧ dzj = 0, we have

e∗jej
(
dzJ ∧ dz̄K

)
=

®
0 if j ∈ J ,

2dzJ ∧ dz̄K if j ̸∈ J,

while

eje
∗
j

(
dzJ ∧ dz̄K

)
=

®
2dzJ ∧ dz̄K if j ∈ J ,

0 if j ̸∈ J .

Taken together, this shows that eje
∗
j + e∗jej = 2 id. Finally, let us prove that

eke
∗
j + e∗jek = 0 when j ̸= k. By (1), this is clearly true on dzJ ∧ dz̄K in case j ̸∈ J .

On the other hand,

eke
∗
j

(
dzj ∧ dzJ ∧ dz̄K

)
= 2ek

(
dzJ ∧ dz̄K

)
= 2dzk ∧ dzJ ∧ dz̄K
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and

e∗jek
(
dzj ∧ dzJ ∧ dz̄K

)
= e∗j

(
dzk ∧ dzj ∧ dzJ ∧ dz̄K

)
= −2dzk ∧ dzJ ∧ dz̄K ,

and the combination of the two proves the asserted identity. □

We also define the differential operator

∂j : A
p,q → Ap,q,

∑
J,K

φJ,KdzJ ∧ dz̄K 7→
∑
J,K

∂φJ,K
∂zj

dzJ ∧ dz̄K

and its conjugate

∂̄j : A
p,q → Ap,q,

∑
J,K

φJ,KdzJ ∧ dz̄K 7→
∑
J,K

∂φJ,K
∂z̄j

dzJ ∧ dz̄K .

Clearly, both commute with the operators ej and e
∗
j , as well as with each other. As

before, let ∂∗j be the adjoint of ∂j , and ∂̄
∗
j that of ∂̄j ; integration by parts (against

compactly supported forms) proves the following lemma.

Lemma 3.9. We have ∂∗j = −∂̄j and ∂̄∗j = −∂j.

We now turn to the proof of the crucial identity [Λω, ∂] = i∂̄∗.

Proof. All the operators in the identity can be expressed in terms of the basic ones,
as follows. Firstly, Lω = i

2

∑
ej ēj , and so the adjoint is given by the formula

Λω = − i
2

∑
ē∗je

∗
j . Quite evidently, we have ∂ =

∑
∂jej and ∂̄ =

∑
∂̄j ēj , and after

taking adjoints, we find that ∂∗ = −
∑
∂̄je

∗
j and that ∂̄∗ = −

∑
∂j ē

∗
j . Using these

expressions, we compute that

Λω∂ − ∂Λω = − i

2

∑
j,k

(
ē∗je

∗
j∂kek − ∂kekē

∗
je

∗
j

)
= − i

2

∑
j,k

∂k

(
ē∗je

∗
jek − ekē

∗
je

∗
j

)
.

Now ē∗je
∗
jek − ekē

∗
je

∗
j = ē∗j (e

∗
jek + eke

∗
j ), which equals 2ē∗j in case j = k, and is zero

otherwise. We conclude that

Λω∂ − ∂Λω = −i
∑
j

∂j ē
∗
j = i∂̄∗,

which is the Kähler identity we were after. □

These two basic identities lead to many wonderful relations between various
operators on a Kähler manifold; we shall discuss here only the most important one.

Theorem 3.10. On a Kähler manifold, the Laplace operator satisfies

1

2
∆ = ∂∂∗ + ∂∗∂ = ∂̄∂̄∗ + ∂̄∗∂̄.

Proof. To simplify the notation, we set □ = ∂∂∗ + ∂∗∂. By definition,

∆ = dd∗ + d∗d = (∂ + ∂̄)(∂∗ + ∂̄∗) + (∂∗ + ∂̄∗)(∂ + ∂̄).

In order for this to equal 2□, a lot of terms will have to cancel, obviously. According
to the second identity in Theorem 3.7, we have ∂̄∗ = i∂Λω − iΛω∂, and therefore

∆ = (∂ + ∂̄)(∂∗ − iΛω∂ + i∂Λω) + (∂∗ − iΛω∂ + i∂Λω)(∂ + ∂̄)

= ∂∂∗ + ∂̄∂∗ − i∂̄Λω∂ + i∂̄∂Λω + ∂∗∂ + ∂∗∂̄ − iΛω∂∂̄ + i∂Λω∂̄.

Now ∂∗∂̄ = i[Λω, ∂̄]∂̄ = −i∂̄Λω∂̄ = −∂∗∂̄ by the other Kähler identity. The above
formula consequently simplifies to

∆ = □− i∂̄Λω∂ + i∂̄∂Λω − iΛω∂∂̄ + i∂Λω∂̄ = □− i∂̄Λω∂ − i∂∂̄Λω + iΛω∂̄∂ + i∂Λω∂̄

= □+ i∂(Λω∂̄ − ∂̄Λω) + i(Λω∂̄ − ∂̄Λω)∂ = □+ ∂∂∗ + ∂∗∂ = 2□.

The second formula for ∆ follows from this by conjugation. □
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It is really this formula for the Laplace operator that we were after; the identities
in Theorem 3.7 are just an intermediate result. As a matter of fact, we could have
also proved the identity ∆ = 2(∂∂∗ + ∂∗∂) by a calculation on Cn: although the
formula does involve second derivatives of the metric, those terms can be shown to
be the same on both sides. But it is considerably easier to prove the more basic
identity [Λω, ∂] = i∂̄∗ and then use algebra to get the result.

Corollary 3.11. On a Kähler manifold, one has ∆Ap,q(X) ⊆ Ap,q(X). Moreover,
any harmonic form is both ∂-closed and ∂̄-closed.

Proof. This follows from the identity in Theorem 3.10, because ∂̄∂̄∗ + ∂̄∗∂̄ clearly
preserves the type of a form. If ∆α = 0, then we have (∂∂∗ + ∂∗∂)α = 0; but then

0 = g(α, ∂∂∗α) + g(α, ∂∗∂α) = g(∂∗α, ∂∗α) + g(∂α, ∂α),

and therefore ∂α = 0. A similar argument proves that ∂̄α = 0. □

The Hodge decomposition. We have seen that the Laplace operator ∆ preserves
the type of a form. It follows that if a form α ∈ Ak(X) is harmonic, then its
components αp,q ∈ Ap,q(X) are also harmonic. Indeed, we have

0 = ∆α =
∑
p+q=k

∆αp,q,

and since each ∆αp,q belongs again to Ap,q(X), we see that ∆αp,q = 0.

Corollary 3.12. On a compact Kähler manifold X, the space of harmonic forms
decomposes by type as

Hk(X) =
⊕
p+q=k

Hp,q(X),

where Hp,q(X) is the space of (p, q)-forms that are harmonic.

Since we know from Theorem 2.8 that every cohomology class contains a unique
harmonic representative, we now obtain the famous Hodge decomposition of the
de Rham cohomology of a compact Kähler manifold. We state it in a way that is
independent of the choice of Kähler metric.

Theorem 3.13. Let X be a compact Kähler manifold. Then the cohomology of X
admits a direct sum decomposition

(3.14) Hk(X,C) =
⊕
p+q=k

Hp,q,

with Hp,q equal to the set of those cohomology classes that are represented by a
d-closed form of type (p, q). We have Hq,p = Hp,q, where complex conjugation is
with respect to the real structure Hk(X,R); moreover, Hp,q is isomorphic to the
Dolbeault cohomology group Hp,q(X) ≃ Hq(X,ΩpX).

Proof. Since X is a Kähler manifold, it admits a Kähler metric h, and we can
consider forms that are harmonic for this metric. Such forms are always closed,
and therefore define cohomology classes in Hk

dR(X,C) ≃ Hk(X,C). Let us prove
first that the subspace Hp,q is precisely the image of Hp,q(X). It is clear from the
definition that Hp,q(X) maps into Hp,q. Now consider a class in Hp,q, represented
by closed form α ∈ Ap,q(X). By Theorem 2.6, we have a unique decomposition

α = α0 +∆β

with α0 harmonic. Taking (p, q)-components, and using the fact that ∆ preserves
the type of a form, we conclude that α0 ∈ Hp,q(X) and β ∈ Ap,q(X). Now the class
of α0 is equal to the class of α, and so Hp,q(X) ≃ Hp,q, as claimed.
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By Theorem 2.8, every class in Hk
dR(X,C) contains a unique harmonic form. We

therefore obtain the asserted decomposition of Hk(X,C) from Corollary 3.12. Now
∆ is a real operator, and so the conjugate of a harmonic (p, q)-form is a harmonic
(q, p)-form; this clearly implies that Hp,q = Hq,p. Finally, every harmonic form is
automatically ∂̄-closed, and so we have Hp,q ≃ Hp,q(X) ≃ Hp,q(X). □

Recall the definition of the sheaf ΩpX holomorphic p-forms: its sections are
smooth (p, 0)-forms that can be expressed in local coordinates as

α =
∑

j1<···<jp

fj1,...,jpdzj1 ∧ · · · ∧ dzjp ,

with locally defined holomorphic functions fj1,...,jp . This expression shows that

∂̄α = 0. A useful (and not obvious) fact is that on a compact Kähler manifold,
every global holomorphic form is harmonic, and hence closed.

Corollary 3.15. On a compact Kähler manifold X, every holomorphic form is
harmonic, and so we get an embedding H0(X,ΩpX) ↪→ Hp(X,C) whose image is
precisely the subspace Hp,0.

Proof. If α ∈ Ap,0(X) is holomorphic, it satisfies ∂̄α = 0; on the other hand, we
trivially have ∂̄∗α = 0 because there are no forms of type (p,−1). Thus ∆α =
2(∂̄∂̄∗ + ∂̄∗∂̄)α = 0, and so α is indeed harmonic. □

Example 3.16. For H1(X,C), the Hodge decomposition is

H1(X,C) ≃ H1,0(X)⊕H0,1(X) ≃ H0(X,Ω1
X)⊕H1(X,OX).

Consequently, any cohomology class can be uniquely written in the form ω1 + ω2,
where ω1 and ω2 are holomorphic one-forms. It also follows that

dimH1(X,C) = 2 dimH0(X,Ω1
X).

The principle of two types. Another property of compact Kähler manifolds that
is used very often in complex geometry is the following “principle of two types”
(sometimes also called the ∂∂̄-lemma).

Proposition 3.17. Let X be a compact Kähler manifold, and let α be a smooth
form that is both ∂-closed and ∂̄-closed. If α is also either ∂-exact or ∂̄-exact, then
it can be written as α = ∂∂̄β.

Proof. We shall suppose that α = ∂̄ϕ. Let ϕ = ϕ0+∆ψ be the decomposition given
by (2.7), with ϕ0 harmonic. We then have ∂̄ϕ0 = 0 on account of Corollary 3.11.
Using the previously mentioned identity ∂̄∂∗ = −∂∗∂̄, we compute that

α = ∂̄ϕ = ∂̄∆ψ = 2∂̄(∂∂∗ + ∂∗∂)ψ = −2∂∂̄(∂∗ψ)− 2∂∗∂̄∂ψ.

Now ∂α = 0, and so the form ∂∗∂̄∂ψ belongs to ker ∂ ∩ im ∂∗ = {0}. Consequently,
we have α = ∂∂̄β with β = −2∂∗ψ. □

Exercises.

Exercise 3.1. Let (V, h) be an n-dimensional complex vector space with a Hermitian
inner product. Show that Reh defines an inner product on the underlying real
vector space VR, and that − Imh is naturally an element of

∧2
V ∗
R . Now take any

basis v1, . . . , vn ∈ V , and denote by v∗1 , . . . , v
∗
n ∈ V ∗ be the dual basis. Show that

− Imh =
i

2

n∑
j,k=1

hj,kv
∗
j v

∗
k,

where hj,k = h(vj , vk). Conclude that − Imh is a vector of type (1, 1).
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Exercise 3.2. Prove that the Laplace operator commutes with the operators Lω
and Λω. Deduce that the Kähler form ω is a harmonic form. Since harmonic forms
are closed, this shows that the metric is Kähler if and only if ω is harmonic.

Exercise 3.3. Show that the operator ∗ maps Ap,q(X) into An−q,n−p(X). Prove
that ∆ commutes with ∗, and deduce that

Hq(X,ΩpX) ≃ Hn−q(X,Ωn−pX ),

which is a version of Serre duality.

Exercise 3.4. Consider the double complex A•,•(X), with differentials ∂ and ∂̄;
note that ∂∂̄ = −∂̄∂. Since the associated simple complex is

(
A•(X), d

)
, we get a

spectral sequence
Ep,q1 = Hq(X,ΩpX) =⇒ Hp+q(X,C),

called the Hodge-de Rham spectral sequence. Prove that this spectral sequence
degenerates at E1 when X is a compact Kähler manifold.

Exercise 3.5. Let X be a compact Kähler manifold. The point of this exercise is
to consider the cohomology of the complex

(
A•(X), u∂ + v∂̄

)
, for different values

of [u, v] ∈ P1; if you listened to Sabbah’s lecture last week, you might find this
question interesting. In the chart Cu, we consider the complex(

A•(X)⊗C C[u], u∂ + ∂̄
)
,

and in the chart Cv, the complex(
A•(X)⊗C C[v], ∂ + v∂̄

)
.

Show that α ⊗ f(u) 7→ α ⊗ vdegαf(v−1) is compatible with the two differentials.
Then prove that the k-th cohomology of both complexes determines a coherent

sheaf on P1 that is isomorphic to OP1(k)⊕ dimHk(X,C).
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Lecture 4

Application to vanishing theorems. Today, we will take a break from Hodge
theory, and discuss vanishing theorems again. The original proof of the Kodaira
vanishing theorem was differential-geometric, but there is also a very beautiful proof
using the results in Hodge theory from last time. My goal is to present that proof,
as well as a useful generalization by Kollár. Here is the statement again.

Kodaira Vanishing Theorem. Let L be an ample line bundle on a smooth pro-
jective variety X. Then Hi(X,ωX ⊗ L) = 0 for every i > 0.

If we replace L by LN for sufficiently large N , the cohomology groups vanish
by Serre’s theorem (which is proved by elementary arguments). The idea of the
proof is to reduce the problem to that special case with the help of a geometric
construction and Hodge theory.

Covering construction. Let me describe the geometric construction first; for
later use, we will work in a more general setting. We fix a smooth projective variety
X, a line bundle L, and an integer N ≥ 2, and assume that there is a nontrivial
section s ∈ H0(X,LN ) whose associated divisor D = Z(s) is nonsingular. In this
situation, one can construct a branched covering

π : Y → X

of degree N , by “extracting N -th roots of s”. Abstractly, Y can be obtained by
taking the spectrum of the sheaf of OX -algebras

N−1⊕
i=0

L−i;

the multiplication is defined by using the morphism L−N → OX given by s. For a
more geometric definition, recall that the actual line bundle is given by V(L) → X,
where V(L) is the spectrum of Sym(L−1). Taking N -th powers gives a morphism

(4.1)

V(L) V(LN )

X

s

and Y can be defined as the preimage of s(X) inside V(L). I will not bother to
show that the two definitions are equivalent, because we are going to adopt a more
useful definition in local coordinates. (Along the way, we will discover that the
local definition is equivalent to the other two.)

We can cover X by affine open sets U on which L is trivial; let

ϕU : L
∣∣
U
→ OU

be the local trivialization, and set ℓU = ϕ−1
U (1). Now s

∣∣
U

= fU ℓ
N
U is represented

by a regular function fU ∈ H0(U,OX); note that fU is a local equation for D. To
extract the N -th root of the section, we take a new variable tU , and define

Ũ = Spec
H0(U,OX)[tU ]

(tNU − fU )
→ U.

Note that this is a finite morphism of degree N .
Now we glue these various affine varieties together to obtain Y . Given another

affine open set V ⊆ X as above, we have a transition function

gU,V = (ϕU ◦ ϕ−1
V )(1) = ϕU (ℓV ) ∈ H0(U ∩ V,O×

X),
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satisfying gU,V ℓU = ℓV on U ∩V . An easy calculation shows that fU = gNU,V fV ; we

can therefore glue Ũ and Ṽ according to the rule

tU = gU,V tV .

To check that this produces a well-defined variety Y , we have to use the cocycle
condition gU,V gV,W = gU,W on U ∩ V ∩W . By construction, Y comes with a finite
morphism π : Y → X that ramifies exactly over the divisor D.

Note. The formula tU = gU,V tV shows that the functions tU ∈ H0(Ũ ,OY ) deter-
mine a global section of the line bundle π∗L. The divisor of this section is mapped
isomorphically to D under π. This can be used to show that Y embeds into V(L),
relating our local construction with the geometric one from above.

Let us now analyze the construction a bit more carefully. On the one hand, we
would like to show that Y is again a smooth projective variety; on the other hand,
we need to describe the cohomology of the sheaves OY and ΩpY in terms of X.

Proposition 4.2. The variety Y is smooth and projective, and we have

π∗OY ≃
N−1⊕
i=0

L−i.

Moreover, for every p ≥ 1, we have

π∗Ω
p
Y ≃ ΩpX ⊕

N−1⊕
i=1

ΩpX(logD)⊗ L−i,

where ΩpX(logD) is the sheaf of logarithmic differential forms.

Proof. By construction, the coherent sheaf π∗OY corresponds, over the affine open
set U , to the H0(U,OX)-algebra

H0(Ũ ,OY ) =
H0(U,OX)[tU ]

(tNU − fU )
≃
N−1⊕
i=0

H0(U,OX) tiU .

Note that we can describe the i-th summand in a coordinate-free way as follows: the
group of N -th roots of unity acts on Y , by sending tU to ζtU for a primitive N -th
root of unity ζ; the i-th summand is precisely the ζi-eigenspace of this action. We
therefore obtain a well-defined locally free OX -module of finite rank, or in other
words, a line bundle on X. To see that this line bundle is L−i, note that the
transition functions are given by g−iU,V , because t

i
U = giU,V t

i
V by our gluing rule.

This proves the formula for π∗OY .
To prove the remaining assertions, we have to use the fact that D is nonsingular.

We can choose each affine open set U ⊆ X in such a way that fU = x1 is part of a
coordinate system x1, . . . , xn on U ; here n = dimX. Now Ũ ⊆ Y has coordinates
y1, . . . , yn, where tU = y1, and the morphism Ũ → U is given by the formula

(y1, . . . , yn) 7→ (yN1 , y2, . . . , yn).

This shows that Y is again smooth; being finite over a projective variety, it is
automatically projective as well. For simplicity, we prove the second formula only
for p = 1. Then Ω1

X(logD) is generated on U by the differential forms

dx1
x1

, dx2, . . . , dxn.

By construction, π∗Ω
1
Y corresponds to the H0(U,OX)-module

H0(Ũ ,Ω1
Y ) =

n⊕
k=1

H0(Ũ ,OY ) dyk =

n⊕
k=1

N−1⊕
i=0

H0(U,OX) yi1dyk.
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We have yi1dyk = yi1dxk for k ≥ 2, and

yi1dy1 = yi+1
1

dy1
y1

=
1

N
yi+1
1

dx1
x1

.

By grouping the summands according to their degree in y1, which corresponds to
looking at the eigenspaces for the action by the N -th roots of unity, we then obtain
the desired formula for π∗Ω

1
Y . □

Now we can draw some conclusions about X from the covering construction.
The isomorphisms in Proposition 4.2 give us direct sum decompositions

Hj(Y,OY ) ≃ Hj(X,OX)⊕
N⊕
i=1

Hj(X,L−i)

Hj(Y,Ω1
Y ) ≃ Hj(X,Ω1

X)⊕
N−1⊕
i=1

Hj
(
X,Ω1

X(logD)⊗ L−i).
Consider the exterior derivative d : OY → Ω1

Y , which is a C-linear morphism of
sheaves. Now comes the crucial observation from Hodge theory: because Y is a
smooth projective variety, the induced mapping on cohomology

d : Hj(Y,OY ) → Hj(Y,Ω1
Y )

is zero! The reason is that elements of Hj(Y,OY ) can be represented by harmonic
(0, j)-forms, and every harmonic form is automatically d-closed. It is easy to see
that d is compatible with the decomposition above; it follows that

Hj(X,L−1) → Hj
(
X,Ω1

X(logD)⊗ L−1
)

is also zero. If we compose with the residue mapping ResD : Ω1
X(logD) → OD, we

find that the induced mapping

(4.3) Hj(X,L−1) → Hj(D,OD ⊗ L−1)

is zero, too.

Lemma 4.4. Up to a factor of N , the mapping in (4.3) is the restriction mapping.

Proof. We work in local coordinates. The summand L−1 in the decomposition
corresponds to elements of H0(Ũ ,OY ) of the form fy1, for f ∈ H0(U,OX). Now

d(fy1) = dfy1 + fdy1 = y1

Å
df +

f

N

dx1
x1

ã
is clearly a section of the summand Ω1

X(logD)⊗ L−1. Moreover,

Resx1=0 d(fy1) = y1
f

N

∣∣∣∣
x1=0

,

and this agrees with the restriction of y1f after multiplying by N . This argument
proves that the composition

ResD ◦π∗(d) : L−1 → Ω1
X(logD)⊗ L−1 → OD ⊗ L−1

is equal to the restriction mapping up to a factor of N ; we now get the desired
result by passing to cohomology. □

To see what (4.3) means, recall that we have a short exact sequence

0 → OX(−D)⊗ L−1 → L−1 → OD ⊗ L−1 → 0.

The long exact sequence in cohomology and (4.3) show that

Hj
(
X,OX(−D)⊗ L−1

)
→ Hj(X,L−1)
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is surjective; this mapping is locally given by multiplying by the defining equation
of D. After applying Serre duality, and remembering that OX(D) ≃ LN , we obtain
the following result.

Theorem 4.5. Let X be a smooth projective variety, L a line bundle on X, and
s ∈ H0(X,LN ) a nontrivial section whose divisor is smooth. Then the mapping

Hj(X,ωX ⊗ L) → Hj
(
X,ωX ⊗ LN+1

)
induced by multiplying by s is injective.

This result is a special case of Kollár’s injectivity theorem.

Proof of Kodaira’s vanishing theorem. We can now prove the Kodaira van-
ishing theorem very easily. Suppose that L is an ample line bundle on a smooth
projective variety X. Since LN is very ample for large N , it certainly has global
sections whose divisors are smooth. Theorem 4.5 therefore gives us an injection

Hj(X,ωX ⊗ L) ↪→ Hj
(
X,ωX ⊗ LN+1

)
.

But for sufficiently large values of N , the group on the right-hand side vanishes for
j > 0 by Serre’s theorem. Consequently, Hj(X,ωX ⊗ L) = 0 for j > 0, as desired.
(I do not know who first discovered this wonderful proof, but I learned it from the
book Lectures on vanishing theorems by Esnault and Viehweg.)

Kollár’s vanishing theorem. In the proof above, we only used one special case
of Theorem 4.5. We will now see how it can be applied to prove a powerful gener-
alization of the Kodaira vanishing, due to Kollár. Instead of the canonical bundle,
Kollár takes a morphism f : X → Y from a smooth projective variety X to an arbi-
trary projective variety Y , and considers the higher direct image sheaves Rif∗ωX .
Very surprisingly, they still satisfy the same vanishing theorem.

Theorem 4.6. Let f : X → Y be a morphism from a smooth projective variety X
to a projective variety Y , and let L be an ample line bundle on Y . Then one has

Hj(Y,Rif∗ωX ⊗ L) = 0

for every i ∈ N and every j > 0.

In fact, Kollár proved several other results about the sheaves Rif∗ωX , for exam-
ple that they are torsion-free sheaves on Y (when f is surjective). We will come
back to this point later.

For now, let us prove Theorem 4.6 by adapting the proof of the Kodaira vanishing
theorem. Fix a sufficiently large integer N , with the property that LN is very
ample. For a generic section s ∈ H0(Y,LN ), the preimage of H = Z(s) under f is
a smooth divisor in X; this is a consequence of the Bertini theorem. Now we apply
Theorem 4.5 to the line bundle f∗L and the divisor D = f∗H; the result is that

(4.7) Hj(X,ωX ⊗ f∗L) → Hj
(
X,ωX ⊗ f∗LN+1

)
is injective. With the help of the Leray spectral sequence, we can turn this into a
result about the higher direct image sheaves Rif∗ωX .

Denote by g : D → H the restriction of f : X → Y , as in the following diagram:

D X

H Y

g f

Because D is also smooth, we can assume (by induction on the dimension) that
the vanishing of Hj(H,Rig∗ωD ⊗ L) for i ≥ 0 and j > 0 is already known. By
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adjunction, the canonical bundle of D is given by ωD ≃ ωX⊗f∗LN
∣∣
D
. We therefore

have a short exact sequence

0 → ωX ⊗ f∗L→ ωX ⊗ f∗LN+1 → ωD ⊗ g∗L→ 0,

and after pushing forward to Y and using the projection formula, we obtain a long
exact sequence

· · · → Rif∗ωX ⊗ L→ Rif∗ωX ⊗ LN+1 → Rig∗ωD ⊗ L→ · · ·
Now observe that the morphism Rf∗ωX ⊗ L → Rif∗ωX ⊗ LN+1 is injective when
the section s is chosen sufficiently general. Indeed, the morphism is obtained by
tensoring the short exact sequence

0 → L→ LN+1 → OH ⊗ LN+1 → 0

with the sheaf Rif∗ωX ; but if H is sufficiently transverse to the support of Rif∗ωX ,
then multiplication by s remains injective. The conclusion is that

0 → Rif∗ωX ⊗ L→ Rif∗ωX ⊗ LN+1 → Rig∗ωD ⊗ L→ 0

is exact (and also that Rig∗ωD ⊗ L ≃ Rif∗ωX ⊗ OH ⊗ LN+1).
Now we can complete the proof of Theorem 4.6. By Serre’s theorem and induc-

tion, we know that the higher cohomology groups of the sheaves Rif∗ωX ⊗ LN+1

and Rig∗ωD ⊗ L vanish. This already shows that

Hj(Y,Rif∗ωX ⊗ L) = 0

for j ≥ 2. To deal with the remaining case j = 1, we use the Leray spectral sequence

Ej,i2 = Hj(Y,Rif∗ωX ⊗ L) =⇒ Hj+i(X,ωX ⊗ f∗L).

We know that Ej,i2 = 0 for j ≥ 2; this implies the E2-degeneration of the spectral
sequence, and shows in particular that

E1,i
2 = H1(Y,Rif∗ωX ⊗ L)

injects into Hi+1(X,ωX ⊗ f∗L). Now consider the commutative diagram

H1(Y,Rif∗ωX ⊗ L) Hi+1(X,ωX ⊗ f∗L)

H1(Y,Rif∗ωX ⊗ LN+1) Hi+1(X,ωX ⊗ f∗LN+1)

where the vertical arrows are induced by multiplication by s and f∗(s), respectively.
The horizontal arrow is injective by the spectral sequence argument from above;
the vertical arrow by (4.7). Since the group on the bottom-left is zero for N ≫ 0,
we conclude that H1(Y,Rif∗ωX ⊗ L) = 0, too.

Exercises.

Exercise 4.1. Show that our construction of the branched covering π : Y → X is
equivalent to the geometric one in (4.1).

Exercise 4.2. Let L be a very ample line bundle on a projective varietyX, and let F
be a coherent sheaf on X. Show that for a sufficiently general section s ∈ H0(X,L),
the induced morphism F → F ⊗ L is injective.

Exercise 4.3. Under the same assumptions as in Theorem 4.5, show that the natural
mapping Hq(X,ΩpX ⊗ L−1) → Hq(D,ΩpD ⊗ L−1) is zero for p, q ≥ 0. Use this to
prove the Nakano vanishing theorem: if L is an ample line bundle on a smooth
projective variety X, then Hq(X,ΩpX ⊗ L) = 0 for p+ q > dimX.
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Lecture 5

Albanese variety. Before we can start talking about the generic vanishing theo-
rem, we also have to review the complex-analytic description of holomorphic line
bundles, of the Picard variety, and of the Albanese variety. This is because we want
to prove the theorem on arbitrary compact Kähler manifolds, where we cannot use
the definitions from algebraic geometry.

Let me first say a few words about the Albanese variety; you have probably seen
the definition before. Let X be a compact Kähler manifold, and choose a base point
x0 ∈ X. Analytically, the Albanese variety of X is defined as the quotient

Alb(X) =
Hom

(
H0(X,Ω1

X),C
)

im
(
π1(X,x0) → Hom

(
H0(X,Ω1

X),C
))

This definition requires some explanation. Every homotopy class in π1(X,x0) can
be represented by a smooth mapping c : [0, 1] → X with c(0) = c(1) = x0; by
integration, it defines a linear functional

H0(X,Ω1
X) → C, ω 7→

∫ 1

0

c∗ω

on the space of holomorphic one-forms. By Stokes’ theorem, the functional only
depends on the homotopy class of c (because holomorphic forms are closed).

Lemma 5.1. Alb(X) is a compact complex torus of dimension g = dimH0(X,Ω1
X).

Proof. Because Hom
(
H0(X,Ω1

X),C
)
is an abelian group, the homomorphism

π1(X,x0) → Hom
(
H0(X,Ω1

X),C
)

factors through H1(X,Z). We need to show that the image of π1(X,x0) is a lattice;
this is equivalent to the induced homomorphism

H1(X,R) ≃ H1(X,Z)⊗Z R → Hom
(
H0(X,Ω1

X),C
)

being an isomorphism of real vector spaces. By Hodge theory, both sides have
real dimension 2g, and so it suffices to prove injectivity. But this is clear, be-
cause every class in H1(X,R) is uniquely represented by ω + ω for some choice
of ω ∈ H0(X,Ω1

X), and because the pairing between H1(X,R) and H1(X,R) is
nondegenerate. □

When X is a smooth projective variety, one can show that Alb(X) is also pro-
jective, and therefore an abelian variety. We will come back to this point later.

The reason for introducing the Albanese variety is that there is always a holo-
morphic mapping from X to Alb(X), the so-called Albanese mapping. For x ∈ X,
we can choose a path from x0 to x, and define a linear functional

(5.2) H0(X,Ω1
X) → C, ω 7→

∫ x

x0

ω.

Its image in Alb(X) is independent of the choice of path; in this way, we obtain a
well-defined mapping

alb: X → Alb(X),

called the Albanese mapping of X. It is not hard to show that alb is holomorphic:
it suffices to know that the integral in (5.2) depends holomorphically on x, which
is obvious. By construction, the Albanese mapping takes the base point x0 to the
unit element of the complex torus Alb(X).
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Lemma 5.3. The differential of alb at a point x ∈ X is the mapping

TxX → Hom
(
H0(X,Ω1

X),C
)
, v 7→

(
ω 7→ ω(v)

)
.

Consequently, alb∗ Ω1
Alb(X) → Ω1

X is simply the evaluation morphism

H0(X,Ω1
X)⊗ OX → Ω1

X .

Proof. The tangent space to Alb(X) at any point is canonically isomorphic to
Hom

(
H0(X,Ω1

X),C
)
; we get the first assertion by differentiating the integral in

(5.2). Dually, the codifferential of alb is the mapping

H0(X,Ω1
X) → T ∗

xX, ω 7→ ω
∣∣
TxX

.

Because the holomorphic cotangent bundle of Alb(X) is canonically isomorphic to
H0(X,Ω1

X)⊗ OAlb(X), we then get the second assertion. □

A useful consequence is that the pullback mapping

alb∗ : H0
(
Alb(X),Ω1

Alb(X)

)
→ H0(X,Ω1

X)

is an isomorphism. This means that every holomorphic one-form on X is the
pullback of a holomorphic one-form from Alb(X). Since we know from Hodge theory
that every class in H1(X,C) can be uniquely written as the sum of a holomorphic
one-form and the conjugate of a holomorphic one-form,

alb∗ : H1
(
Alb(X),C

)
→ H1(X,C)

is also an isomorphism. Thus Alb(X) is a “geometric realization” of H1(X,C).

Holomorphic line bundles. Our next goal is to describe analytically all holo-
morphic line bundles whose first Chern class is trivial. We will see that there is a
nice global way of doing this that avoids the use of open coverings and transition
functions. We denote by Pic0(X) the set of all holomorphic line bundles with trivial
first Chern class on X. You have probably seen the formula

Pic0(X) =
H1(X,OX)

H1
(
X,Z(1)

)
coming from the exponential sequence

0 Z(1) OX O×
X 0.

exp

Here Z(1) = 2πi ·Z is the kernel of the exponential mapping. In those terms, what
we are looking for is a simple way to take a point in the quotient and write down
the corresponding line bundle.

Let L be a holomorphic line bundle on a complex manifold X. The complex
structure on L is uniquely determined by the differential operator

∂̄L : A
0(X,L) → A0,1(X,L)

from smooth sections of L to smooth (0, 1)-forms with coefficients in L; one has
∂̄2L = 0, and the holomorphic sections of L are precisely the smooth sections in the
kernel of ∂̄L. To see why, cover X by open sets Uj over which L is trivial, and let
gj,k ∈ H0(Uj ∩Uk,O×

X) be the holomorphic transition functions. A smooth section
s ∈ A0(X,L) is given by a collection of smooth functions sj : Uj → C with

sj = gj,k · sk,
and because gj,k is holomorphic, we have

∂̄sj = gj,k · ∂̄sk.
This means that the (0, 1)-forms ∂̄sj patch together into a well-defined element
∂̄Ls ∈ A0,1(X,L). Since ∂̄2 = 0, it is clear that ∂̄2L = 0.
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Now let us suppose that the first Chern class of L is trivial.

Lemma 5.4. Let L be a holomorphic line bundle on a complex manifold X. If
c1(L) ∈ H2

(
X,Z(1)

)
is zero, then L is trivial as a smooth line bundle.

Proof. Let AX denote the sheaf of smooth functions, and consider the following
two exact sequences:

0 Z(1) OX O×
X 0

0 Z(1) AX A×
X 0

exp

exp

Now AX is a soft sheaf (= admits partitions of unity), and so its higher cohomology
is trivial; therefore H1(X,A×

X) ≃ H2
(
X,Z(1)

)
. Thus c1(L) = 0 if and only if L

has a nowhere vanishing smooth global section. □

Assuming that c1(L) = 0, we can therefore find a nowhere vanishing global
section s ∈ A0(X,L). We have ∂̄Ls = τ ⊗ s for some τ ∈ A0,1(X); note that ∂̄2L = 0
implies that τ must be ∂̄-closed. Concretely, the section s is given by a collection
of nowhere vanishing smooth functions sj ∈ A0(Uj) with sj = gj,ksk, and we have

τ
∣∣
Uj

=
∂̄sj
sj

∈ A0,1(Uj).

Every smooth section of L is of the form ϕs for ϕ ∈ A0(X), and by the Leibniz rule

∂̄L(ϕs) = (∂̄ϕ+ τϕ)⊗ s,

which means that we can describe L by the operator ∂̄+τ . In fact, only the class of
τ in the Dolbeault cohomology group H0,1(X) ≃ H1(X,OX) matters: if we change
our choice of smooth section to efs, for a smooth function f , then τ is replaced by
τ + ∂̄f .

From now on, we assume that X is a compact Kähler manifold. We can then
choose the trivialization in such a way that τ ∈ A0,1(X) is harmonic, and therefore
d-closed. To summarize, holomorphic line bundles on X with trivial first Chern
class can be obtained by endowing the trivial bundle X × C with the complex
structure coming from the operator ∂̄ + τ , where τ ∈ H0,1(X) is a harmonic (0, 1)-
form. This information is enough to determine the holomorphic sections of L, and
therefore L itself: by definition,

H0(U,L) =
{
s ∈ A0(U)

∣∣ ∂̄s+ sτ = 0
}

gives the space of holomorphic sections on an open set U ⊆ X. Conversely, one can
show that this rule always defines a holomorphic line bundle (as long as ∂̄τ = 0).

Our description of holomorphic line bundles with trivial first Chern class is also
very convenient for computing cohomology.

Lemma 5.5. Let L be a holomorphic line bundle with trivial first Chern class, and
suppose that ∂̄ + τ for τ ∈ H0,1(X). Then the complex

Ap,0(X) → Ap,1(X) → · · · → Ap,n(X)

with differential ∂̄ + τ , computes the cohomology of ΩpX ⊗ L.

Proof. By the holomorphic Poincaré lemma (applied locally), the complex

Ap,0
X → Ap,1

X → · · · → Ap,n
X ,

with differential ∂̄ + τ , is a resolution of ΩpX ⊗ L. Since the sheaves Ap,q
X admit

partitions of unity, they are acyclic for the global sections functor. The assertion
follows by taking global sections. □



27

Since we are interested in describing line bundles up to isomorphism, we also
have to decide when a line bundle of the form ∂̄+ τ is trivial. The condition is that
there exists a nowhere vanishing smooth function f ∈ A0(X) such that ∂̄f+fτ = 0.
It is not immediately clear what this condition says about τ , so we will postpone
this problem until we have developed some more theory.

Hodge theory for line bundles. The results about the cohomology of a compact
Kähler manifold can be extended without much difficulty to cohomology groups of
the form

Hq
(
X,ΩpX ⊗ L

)
,

where L ∈ Pic0(X) is a line bundle with trivial first Chern class. As explained
above, we can realize L as the trivial smooth bundle X × C, endowed with the
complex structure given by the operator ∂̄ + τ , where τ ∈ H0,1(X) is harmonic.

Now observe that the trivialization also induces a Hermitian metric on L, given
by the simple formula

h(s1, s2) = s1s2

for s1, s2 ∈ A0(X). A basic fact in differential geometry is that any holomorphic
vector bundle with a Hermitian metric has a unique connection.

Definition 5.6. Let (E , h) be a holomorphic vector bundle with a Hermitian met-
ric. The Chern connection is the unique connection ∇ : A0(E ) → A1(E ) with the
following two properties:

(a) The (0, 1)-part of ∇ is equal to the operator ∂̄E .
(b) The connection ∇ satisfies the Leibniz rule

dh(s1, s2) = h
(
∇s1, s2

)
+ h

(
s1,∇s2

)
.

The idea is that ∇ = ∇1,0+∇0,1; the first condition says that ∇0,1 = ∂̄E , and then
the second condition uniquely determines ∇1,0.

Lemma 5.7. With respect to the trivialization from above, the Chern connection
on (L, h) is given by the formula

∇ : A0(X) → A1(X), ∇s =
(
d+ τ − τ̄

)
s.

In particular, we have ∇ ◦∇ = 0, and so ∇ is integrable.

Proof. Since ∇0,1 = ∂̄ + τ , it suffices to show that the above connection preserves
the metric. This is an easy computation:

h(∇s1, s2) + h(s1,∇s2) = (ds1 + τs1 − τ̄ s1)s2 + s1(ds2 + τs2 − τ̄ s2)

= ds1s2 + (τ − τ̄) · s1s2 + (τ̄ − τ) · s1s2
= dh(s1, s2).

Since both τ and τ̄ are closed, it is obvious that ∇ ◦∇ = 0. □

In fact, Hodge theory works more generally for any holomorphic vector bundle
E with Hermitian metric h, whose associated Chern connection ∇ is integrable.
The condition ∇ ◦ ∇ = 0 implies that there are local trivializations for E that are
flat with respect to ∇. If that is the case, analytic continuation of solutions to the
equation ∇s = 0 defines a representation of the fundamental group of X, and the
existence of the metric h is equivalent to this representation being unitary.

Example 5.8. Let us compute the monodromy representation for the connection
∇ = d + τ − τ̄ on the trivial line bundle X × C. Let p : Y → X be the universal
covering space, and fix base points x0 ∈ X and y0 ∈ p−1(x0). We need to solve the
equation

df + p∗(τ − τ̄)f = 0;
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since Y is simply connected, the solution is given by the integral

f = exp

∫ y

y0

p∗(τ̄ − τ).

Now let γ be a (smooth) closed loop based at the point x0, and let γ̃ be the unique
lifting to a path in Y starting at the point y0. Then

exp

∫ γ̃(1)

γ̃(0)

p∗(τ̄ − τ) = exp

∫
γ

(
τ̄ − τ

)
,

and so the representation is

ρ : π1(X,x0) → C×, ρ
(
[γ]

)
= exp

∫
γ

(
τ̄ − τ

)
.

The integral is a purely imaginary complex number, and so ρ takes values in the
circle U(1). This calculation suggests that the line bundle L is trivial if and only if
the harmonic one-form τ̄ − τ has periods in Z(1) = 2πi · Z.

Exercises.

Exercise 5.1. Prove the following universal property of the Albanese mapping: For
every holomorphic mapping f : X → T to a compact complex torus T that takes
the base point x0 ∈ X to the unit element of T , there is a unique factorization

X Alb(X) Talb

f

g

with g : Alb(X) → T a holomorphic group homomorphism.

Exercise 5.2. Let X be a complex manifold, and let τ ∈ A0,1(X) satisfy ∂̄τ = 0.

(1) Show that the operator ∂̄+ τ defines a holomorphic line bundle L; in other
words, show that the rule

L(U) =
{
s ∈ A0(U)

∣∣ ∂̄s+ sτ = 0
}

produces a locally free sheaf of OX -modules of rank one.
(2) Similarly, show that the complex of sheaves

Ap,0
X Ap,1

X · · · Ap,n
X

∂̄+τ ∂̄+τ ∂̄+τ

is a resolution of ΩpX ⊗ L.

Exercise 5.3. Show that any holomorphic line bundle on X with trivial first Chern
class is the pullback of a holomorphic line bundle from Alb(X).
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Lecture 6

Hodge theory for line bundles. Let X be a compact Kähler manifold. Recall
from last time that we can describe holomorphic line bundles with trivial first Chern
class by operators of the form ∂̄ + τ , where τ ∈ A0,1(X) is harmonic. I forgot to
say this last time, but τ being harmonic is in fact equivalent to dτ = 0: in one
direction, every harmonic form is closed; in the other direction, we can decompose
by type to get ∂̄τ̄ = ∂τ = 0, which means that τ is the conjugate of a holomorphic
one-form. Recall also that the line bundle has a natural connection ∇ = d+ τ − τ̄ ,
which is integrable because ∇ ◦∇ = 0. We still have to decide when exactly ∂̄ + τ
defines the trivial line bundle; Hodge theory will solve that problem for us.

In order to extend the results of Hodge theory to cohomology groups with co-
efficients in L, the key observation is that the Kähler identities in Theorem 3.7
continue to hold for the operators ∂̄ + τ and ∂ − τ̄ .

Lemma 6.1. Let X be a Kähler manifold, and let τ ∈ H0,1(X) be a harmonic
(0, 1)-form. Then the following identities are true:

[Λω, ∂̄ + τ ] = −i(∂ − τ̄)∗ and [Λω, ∂ − τ̄ ] = i(∂̄ + τ)∗.

Proof. Since we already know that [Λω, ∂] = i∂̄∗, it suffices to show that

[Λω, τ̄ ] = −iτ∗.
This identity involves no derivatives, and so it is again enough to prove it in the
case of the Euclidean metric on Cn. Here we have

τ =

n∑
k=1

fkēk

for smooth functions f1, . . . , fn, and therefore

τ̄ =

n∑
k=1

fkek and τ∗ =

n∑
k=1

fkē
∗
k.

Recall from our earlier considerations that Λω = − i
2

∑
ē∗je

∗
j . We compute that

[Λω, τ̄ ] = Λω τ̄ − τ̄Λω = − i

2

n∑
j,k=1

ē∗je
∗
jfkek +

i

2

n∑
j,k=1

fkekē
∗
je

∗
j

= − i

2

n∑
j,k=1

ē∗jfk
(
e∗jek + eke

∗
j

)
= −i

n∑
k=1

ē∗kfk = −iτ∗.

Here we used the relations ekē
∗
j+ē

∗
jek = 0 and e∗jek+eke

∗
j = 2 idj,k from Lemma 3.8.

This proves the second identity; as before, the first follows by conjugation. □

With these identities in hand, everything goes through as in the case of the
operators ∂ and ∂̄. We define the Laplace operator

∇∇∗ +∇∗∇ = (d+ τ − τ̄)(d+ τ − τ̄)∗ + (d+ τ − τ̄)∗(d+ τ − τ̄),

and observe that it is a second-order elliptic operator: in fact, its second-order
terms are exactly the same as those of ∆ = dd∗ + d∗d. By the same calculation as
before, the Kähler identities imply that

1

2

(
∇∇∗ +∇∗∇

)
= (∂̄ + τ)(∂̄ + τ)∗ + (∂̄ + τ)∗(∂̄ + τ)

= (∂ − τ̄)(∂ − τ̄)∗ + (∂ − τ̄)∗(∂ − τ̄),

and so ∇∇∗ +∇∗∇ preserves the type of forms. By a version of the analysis result
in Theorem 2.6, the space Ap,q(X) therefore decomposes into the direct sum of the
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kernel and the image of this operator; we call forms in the kernel ∇-harmonic. We
can use this to prove the following version of the Hodge theorem.

Theorem 6.2. Every class in Hq
(
X,ΩpX ⊗L

)
is uniquely represented by a smooth

form α ∈ Ap,q(X) that satisfies

(∂̄ + τ)α = (∂̄ + τ)∗α = (∂ − τ̄)α = (∂ − τ̄)∗α = 0.

All global holomorphic sections of ΩpX ⊗ L lie in the kernel of ∇ = d+ τ − τ̄ .

Proof. Recall that the cohomology groups of ΩpX ⊗L are computed by the complex

Ap,0(X) → Ap,1(X) → · · · → Ap,n(X)

with differential ∂̄+ τ . Using the decomposition of Ap,q(X) into the kernel and the
image of (∂̄ + τ)(∂̄ + τ)∗ + (∂̄ + τ)∗(∂̄ + τ), we see that every cohomology class in
Hq(X,ΩpX ⊗L) is uniquely represented by a form which is both (∂̄ + τ)-closed and
(∂̄−τ)∗-closed. The above identity implies that it is also (∂+ τ̄)-closed and (∂− τ̄)∗-
closed. If α ∈ Ap,0(X) satisfies (∂̄ + τ)α = 0, then the condition (∂̄ + τ)∗α = 0
holds by default, and so (∂ − τ̄)α = 0 as well. □

This theory has one application which is very surprising at first glance. Namely,
suppose that f ∈ A0(X) is a smooth function such that (∂̄+τ)f = 0. By the above,
we automatically have (∂ − τ̄)f = 0 as well. This means that the two differential
equations are somehow coupled to each other, due to the fact that X is a compact
Kähler manifold. Trying to prove this directly is an interesting problem.

Corollary 6.3. We have an isomorphism of complex vector spaces

Hq(X,ΩpX ⊗ L
)
≃ Hp

(
X,ΩqX ⊗ L−1

)
.

Proof. Let α ∈ Ap,q(X) be the unique ∇-harmonic representative of a class in
Hq

(
X,ΩpX ⊗L

)
. Then (∂̄+ τ)α = 0 and (∂− τ̄)α = 0. After complex conjugation,

we obtain (∂̄ + τ)α = 0 and (∂ − τ)α = 0. Since the operator ∂̄ + τ corresponds to
the holomorphic line bundle L−1, we conclude that α ∈ Aq,p(X) is the harmonic
representative of a class in Hp

(
X,ΩqX ⊗ L−1

)
. □

More about holomorphic line bundles. Now let us return to the question when
a holomorphic line bundle of the form ∂̄ − τ is trivial. This happens exactly when
there is a nowhere vanishing smooth function f ∈ A0(X) such that ∂̄f + fτ = 0.
Because X is compact Kähler Hodge theory shows that automatically also

∂f − f τ̄ = 0.

If we combine the two relations, we obtain

τ̄ − τ =
df

f
.

By Stokes’ theorem, this happens exactly when all periods of the closed one-form
τ̄ − τ belong to Z(1) = 2πi · Z ⊆ C: indeed, f is necessarily given by the integral

f = exp

Å∫ x

x0

df

f

ã
= exp

Å∫ x

x0

(τ̄ − τ)

ã
,

which is well-defined exactly when the integral of τ̄ − τ over any closed loop takes
values in Z(1). In terms of cohomology, this means that the cohomology class of τ
should lie in the image of

H1
(
X,Z(1)

)
→ H1(X,C) → H1(X,OX).

To summarize what we have said so far:
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Theorem 6.4. Let X be a compact Kähler manifold. Every holomorphic line
bundle with trivial first Chern class can be represented by an operator of the form
∂̄ + τ , where τ ∈ A0,1(X) satisfies dτ = 0 (equivalently, is harmonic). The line
bundle is trivial if and only if all periods of the one-form τ̄ − τ lie in Z(1).

Picard variety and Poincaré bundle. According to the discussion above, the
set of isomorphism classes of holomorphic line bundles with trivial first Chern class
on a compact Kähler manifold X is isomorphic to

Pic0(X) =
H0,1(X){

τ ∈ H0,1(X)
∣∣ τ̄ − τ has periods in Z(1)

} .
For τ ∈ H0,1(X), the class [τ ] in the quotient corresponds to the smooth line bundle
X × C, with complex structure given by the operator ∂̄ + τ .

Pic0(X) is called the Picard variety of X; as in the case of the Albanese variety,
one can show that it is a compact complex torus of dimension g. Note that

Pic0(X) ≃ H1(X,OX)

H1
(
X,Z(1)

) ,
which agrees with the description coming from the exponential sequence

0 Z(1) OX O×
X 0

exp

Our next goal is the construction of the universal line bundle on X × Pic0(X),
sometimes called the Poincaré bundle of X. This will justify considering Pic0(X)
as the “moduli space” of holomorphic line bundles with trivial first Chern class; it
will also be useful when we study how the cohomology of such line bundles depends
on the line bundle.

Proposition 6.5. Fix a base point x0 ∈ X. Then there exists a holomorphic line
bundle P on X × Pic0(X) with the following properties:

(a) For any y ∈ Pic0(X), the restriction of P to X × {y} is the holomorphic
line bundle on X corresponding to y.

(b) The restriction of P to {x0} × Pic0(X) is the trivial line bundle.

Moreover, P is unique up to isomorphism.

Proof. Since c1(P ) ̸= 0, we cannot directly use the analytic formalism from above.
Instead, we shall first construct a suitable holomorphic line bundle on X×H0,1(X),
and then descend it to the quotient. To find the correct formulas, I reverse-
engineered the description of the Poincaré bundle in terms of Appell-Humbert data
from Mumford’s book.

Let V = H0,1(X), and let Γ ⊆ V denote the set of those τ ∈ V for which the
periods of τ̄ − τ belong to Z(1). Then Pic0(X) = V/Γ. On X × V , we have the
smooth line bundle X × V × C, with complex structure given by the operator

∂̄P̃ = ∂̄ +

g∑
j=1

tj · p∗1εj ;

here ε1, . . . , εg ∈ V is any basis, and t1, . . . , tg denotes the corresponding system of
holomorphic coordinates on V . You can check that the (0, 1)-form in this formula
is independent of the choice of basis; we might call it the “universal (0, 1)-form”
on the product X × V , because its restriction to X × {τ} is equal to τ . From this
construction, it is clear that the restriction of this line bundle to X × {τ} is equal
to the holomorphic line bundle with complex structure defined by ∂̄ + τ , which is
what we want.
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It remains to descend the line bundle to X × V/Γ. For every γ ∈ Γ, the periods
of γ − γ belong to Z(1), and so

fγ(x) = exp

∫ x

x0

(γ − γ);

is a well-defined smooth function on X; by construction, it satisfies ∂̄fγ = −fγ · γ.
The action (by translation) of Γ on V extends to an action on the trivial smooth

line bundle X × V × C, defined as follows:

γ · (x, τ, z) = (x, τ + γ, fγ(x) · z) .
The quotient by this action is therefore a smooth line bundle on X × V/Γ. To
construct P , it now suffices to show that ∂̄P̃ is compatible with this action, and
therefore descends to an operator ∂̄P on our smooth line bundle on X × V/Γ.

You can check easily that Γ acts on the space of sections A0(X × V ) according
to the formula

(γ∗s)(x, τ) = fγ(x) · s(x, τ − γ).

The operator ∂̄P is compatible with this action, because

∂̄P̃ (γ
∗s)(x, τ) = ∂̄fγ(x) · s(x, τ − γ) + fγ(x) · ∂̄P̃ s(x, τ − γ)

= fγ(x) · (∂̄P̃ − γ)s(x, τ − γ),

whereas

(γ∗∂̄P̃ s)(x, τ) = fγ(x) · (∂̄P̃ s)(x, τ − γ)

= fγ(x) · (∂̄P̃ − γ)s(x, τ − γ).

It is obvious from the construction that (a) is satisfied; as for (b), note that

γ · (x0, τ, z) = (x0, τ + γ, z),

which means that the restriction of P to {x0} × V/Γ is trivial. □

The generic vanishing theorem. Having reviewed the analytic description of
Alb(X) and Pic0(X), as well as the basic results in Hodge theory, we are now
ready to come back to the generic vanishing theorem. Let X be a compact Kähler
manifold. The examples we looked at in the first lecture suggested that there is
no vanishing theorem that works for all line bundles in Pic0(X); and that the
possible range for a vanishing theorem is not determined by dimX, but rather
by the Albanese dimension dimalb(X), where alb: X → Alb(X) is the Albanese
mapping of X (for some choice of base point).

To state the result, let us define the following subsets of Pic0(X):

Sim(X) =
{
L ∈ Pic0(X)

∣∣ dimHi(X,L) ≥ m
}

Si(X) =
{
L ∈ Pic0(X)

∣∣ Hi(X,L) ̸= 0
}

What Green and Lazarsfeld actually proved is the following more precise version of
the generic vanishing theorem.

Theorem 6.6. Let X be a compact Kähler manifold. Then

codimPic0(X) S
i(X) ≥ dimalb(X)− i,

where alb: X → Alb(X) is the Albanese mapping of X.

For i < dimalb(X), we therefore have Hi(X,L) = 0 for general L, where “gen-
eral” means on the complement of the proper analytic subset Si(X).

The idea of the proof is to study the deformation theory of cohomology groups of
the form Hi(X,L). More precisely, we need to understand how Hi(X,L) changes
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when we move the line bundle L; this question is related to the infinitesimal prop-
erties of the loci Sim(X). We will first develop this deformation theory abstractly,
and then use Hodge theory in order to apply it to our problem.

Proof of the generic vanishing theorem, Part 1. To get started, we need a
good model for computing the cohomology groups Hi(X,L) when L ∈ Pic0(X) is
allowed to vary. Fix a base point x0 ∈ X, and let P be the Poincaré bundle on
X × Pic0(X), constructed in Proposition 6.5. Let

p1 : X × Pic0(X) → X and p2 : X × Pic0(X) → Pic0(X)

be the projections to the two factors. For y ∈ Pic0(X), let Py denote the restriction
of P to X ×{y}; by construction, Py is the holomorphic line bundle corresponding
to the point y. The cohomology groups Hi(X,Py) are clearly related to the higher

direct image sheaves Rip2∗P . Locally on Pic0(X), we can always find a bounded
complex of vector bundles that computes the higher direct image sheaves, with the
help of the following general result from complex analysis.

Theorem 6.7. Let f : X → Y be a proper morphism of complex manifolds, and let
F be a coherent sheaf on X, flat over Y . Then locally on Y , there exists a bounded
complex E• of holomorphic vector bundles, with the following property: for every
coherent sheaf G on Y , one has

Rif∗
(
F ⊗ f∗G

)
≃ Hi

(
E• ⊗ G

)
,

and the isomorphism is functorial in G .

You will remember from Hartshorne’s book (Section III.12) that a similar result
is true in the algebraic setting (where it can be proved by using Čech cohomology).
In the analytic case, the proof is a lot more difficult, and so I cannot present it
here. In any case, we will later calculate the higher direct image sheaves Rip2∗P
explicitly in terms of harmonic forms.

If we apply Theorem 6.7 to our situation, we obtain locally on Y = Pic0(X) a
bounded complex of vector bundles E•. For any point y ∈ Y , we denote by

E•(y) = E•/myE
• ≃ E• ⊗OY

C(y)
the complex of vector spaces obtained by restricting E• to the point. If we take
G = C(y) in Theorem 6.7, we obtain

Hi(X,Py) ≃ Rip2∗

(
P
∣∣
X×{y}

)
≃ Hi

(
E•(y)

)
,

and so the complex E• does compute the correct cohomology groups.

Exercises.

Exercise 6.1. Let X be a compact complex manifold, and suppose that τ ∈ A0,1(X)
satisfies dτ = 0. Prove that if a smooth function f ∈ A0(X) solves the equation
∂̄f + fτ = 0, then it also solves the equation ∂f − f τ̄ = 0. (Hint: The pullback of
τ to the universal covering space of X is exact.)

Exercise 6.2. Proof that P is, up to isomorphism, uniquely determined by the two
properties in Proposition 6.5.

Exercise 6.3. Calculate the first Chern class c1(P ) of the Poincaré bundle. (Hint:
The first Chern class only depends on the underlying smooth line bundle.)

Exercise 6.4. Show that the Poincaré bundle on X is the pullback, via

alb× id : X × Pic0(X) → Alb(X)× Pic0(X)

of the Poincaré bundle on Alb(X)× Pic0(X).
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Lecture 7

Infinitesimal study of cohomology support loci. Recall from last time that,
locally on Pic0(X), we can find a bounded complex of vector bundles that, at a point
L ∈ Pic0(X), computes the cohomology groups Hi(X,L). In general, a bounded
complex of vector bundles is a good model for a “family of cohomology groups”;
our goal today is to study such families infinitesimally.

Let X be a complex manifold; we denote the sheaf of germs of holomorphic
functions by the symbol OX . For a point x ∈ X, we denote by OX,x be the local
ring at the point, by mx ⊆ OX,x its maximal ideal, and by C(x) = OX,x/mx the
residue field. Consider a bounded complex

E• =
[
· · · Ei−1 Ei Ei+1 · · ·

]
di−1 di

of locally free sheaves on X, with rkEi = ei. Given a point x ∈ X, we denote by

E•(x) = E•/mxE
• = E• ⊗OX

C(x)
the complex of vector spaces determined by the fibers of E•. Our goal is to study
how the cohomology groups of this complex of vector spaces depend on x ∈ X. In
particular, we are interested in the cohomology support loci

Sim(E•) =
{
x ∈ X

∣∣ dimHi
(
E•(x)

)
≥ m

}
and in their infinitesimal structure.

Lemma 7.1. Each Sim(E•) is a closed analytic subset of X.

Proof. In fact, it is not hard to write down a coherent sheaf of ideals in OX whose
zero locus is Sim(E•). Observe first that

dimHi
(
E•(x)

)
≥ m⇐⇒ dimker di(x)− dim im di−1(x) ≥ m

⇐⇒ rk di−1(x) + rk di(x) ≤ ei −m.

As sets, we therefore have

Sim(E•) =
⋂

a+b=ei−m+1

{
x ∈ X

∣∣ rk di−1(x) ≤ a− 1 or rk di(x) ≤ b− 1
}
,

and so we may take the ideal sheaf of Sim(E•) to be

(7.2) Iim(E•) =
∑

a+b=ei−m+1

Ja(di−1) · Jb(di).

Here Jb(di) denotes the ideal sheaf locally generated by all b× b-minors of di; this
makes sense because, after choosing local trivializations for the bundles Ei and
Ei+1, the differential di is simply given by a matrix of holomorphic functions. □

We now begin the infinitesimal study of the loci Sim(E•). Fix a point x ∈ X,
and let T = TxX denote the holomorphic tangent space to X at x; note that, as
a complex vector space, T is dual to mx/m

2
x. Roughly speaking, what we want

to do is keep only the first-order terms in each differential di, and see how much
information about Sim(E•) we can extract from them. This is the reason for using
the word “infinitesimal”; algebraically, it means that we consider the complex

E•/m2
xE

•.

Since mxE
•/m2

xE
• ≃ E•(x)⊗ T ∗, the short exact sequence of complexes

0 → mxE
•/m2

xE
• → E•/m2

xE
• → E•/mxE

• → 0.

gives rise to connecting homomorphisms

(7.3) D(di, x) : Hi
(
E•(x)

)
→ Hi+1

(
E•(x)

)
⊗ T ∗.
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In particular, we obtain for every tangent vector v ∈ T a linear mapping

Dv(d
i, x) : Hi

(
E•(x)

)
→ Hi+1

(
E•(x)

)
.

A more concrete description is the following: After choosing local trivializations for
Ei and Ei+1, the differential di is given by a matrix of holomorphic functions; its
derivative in the direction of v gives a linear map Ei(x) → Ei+1(x) that passes to
cohomology and induces Dv(d

i, x). One can show that Dv(d
i, x) ◦Dv(d

i−1, x) = 0;
it follows that we get a complex of vector spaces

· · · → Hi−1
(
E•(x)

)
→ Hi

(
E•(x)

)
→ Hi+1

(
E•(x)

)
→ · · ·

that we denote by the symbol Dv(E
•, x) and call the derivative complex of E• at

x in the direction v.
We can assemble all the above complexes into a single complex of locally free

sheaves on the tangent space T . Recall that the symmetric algebra

SymT ∗ =

∞⊕
ℓ=0

Symℓ T ∗ ≃
∞⊕
ℓ=0

mℓx/m
ℓ+1
x

is the algebra of all polynomial functions on T ; in particular, T ∗ is the space of linear
functions on T . If we denote by OT the sheaf of germs of holomorphic functions on
T , then (7.3) defines a morphism

D(di, x) : Hi
(
E•(x)

)
⊗ OT → Hi+1

(
E•(x)

)
⊗ OT

between two (trivial) holomorphic vector bundles on T .

Lemma 7.4. We have D(di, x) ◦D(di−1, x) = 0.

Proof. The short exact sequence of complexes

0 → mxE
•/m3

xE
• → E•/m3

xE
• → E•/mxE

• → 0

gives rise to a connecting homomorphism

Hi−1
(
E•(x)

)
→ Hi

(
mxE

•/m3
xE

•);
it is clear that if we project to Hi

(
mxE

•/m2
xE

•), we obtain D(di−1, x). This gives

us a factorization of D(di, x) ◦D(di−1, x), as shown it the following diagram:

Hi−1
(
E•(x)

)
Hi

(
mxE

•/m3
xE

•) Hi
(
mxE

•/m2
xE

•) Hi+1
(
m2
xE

•/m3
xE

•)
Hi

(
E•(x)

)
⊗ T ∗ Hi+1

(
E•(x)

)
⊗ Sym2 T ∗

D(di−1,x)

D(di,x)

In the middle row, we are using two consecutive morphisms in the long exact
sequence coming from the short exact sequence of complexes

0 → m2
xE

•/m3
xE

• → mxE
•/m3

xE
• → mxE

•/m2
xE

• → 0.

Their composition is equal to zero, and so the assertion is proved. □

The infinitesimal information about the complex E• at the point x is therefore
contained in the following complex on T .

Definition 7.5. The derivative complex D(E•, x) is the complex

· · · → Hi−1
(
E•(x)

)
⊗ OT → Hi

(
E•(x)

)
⊗ OT → Hi+1

(
E•(x)

)
⊗ OT → · · ·

on the tangent space T = TxX, with differentials D(di, x).
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It is clear that, if we restrict D(E•, x) to a point v ∈ T , we obtain the derivative
complexDv(E

•, x) in the direction v. Now the derivative complex is itself a complex
of vector bundles on the tangent space T , and so we can consider its cohomology
support loci

Sim
(
D(E•, x)

)
=

{
v ∈ T

∣∣ dimHi
(
Dv(E

•, x)
)
≥ m

}
.

Because all the bundles in D(E•, x) are trivial, and all the differentials are matrices
with entries in T ∗, these loci are cones in T . The main result is that the cohomology
support loci of the derivative complex control the tangent cone of Sim(E•) at x.

Theorem 7.6. Suppose that x ∈ Sim(E•) for some m ≥ 1. Then

TC x

(
Sim(E•)

)
⊆ Sim

(
D(E•, x)

)
,

where the left-hand side denotes the tangent cone of Sim(E•) at the point x.

Proof of the tangent cone theorem. Before we begin the proof, recall that if
Z ⊆ X is an analytic subvariety, defined by a coherent sheaf of ideals I, then the
tangent cone at a point x ∈ Z is defined by the graded ideal

∞⊕
ℓ=0

I ∩mℓx
I ∩mℓ+1

x

⊆ SymT ∗.

It is therefore a conical subscheme of the tangent space T .
Because we need to keep track of powers of the maximal ideal, Theorem 7.6 is

much easier to prove when all differentials di in the complex have entries in the
maximal ideal mx. We first prove a small structure theorem for the complex E•

that will allow us to reduce to that case.

Lemma 7.7. After restricting to a sufficiently small open neighborhood of the point
x ∈ X, we can find direct sum decompositions

Ei ≃ F i−1 ⊕ Ei0 ⊕ F i,

such that each di : Ei → Ei+1 is represented by a matrix of the formÑ
0 0 id
0 di0 0
0 0 0

é
with di0(E

i
0) ⊆ mxE

i+1
0 .

Proof. We construct such decompositions by working from right to left. Suppose
that di = 0 for i > n, meaning that

· · · En−1 En En+1 0dn−1 dn

are the right-most terms in the complex. After choosing suitable bases in the vector
spaces En(x) and En+1(x), we can certainly arrange that

dn(x) =

Å
0 id
0 0

ã
In a sufficiently small neighborhood of x, the upper right-hand corner of dn remains
invertible; after performing additional row and column operations, we therefore
obtain decompositions

En+1 ≃ Fn ⊕ En+1
0 and En ≃ En1 ⊕ Fn,

with the property that

dn =

Å
0 id
dn1 0

ã
and dn1 (E

n
1 ) ⊆ mxE

n+1
0 .
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The relation dn ◦dn−1 = 0 implies that im dn−1 ⊆ En1 . Repeating the construction,
we can find a possibly smaller open neighborhood and decompositions

En1 ≃ Fn−1 ⊕ En0 and En−1 ≃ En−1
1 ⊕ Fn−1,

with the property that

dn−1 =

Ñ
0 id

dn−1
1 0
0 0

é
and dn−1

1 (En−1
1 ) ⊆ mxE

n
0 .

Since dn ◦ dn−1 = 0, we deduce that

dn =

Å
0 0 id
0 dn0 0

ã
and dn0 (E

n
0 ) ⊆ mxE

n+1
0 .

This is the desired result for the differential dn (with Fn+1 = 0). Now we simply
repeat the above proceduce for each of the remaining differentials. □

Note that di0 ◦ di−1
0 = 0, and so E•

0 forms a subcomplex of E•; in fact, the
inclusion of E•

0 into E• is a homotopy equivalence. This means in particular that
the cohomology sheaves of the two complexes are the same. In the case of a local
ring, a complex of free modules whose differentials have entries in the maximal ideal
is called a minimal complex ; the argument we have just given can be used to show
that, over any local ring, a bounded complex of free modules contains a minimal
subcomplex with the same cohomology.

Since we are only interested in the behavior near the point x, the fact that
E•

0 is only defined in a neighborhood of x does not matter. With respect to the
decomposition in Lemma 7.7, E•(x) has differentials

di(x) =

Ñ
0 0 id
0 di0(x) 0
0 0 0

é
=

Ñ
0 0 id
0 0 0
0 0 0

é
,

and so Hi
(
E•(x)

)
≃ Ei0(x). Under this isomorphism,

D(di, x) : Hi
(
E•(x)

)
→ Hi+1

(
E•(x)

)
⊗ T ∗

is clearly identified with the homomorphism

Ei0(x) → mxE
i+1
0 /m2

xE
i+1
0 ≃ Ei+1

0 (x)⊗ T ∗

induced by di0. The derivative complex D(E•, x) is therefore basically the linear
part of the complex E•

0 . Now we observe that the subcomplex also has the same
cohomology support loci.

Lemma 7.8. We have Sim(E•) = Sim(E•
0 ), and in fact, Iim(E•) = Iim(E•

0 ).

Proof. Recall from (7.2) that

Iim(E•) =
∑

a+b=ei−m+1

Ja(di−1) · Jb(di).

Consider again the decomposition Ei ≃ F i−1 ⊕ Ei0 ⊕ F i, and let fi = rkF i. With
respect to this decomposition, the differential di is represented by the matrixÑ

0 0 id
0 di0 0
0 0 0

é
,
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and it is easy to see that Jb(di) = Jb−fi(di0); in fact, every b× b-minor of the large
matrix is (up to a sign) a k×k-minor of the smaller matrix for some b−fi ≤ k ≤ b,
and therefore in the ideal generated by the minors of size b− fi. It follows that

Iim(E•) =
∑

a+b=ei−m+1

Ja−fi−1
(di−1

0 ) · Jb−fi(di0)

=
∑

c+d=hi−m+1

Jc(di−1
0 ) · Jd(di0)

= Iim(E•
0 ),

because hi = rkEi0 = ei − fi − fi−1. □

For the purpose of proving Theorem 7.6, we can therefore replace E• by the
subcomplex E•

0 ; in other words, we can assume without loss of generality that all
differentials of E• have entries in the maximal ideal, meaning that

di(Ei) ⊆ mxE
i+1.

In that situation, the complex of vector spaces E•(x) has trivial differentials, and
so Hi

(
E•(x)

)
≃ Ei(x). This makes everything very simple.

Proof of Theorem 7.6. The ideal sheaf of Sim(E•) is

Iim(E•) =
∑

a+b=ei−m+1

Ja(di−1) · Jb(di) ⊆ mei−m+1
x .

The tangent cone to Sim(E•) at the point x is defined by the graded ideal

J =
⊕
ℓ∈N

Jℓ ⊆ SymT ∗,

whose graded piece in degree ℓ is given by the formula

Jℓ =
Iim(E•) ∩mℓx
Iim(E•) ∩mℓ+1

x

.

It follows that Jℓ = 0 for ℓ ≤ ei − m. On the other hand, the ideal sheaf of
Sim

(
D(E•, x)

)
is given by

Iim
(
D(E•, x)

)
=

∑
a+b=ei−m+1

Ja
(
D(di−1, x)

)
· Jb

(
D(di, x)

)
;

notice that it is generated by elements of Symei−m+1 T ∗, because each matrix
D(di, x) has entries in T ∗. To prove the theorem, it therefore suffices to show that

(7.9) Jei−m+1 = Iim
(
D(E•, x)

)
ei−m+1

.

This is straightforward. Recall that under the isomorphism Hi
(
E•(x)

)
≃ Ei(x),

the differentials in the derivative complex are the morphisms

Ei(x) → mxE
i(x)/m2

xE
i(x) ≃ Ei(x)⊗ T ∗

induced by di. If we project the right-hand side of

Iim(E•) =
∑

a+b=ei−m+1

Ja(di−1) · Jb(di)

into mei−m+1
x /mei−m+2

x , we find that∑
a+b=ei−m+1

Ja
(
D(di−1, x)

)
a
· Jd

(
D(di, x)

)
b
= Iim

(
D(E•, x)

)
ei−m+1

,

and so (7.9) is proved. □
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Consequences for cohomology support loci. As a corollary of (7.9), we get a
description of the Zariski tangent space.

Corollary 7.10. If m = dimHi
(
E•(x)

)
, then Sim

(
D(E•, x)

)
is the Zariski tangent

space to Sim(E•) at the point x.

Proof. We have ei = m, and according to the above proof, Iim
(
D(E•, x)

)
is there-

fore generated by J1. But J1 consists exactly of the (linear) equations for the Zariski
tangent space. □

We list a few other consequences of Theorem 7.6. What they have in common
is that properties of the derivative complex are used to bound the dimension of
Sim(E•), or to decide whether Sim(E•) is a proper subset of X. This is exactly the
type of result that we need to prove the generic vanishing theorem.

Corollary 7.11. Set m = dimHi
(
E•(x)

)
. Then

dimx S
i
m(E•) ≤ dim

{
v ∈ T

∣∣ Dv(d
i, x) = 0 and Dv(d

i−1, x) = 0
}
.

In particular, if either Dv(d
i, x) ̸= 0 or Dv(d

i−1, x) ̸= 0 for some tangent vector
v ∈ TxX, then Sim(E•) is a proper subset of X.

Proof. Recall that the dimension of the tangent cone TC x

(
Sim(E•)

)
is equal to the

local dimension of Sim(E•) at the point x. From Theorem 7.6, we therefore get

dimx S
i
m(E•) ≤ dimSim

(
D(E•, x)

)
.

Since m = dimHi
(
E•(x)

)
is equal to the rank of the i-th sheaf in the derivative

complex D(E•, x), the only way in which a nonzero vector v ∈ TxX can belong to
the set Sim

(
D(E•, x)

)
is if both differentials D(di, x) and D(di−1, x) vanish at v,

which translates into the condition Dv(d
i, x) = Dv(d

i−1, x) = 0. □

This leads to the following condition for Sim(E•) to be a proper subset of X.

Corollary 7.12. If Hi
(
Dv(E

•, x)
)
= 0 for some point x ∈ X and some tangent

vector v ∈ TxX, then Sim(E•) is a proper subset of X for m ≥ 1.

At the other end of the spectrum, we can use the derivative complex to detect
isolated points of Sim(E•).

Corollary 7.13. If x ∈ Sim(E•) for some m ≥ 1, and if Hi
(
Dv(E

•, x)
)
= 0 for

every nonzero tangent vector v ∈ TxX, then x is an isolated point of Sim(E•).

Proof. If Hi
(
Dv(E

•, x)
)
is nonzero, it means that either the differential Dv(d

i−1, x)

or the differential Dv(d
i, x) must be nonzero. We can now apply Corollary 7.11 to

conclude that dimx S
i
m(E•) = 0. □

Next time, we will use these criteria, together with an explicit description of
the derivative complex in the case of topologically trivial line bundles, to prove the
generic vanishing theorem.

Exercises.

Exercise 7.1. Show that, after choosing local trivializations for the sheaves in the
complex, Dv(d

i, x) is indeed given by differentiating the entries in the matrix di.
Uses this to show that Dv(d

i, x) ◦Dv(d
i−1, x) = 0.

Exercise 7.2. Show that the inclusion of the subcomplex E•
0 into E• is a homotopy

equivalence.
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Lecture 8

Cohomology support loci on a compact Kähler manifold. Today, we shall
apply the abstract results about cohomology support loci to the case of a compact
Kähler manifold X. Recall that

Sim(X) =
{
L ∈ Pic0(X)

∣∣ dimHi(X,L) ≥ m
}
;

to simplify the notation, we also set Si(X) = Si1(X).
We fix a point L ∈ Pic0(X); according to Theorem 6.7, we can find an open

neighborhood U of L, and a bounded complex of vector bundles E• on U , such
that

(8.1) Rip2∗
(
P ⊗ p∗2G

)
≃ Hi

(
E• ⊗ G

)
for every coherent sheaf G on U . In particular, the complex of vector spaces E•(y)
at a point y ∈ U computes the cohomology of the line bundle corresponding to y;
this shows that

Sim(X) ∩ U = Sim(E•),

in the notation from last time. The cohomology support loci Sim(X) are therefore
closed analytic subschemes of Pic0(X), with the scheme structure defined locally
by the coherent sheaf of ideals in (7.2).

To go further, we need a description of the derivative complex in terms of data
on X. From our construction of Pic0(X), it is clear that TL Pic0(X) ≃ H0,1(X),
and so a tangent vector v ∈ TL Pic0(X) corresponds to a harmonic (0, 1)-form
v ∈ H0,1(X).

Lemma 8.2. The derivative complex Dv(E
•, L) is isomorphic to

H0(X,L) → H1(X,L) → · · · → Hn(X,L),

with differential given by wedge product with v ∈ H0,1(X).

Proof. Recall that the differentials in the derivative complex are constructed by
taking the short exact sequence

0 → m/m2 → O/m2 → O/m → 0,

where m is the ideal sheaf of the point L; tensoring it by E•; and then computing
the connecting homomorphism in the resulting long exact sequence. Because the
isomorphism in (8.1) is functorial in G , we can compute the connecting homomor-
phism on X×Pic0(X). In fact, all we need is the restriction of the Poincaré bundle
P to the first infinitesimal neighborhood (corresponding to m2) of X×{L}. We can
therefore do the computation on X ×V , where V = H0,1(X), because the quotient
mapping V → Pic0(X) is a local isomorphism. Recall from Proposition 6.5 that P
was descended from the holomorphic line bundle on X×V defined by the operator

∂̄X×V +

g∑
j=1

tj · p∗1vj ,

where v1, . . . , vg ∈ V are a basis, and t1, . . . , tg ∈ V ∗ the dual basis, viewed as a
linear coordinate system on V .

Let τ ∈ H0,1(X) be any point mapping to L ∈ Pic0(X); this means that L is,
up to isomorphism, the holomorphic line bundle defined by the operator ∂̄ + τ .
Take an arbitrary cohomology class in Hi(X,L); it is represented by a smooth
form α ∈ A0,i(X) with ∂̄α + τ ∧ α = 0. To compute the effect of the connecting
homomorphism, we need to lift α to the first infinitesimal neighborhood of X×{τ}
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in X×V ; we use the most obvious choice, namely p∗1α. Now we apply the operator
defining P ; we get

∂̄X×V
(
p∗1α

)
+

g∑
j=1

tj ·p∗1(vj∧α) = p∗1
(
∂̄α

)
+

g∑
j=1

tj ·p∗1(vj∧α) =
g∑
j=1

(
tj−tj(τ)

)
·p∗1(vj∧α),

keeping in mind that τ =
∑
tj(τ)vj . Modulo m2, this becomes

g∑
j=1

(vj ∧ α)⊗
(
tj − tj(τ) +m2

)
∈ A0,i+1(X)⊗m/m2.

Applied to a tangent vector v ∈ V , the differential is therefore simply the mapping

Hi(X,L) → Hi+1(X,L), [α] 7→ [v ∧ α].

This concludes the proof. □

This description of the derivative complex is still not very convenient, because
it involves cohomology groups. To get a description that is more closely related to
the Albanese mapping and holomorphic one-forms, we now use some results from
Hodge theory. Recall from Corollary 6.3 that we have an isomorphism of complex
vector spaces

Hi
(
X,L

)
≃ H0

(
X,ΩiX ⊗ L−1

)
;

here the bar denotes the conjugate vector space. (Concretely, take the harmonic
(i, 0)-form representing a given cohomology class for L, and conjugate to obtain a
harmonic (0, i)-form that represents a cohomology class for ΩiX ⊗ L−1.) We also
clearly have a commutative diagram

Hi
(
X,L

)
Hi+1

(
X,L

)
H0

(
X,ΩiX ⊗ L−1

)
H0

(
X,Ωi+1

X ⊗ L−1
)

v∧

v∧

for every v ∈ H0,1(X). This means that if we conjugate the derivative complex

H0(X,L) → H1(X,L) → · · · → Hn(X,L),

in Lemma 8.2, and use the isomorphisms above, we obtain the complex

H0
(
X,L−1

)
→ H0

(
X,Ω1

X ⊗ L−1
)
→ · · · → H0

(
X,ΩnX ⊗ L−1

)
,

whose differential is given by wedge product with v ∈ H1,0(X); note that v is a
holomorphic one-form. The advantage of the second complex is that it involves
only sections of vector bundles.

We are now in a good position to apply our earlier results about tangent cones
to cohomology support loci. Recall that we showed

(8.3) TCLS
i
m(E•) ⊆ Sim

(
D(E•, L)

)
.

The dimension estimate in Corollary 7.11 now takes the following form.

Theorem 8.4. Let X be a compact Kähler manifold. Fix a point L ∈ Pic0(X),
and set m = dimHi(X,L). Then

dimL S
i
m(X) ≤ dim

ß
ω ∈ H0(X,Ω1

X)

∣∣∣∣ ω ∧ α = 0 for α ∈ H0
(
X,Ωi−1

X ⊗L−1
)

ω ∧ β = 0 for β ∈ H0
(
X,ΩiX ⊗ L−1

) ™.
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Proof. This is just a restatement of Corollary 7.11. From (8.3), we get

dimL S
i
m(X) ≤ dim

{
v ∈ TL Pic0(X)

∣∣ dimHi
(
Dv(E

•, L)
)
≥ m

}
.

But because the i-th vector space in the derivative complex is Hi(X,L), which is
m-dimensional by assumption, we can only have dimHi

(
Dv(E

•, L)
)
≥ m if the two

differentials next to Hi(X,L) are zero. After conjugation, this becomes exactly the
condition that v is in the displayed subspace of H0(X,Ω1

X). □

Similarly, Corollary 7.12 gives a simple criterion for showing that Si(X) is a
proper subset of Pic0(X). The proof is the same as above.

Corollary 8.5. If the sequence

(8.6) H0
(
X,Ωi−1

X ⊗ L−1
)

H0
(
X,ΩiX ⊗ L−1

)
H0

(
X,Ωi+1

X ⊗ L−1
)ω∧ ω∧

is exact for some ω ∈ H0(X,Ω1
X), then Si(X) ̸= Pic0(X).

Finally, here is a version of Corollary 7.13, which gives a simple criterion for L
to be an isolated point of Si(X).

Corollary 8.7. If (8.6) is exact for every nonzero ω ∈ H0(X,Ω1
X), then L is an

isolated point of Si(X).

In all three cases, the advantage is that we are now working with global sections
of coherent sheaves; these are much easier to use than general cohomology classes.

Proof of the generic vanishing theorem, Part 2. We are now set to prove
Theorem 6.6. Let X be a compact Kähler manifold, and alb: X → Alb(X) its
Albanese mapping (for some choice of base point x0 ∈ X). Remember that our
goal is to prove the following precise version of the generic vanishing theorem:

(8.8) codimPic0(X) S
i(X) ≥ dimalb(X)− i.

Proof. Let Z be any irreducible component of Si(X), and choose a point L ∈ Z at
which dimHi(X,L) is as small as possible. If we set m = dimHi(X,L) ≥ 1, then
Z ⊆ Sim(X), and so it suffices to show that

(8.9) dimL S
i
m(X) ≤ dimPic0(X)− dimalb(X) + i.

We are going to estimate the left-hand side in several steps. To begin with,
choose a nonzero element β ∈ H0

(
X,ΩiX ⊗L−1

)
; this is possible because this space

has dimension m ≥ 1. Then we have

dimL S
i
m(X) ≤ dim

{
ω ∈ H0(X,Ω1

X)
∣∣ ω ∧ β = 0

}
≤ dimker e(x) + dim

{
φ ∈ T ∗

xX
∣∣ φ ∧ β(x) = 0

}
.

The first inequality comes from Theorem 8.4, and the second by using the evaluation
morphism e(x) : H0(X,Ω1

X) → T ∗
xX at a point x ∈ X.

Recall thatH0(X,Ω1
X) is the cotangent space to Alb(X); according to Lemma 5.3,

e(x) is the codifferential of the Albanese morphism at the point x. At a sufficiently
general point x, the rank of e(x) is therefore equal to dimalb(X), which means that

dimker e(x) = dimH0(X,Ω1
X)− dim im e(x) = dimPic0(X)− dimalb(X).

The inequality above now becomes

dimL S
i
m(X) ≤ dimPic0(X)− dimalb(X) + dim

{
φ ∈ T ∗

xX
∣∣ φ ∧ β(x) = 0

}
.

After a brief look at (8.9), it is clear that we are reduced to proving that

dim
{
φ ∈ T ∗

xX
∣∣ φ ∧ β(x) = 0

}
≤ i
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for any x ∈ X with β(x) ̸= 0. But since

β(x) ∈
i∧
T ∗
xX ⊗ L−1

x ≃
i∧
T ∗
xX,

this inequality is a consequence of Lemma 8.10 below. We have therefore proved the
generic vanishing theorem. Note that we could use a pointwise argument because
we were working with holomorphic objects; this is the main reason why we needed
Hodge theory. □

Lemma 8.10. Let V be a finite-dimensional vector space, and let β ∈
∧i

V be a
nonzero element. Then dim

{
v ∈ V

∣∣ v ∧ β = 0
}
≤ i.

As mentioned before, (8.8) leads to the following generic vanishing theorem (in
the literal sense of the word).

Corollary 8.11. For a general line bundle L ∈ Pic0(X), one has

Hi(X,L) = 0

for every i < dimalb(X).

Proof. By Theorem 6.6, Si(X) has codimension at least dim alb(X) − i > 0 in
Pic0(X), and for any L ̸∈ Si(X), one has Hi(X,L) = 0. □

Maximal Albanese dimension. The generic vanishing theorem is especially use-
ful whenX hasmaximal Albanese dimension, in the sense that dim alb(X) = dimX.
An equivalent way of putting this is that the Albanese mapping of X is generically
finite over its image.

Example 8.12. A submanifold of a compact complex torus has maximal Albanese
dimension. Similarly, any resolution of singularities of a subvariety of an abelian
variaty has maximal Albanese dimension.

If X has maximal Albanese dimension, then Hi(X,L) = 0 for L ∈ Pic0(X)
general and i < dimX. This has the following numerical consequence.

Corollary 8.13. If X has maximal Albanese dimension, then χ(X,ωX) ≥ 0.

Proof. Let n = dimX. By the Riemann-Roch theorem, the Euler characteristic of
ωX ⊗ L is independent of L (because c1(L) = 0), and so we have

χ(X,ωX) = χ(X,ωX ⊗ L) =

n∑
i=0

(−1)i dimHi(X,ωX ⊗ L)

=

n∑
i=0

(−1)i dimHn−i(X,L−1)

for arbitrary L ∈ Pic0(X). If L is sufficiently general, then all terms with i > 0 are
zero, and we conclude that χ(X,ωX) = dimH0(X,ωX ⊗ L) ≥ 0. □

Example 8.14. Since χ(P1, ωP1) = −1, one can use this to show that every holo-
morphic mapping from P1 to a compact complex torus must be constant; of course,
this can be proved more easily in other ways.

When X has maximal Albanese dimension, the codimension of the set Si(X) is
at least dimX− i. It turns out that the cohomology support loci are indeed getting
smaller as i increases. Here is the precise result.

Proposition 8.15. If X has maximal Albanese dimension, then

Pic0(X) ⊇ Sn(X) ⊇ · · · ⊇ S1(X) ⊇ S0(X) = {OX},
where n = dimX.
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Proof. Fix an index i < n, and suppose that L ∈ Si(X), so that Hi(X,L) ̸= 0.
Then there is a nonzero element

α ∈ H0
(
X,ΩiX ⊗ L−1

)
≃ Hi(X,L).

It will be enough to show that ω∧α ̸= 0 for some choice of ω ∈ H0(X,Ω1
X), because

ω ∧ α ∈ H0
(
X,Ωi+1

X ⊗ L−1
)
≃ Hi+1(X,L).

But this can be proved in the same way as above. Namely, take a sufficiently general
point x ∈ X such that α(x) ̸= 0 and such that alb is a covering map on some
neighborhood of x. Then e(x) : H0(X,Ω1

X) → T ∗
xX is surjective, and so we can

find n holomorphic one-forms ω1, . . . , ωn with the property that ω1(x), . . . , ωn(x)
form a basis for the cotangent space T ∗

xX. But because i < n, it is then immediate
that ωk(x) ∧ α(x) ̸= 0 for some index k. □

Another illustrative example is the case of compact complex tori.

Corollary 8.16. Let X be a compact complex torus of dimension n. For any pair
of integers 0 ≤ p, q ≤ n, and for any L ∈ Pic0(X), one has

Hq
(
X,ΩpX ⊗ L

)
̸= 0 ⇐⇒ L ≃ OX .

Proof. Since X is a group, ΩpX is a trivial bundle of rank
(
n
p

)
, and so it suffices

to prove the assertion when p = 0. Also, by virtue of Proposition 8.15, it will be
enough to show that Sn(X) = {OX}. But since ωX ≃ OX , we have

Hn(X,L) = Hom
(
H0(X,L−1),C

)
by Serre duality, and this group is clearly nonzero if and only if L ≃ OX . □

Exercises.

Exercise 8.1. Prove the linear algebra fact in Lemma 8.10.

Exercise 8.2. Give an algebraic proof for the fact that, on a complex abelian variety
A, one has Hi(A,L) = 0 for every nontrivial line bundle L ∈ Pic0(A).
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Lecture 9

Generic vanishing for holomorphic forms. So far, we have been discussing
only cohomology groups of the form Hi(X,L); you may be asking yourself whether
similar results are true for Hq

(
X,ΩpX ⊗L

)
. There are two different ways to phrase

the question:

(1) Do the groups Hq(X,ΩpX ⊗ L) satisfy a generic vanishing theorem?
(2) Are there codimension bounds for the sets

Sq(X,ΩpX) =
{
L ∈ Pic0(X)

∣∣ Hq(X,ΩpX ⊗ L) ̸= 0
}
,

similar to those in Theorem 6.6?

Note that, because of Serre duality,

Hi(X,L) ≃ Hom
(
Hn−i(X,ωX ⊗ L−1

)
,C

)
,

and so the answer to both questions is ‘yes’ when p = 0 and p = n. The situation
for intermediate values of p turns out to be much more complicated.

By analogy with Corollary 8.11, one might expect that Hq(X,ΩpX ⊗ L) = 0 for

general L ∈ Pic0(X) and p+q < dimalb(X). But this is not the case; in fact, Green
and Lazarsfeld already gave the following counterexample in their first paper.

Example 9.1. Let A be a 4-dimensional abelian variety, and let C ⊆ A be a smooth
curve of genus at least two. We can of course always find such curves by taking
complete intersections of sufficiently ample divisors. Define f : X → A to be the
blowing up of A along C; the exceptional divisor E ⊆ X is the projectivization of
the normal bundle NC|A, and therefore a P2-bundle over C.

C
A

P2

Then f is quite obviously the Albanese mapping of X, and so every holomorphic
line bundle on X with trivial first Chern class is the pullback of some L ∈ Pic0(A).
We are going to show that

(9.2) H2
(
X,Ω1

X ⊗ f∗L
)
̸= 0

for every L ∈ Pic0(A); since f(X) = A is 4-dimensional and 2 + 1 < 4, this shows
that the expected generalization of Corollary 8.11 does not hold.

To evaluate the above cohomology group, let p : E → C denote the restriction
of f . A calculation in local coordinates shows that

(9.3) Rip∗Ω
1
E/C =

®
OC if i = 1,

0 if i ̸= 1;

From the short exact sequence

0 → f∗Ω1
A → Ω1

X → Ω1
E/C → 0

we obtain the exactness of

H2
(
X, f∗(Ω1

A⊗L)
)
→ H2

(
X,Ω1

X⊗f∗L
)
→ H2

(
X,Ω1

E/C⊗f
∗L

)
→ H3

(
X, f∗(Ω1

A⊗L)
)
.
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Because f∗OX ≃ OA and Rif∗OX = 0 for i ≥ 1, we find that

Hi
(
X, f∗(Ω1

A ⊗ L)
)
≃ Hi

(
A,Ω1

A ⊗ L
)
= 0

for L ̸= OA. Consequently, using (9.3), we get

H2
(
X,Ω1

X ⊗ f∗L
)
≃ H2

(
X,Ω1

E/C ⊗ f∗L
)
≃ H1

(
A,OC ⊗ L

)
≃ H1

(
C,L

∣∣
C

)
.

But since the genus of C is at least two, we know that this last group is nonzero
for every L ∈ Pic0(A). This proves (9.2).

The theorem of Green and Lazarsfeld. Green and Lazarsfeld proved the fol-
lowing generic vanishing theorem, in which the Albanese dimension dimalb(X) is
replaced by the codimension of the zero locus of a holomorphic one-form.

Theorem 9.4. Suppose that there is a holomorphic one-form ω ∈ H0(X,Ω1
X)

whose zero locus Z(ω) has codimension ≥ k in X. Then for generic L ∈ Pic0(X),

Hq
(
X,ΩpX ⊗ L

)
= 0 whenever p+ q < k.

Our convention is that k = ∞ if Z(ω) is empty; in that case, a generic line
bundle L ∈ Pic0(X) satisfies Hq

(
X,ΩpX ⊗ L

)
= 0 for every p, q ∈ Z.

To prove Theorem 9.4, we are going to use our deformation theory for cohomology
groups to study the cohomology support loci

Sq(X,ΩpX) =
{
L ∈ Pic0(X)

∣∣ Hq
(
X,ΩpX ⊗ L

)
̸= 0

}
in a neighborhood of the origin in Pic0(X). Just as before, they are related to the
higher direct image sheaves

Rip2∗
(
P ⊗ p∗1Ω

p
X

)
,

where P is the Poincaré line bundle on X × Pic0(X). In a neighborhood of the
point OX ∈ Pic0(X), we can find a bounded complex E• of holomorphic vector
bundles, with the property that

Hi
(
X,ΩpX ⊗ L

)
≃ Hi

(
E•(L)

)
.

By a similar argument as in Lemma 8.2, one shows that the derivative complex
Dv(E

•,OX) is isomorphic to

H0(X,ΩpX) → H1(X,ΩpX) → · · · → Hn(X,ΩpX),

with differential given by wedge product with v ∈ H0,1(X). Using the isomorphisms

Hi(X,ΩpX) ≃ Hp(X,ΩiX)

coming from Hodge theory, the conjugate of the derivative complex becomes

Hp(X,OX) → Hp(X,Ω1
X) → · · · → Hp(X,ΩnX),

with differential given by wedge product with the holomorphic one-form v. Note
that when 0 < p < n, we are dealing with actual cohomology groups; this is the
place where the proof of Theorem 6.6 breaks down. In any case, the criterion in
Corollary 7.12 reduces the proof of Theorem 9.4 to the following result.

Proposition 9.5. Let ω ∈ H0(X,Ω1
X) be a holomorphic one-form whose zero locus

Z(ω) has codimension ≥ k. Then the sequence

Hq(X,Ωp−1
X ) Hq(X,ΩpX) Hq(X,Ωp+1

X )ω∧ ω∧

is exact whenever p+ q < k.
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To prove Proposition 9.5, we use a spectral sequence argument. The holomorphic
one-form determines a Koszul complex K• = K•(Ω1

X , ω); concretely, this is the
complex of holomorphic vector bundles

0 OX Ω1
X Ω2

X · · · ΩnX 0ω∧ ω∧ ω∧ ω∧

If we denote by HiK• the i-th cohomology sheaf of the Koszul complex, then we
have two spectral sequences

′Ep,q1 = Hq(X,Kp) =⇒ Hp+q(X,K•)

and
′′Ep,q2 = Hp

(
X,HqK•) =⇒ Hp+q(X,K•),

both converging to the hypercohomology of the complex K•. We shall prove below
(using Hodge theory) that the first spectral sequence degenerates at E2, meaning
that ′Ep,q2 = ′Ep,q∞ . The behavior of the second spectral sequence is controlled by
the following lemma, which is basically a result in commutative algebra.

Lemma 9.6. Let E be a holomorphic vector bundle of rank n = dimX on a complex
manifold X, and let s ∈ H0(X,E) be a global section whose zero locus Z(s) has
codimension ≥ k. Denote by K• the Koszul complex constructed from s : OX → E,

indexed in such a way that Ki =
∧i

E. Then HqK• = 0 for q < k.

Proof. The sheaf HqK• being supported on Z = Z(s), it suffices to show that its
stalk at any point x ∈ Z vanishes if q < k. Let OX,x be the local ring at such a
point, and mx its maximal ideal. After choosing a local trivialization for E near x,
the section s is given by n holomorphic functions f1, . . . , fn ∈ mx that generate the
ideal of Z in OX,x. Since dimZ ≤ n− k, we may assume without loss of generality
that f1, . . . , fk cut out a subvariety of dimension n − k in some neighborhood of
x ∈ Z. Now OX,x is a regular local ring, and so f1, . . . , fk are then automatically a
regular sequence. By a familiar result in commutative algebra (which you can find,
for example, in Eisenbud’s book), the Koszul complex K(f1, . . . , fn) is therefore
exact in every degree q < k. But

K• ⊗ OX,x ≃ K(f1, . . . , fn),

and so we get the asserted vanishing. □

Granting the fact that the first spectral sequence degenerates at E2, the proof
of Proposition 9.5 is now easily concluded. By assumption, Z(ω) has codimension
≥ k in X, and so Lemma 9.6 shows that HqK• = 0 for q < k. Using the second
spectral sequence, we therefore have

Hp+q
(
X,K•) = 0 for p+ q < k.

From the first spectral sequence, we now deduce that ′Ep,q2 = ′Ep,q∞ = 0 for p+q < k;
but this means exactly that the complex

Hq(X,Ωp−1
X ) Hq(X,ΩpX) Hq(X,Ωp+1

X )ω∧ ω∧

is exact whenever p+ q < k.
To finish the proof of Proposition 9.5, and therefore of Theorem 9.4, it remains

to show prove the degeneration of the first spectral sequence. This holds for any
holomorphic one-form ω, independently of its zero locus.

Proposition 9.7. Let X be a compact Kähler manifold, and let ω ∈ H0(X,Ω1
X)

be a holomorphic one-form. Let K• = K•(Ω1
X , ω) be the complex

OX Ω1
X Ω2

X · · · ΩnX .
ω∧ ω∧ ω∧ ω∧
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Then the first hypercohomology spectral sequence
′Ep,q1 = Hq(X,Kp) =⇒ Hp+q(X,K•)

degenerates at E2.

The proof is a typical application of Hodge theory – indeed, it can be said that
the two main applications of Hodge theory to algebraic geometry are the vanishing
of certain cohomology groups, and the degeneration of certain spectral sequences.
More precisely, it is based on representing cohomology classes by harmonic forms,
and on the principle of two types (see Proposition 3.17).

Proof of Proposition 9.7. Let us briefly recall the construction of the spectral se-
quence. The complex K• is resolved by the double complex with terms Ap,q

X and
differentials ω∧ and ∂̄. All sheaves Ap,q

X are acyclic for the global sections functor,
and so the hypercohomology of K• is computed by the double complex

A0,n(X) A1,n(X) A2,n(X) · · · An,n(X)

...
...

... . .
. ...

A0,2(X) A1,2(X) A2,2(X) · · · An,2(X)

A0,1(X) A1,1(X) A2,1(X) · · · An,1(X)

A0,0(X) A1,0(X) A2,0(X) · · · An,0(X)

ω∧ ω∧ ω∧ ω∧

∂̄ ∂̄ ∂̄ ∂̄

ω∧

∂̄

ω∧

∂̄

ω∧

∂̄

ω∧

∂̄

ω∧

∂̄

ω∧

∂̄

ω∧

∂̄

ω∧

∂̄

ω∧

∂̄

ω∧

∂̄

ω∧

∂̄

ω∧

∂̄

Now obviously ′Ep,q1 ≃ Hp,q(X), and the differential dp,q1 : ′Ep,q1 → ′Ep+1,q
1 is nothing

but wedge product with the (1, 0)-form ω.
To prove that the spectral sequence degenerates, we first show that d2 = 0. Take

an arbitrary element of ′Ep,q2 ; it is represented by a cohomology class in Hp,q(X)
whose wedge product with ω is zero in Hp+1,q(X). Let α ∈ Hp,q(X) be the unique
harmonic representative; by assumption, ω ∧ α is ∂̄-exact. Both α and ω being
harmonic, we have

∂(ω ∧ α) = ∂ω ∧ α− ω ∧ ∂α = 0.

By the ∂∂̄-Lemma, there exists β ∈ Ap−1,q−1(X) such that ω ∧ α = ∂̄∂β, and then

dp,q2 [α] = [ω ∧ ∂β] ∈ ′Ep+2,q−1
2 .

To show that this class is zero, it suffices to prove that ω ∧ ∂β is ∂̄-exact. But it
is clearly ∂̄-closed and, on account of ω ∧ ∂β = −∂(ω ∧ β), also ∂-exact; by the
∂∂̄-Lemma, we therefore have ω∧∂β = ∂̄∂γ for some γ ∈ Ap+1,q−2(X). This proves
that dp,q2 [α] = 0, and hence that d2 = 0.

In the above notation, dp,q3 [α] is then equal to [ω ∧ ∂γ] ∈ ′Ep+3,q−2
3 , and similar

reasoning shows that this class is zero; etc. The details are left as an exercise. □

Codimension bounds. Now let us return to the other question from the begin-
ning of class, namely whether one has codimension bounds for the sets

Sq(X,ΩpX) =
{
L ∈ Pic0(X)

∣∣ Hq(X,ΩpX ⊗ L) ̸= 0
}
.

Despite the counterexample from above, there is in fact an analogue of Theorem 6.6;
it was discovered only recently, by Mihnea Popa and myself, and independently by
Thomas Krämer and Rainer Weissauer.
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Theorem 9.8. Let X be a smooth projective variety. Then one has

codimSq(X,ΩpX) ≥
∣∣p+ q − dimX

∣∣− δ(alb)

where δ(alb) is the so-called defect of semismallness of the Albanese morphism.

In general, the defect of semismallness of a proper morphism f : X → Y between
two complex manifolds is the quantity

δ(f) = dimX ×Y X − dimX = max
ℓ∈N

(
2ℓ− dimX + dimYℓ

)
,

where Yℓ =
{
y ∈ Y

∣∣ dim f−1(y) ≥ ℓ
}
for ℓ ∈ N. This invariant measures, in a

rather subtle way, how complicated the morphism f is. The name comes from the
fact that δ(f) = 0 if and only if f is semismall; this notion plays a role in the theory
of perverse sheaves.

Example 9.9. In Example 9.1, where X was the blowing up of an abelian fourfold
along a curve, you can easily calculate that δ(f) = 1; this explains why the naive
generalization of the generic vanishing theorem does not hold.

One can show that the result in Theorem 9.8 is optimal, in the sense that, on
every X, the inequality becomes an equality for some choice of p, q ∈ Z. On the
other hand, the inequality

codim
{
L ∈ Pic0(X)

∣∣ Hq(X,L) ̸= 0
}
≥ dimX − δ(alb)− q

that we get for p = 0 is weaker than the one in the original generic vanishing
theorem, which reads

codim
{
L ∈ Pic0(X)

∣∣ Hq(X,L) ̸= 0
}
≥ dimalb(X)− q.

The proof of Theorem 9.8 is considerably more difficult than that of the generic
vanishing theorem; the main tool is Morihiko Saito’s theory of Hodge modules.

Exercises.

Exercise 9.1. Complete the proof of Proposition 9.7 by showing that dr = 0 for
every r ≥ 3.

Exercise 9.2. Prove that dimX − δ(f) ≤ dim f(X).
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Lecture 10

Beauville’s theorem. So far, we have been studying properties of cohomology
support loci on arbitrary compact Kähler manifolds. To get a better feeling for the
general result, we shall now look at a special case: our goal will be to understand
the structure of the set

S1(X) =
{
L ∈ Pic0(X)

∣∣ H1(X,L) ̸= 0
}

when X is a compact Kähler manifold. The following example shows how fibrations
of X over curves of genus at least two lead to positive-dimensional components in
S1(X).

Example 10.1. Let C be a smooth compact curve, and suppose that there is a
holomorphic mapping f : X → C with connected fibers. Take any line bundle
L ∈ Pic0(C), and consider the cohomology of its pullback f∗L. Because f has
connected fibers, f∗f

∗L ≃ f∗OX ⊗ L ≃ L; from the Leray spectral sequence

Ep,q2 = Hp
(
C,Rqf∗OX ⊗ L

)
=⇒ Hp+q

(
X, f∗L

)
,

we therefore get an exact sequence

0 → H1(C,L) → H1
(
X, f∗L

)
→ H0

(
C,R1f∗OX ⊗ L

)
→ 0.

If the genus of C is at least two, then H1(C,L) ̸= 0, which means that f∗ embeds
Pic0(C) into S1(X). If the genus of C is equal to one, then H1(C,L) = 0 unless L is
trivial; we shall see below that f may nevertheless be responsible for a component
of S1(X), but that this case is more complicated.

In their first paper, Green and Lazarsfeld conjectured that basically every positive-
dimensional component of S1(X) is of this form. This conjecture was proved shortly
afterwards by Arnaud Beauville. Before we can state Beauville’s theorem, we have
to introduce some notation. Denote by Picτ (X) the set of holomorphic line bundles
L on X whose first Chern class c1(L) ∈ H2(X,Z) is torsion. Note that we have an
exact sequence

0 → Pic0(X) → Picτ (X) → ker
(
H2(X,Z) → H2(X,C)

)
→ 0.

Given a morphism f : X → C with connected fibers, we define

Picτ (X, f) =
{
L ∈ Picτ (X)

∣∣ L is trivial on every smooth fiber of f
}
.

and set Pic0(X, f) = Picτ (X, f) ∩ Pic0(X). We shall see below that Pic0(X, f) is
almost the same as the image of f∗ : Pic0(C) → Pic0(X); the difference has to do
with the singular fibers of f . With that in mind, here is Beauville’s result.

Theorem 10.2. Let X be a compact Kähler manifold. Let {fi : X → Ci}i∈I be the
collection of all fibrations of X onto curves of genus ≥ 1. Then S1(X) is the union
of the following subsets:

(1) Pic0(X, fi) for every i ∈ I with g(Ci) ≥ 2;
(2) Pic0(X, fi) \ f∗i Pic

0(Ci) for every i ∈ I with g(Ci) = 1;
(3) finitely many isolated points.

Note. Frédéric Campana later completed the analysis of S1(X) by showing that
every isolated point has finite order. More recently, Thomas Delzant gave a different
proof for Theorem 10.2, based on ideas from geometric group theory.

The proof divides itself into two parts: (a) Every fibration fi : X → Ci leads
to a positive-dimensional component of S1(X). (b) Conversely, every positive-
dimensional component of S1(X) comes from some fi : X → Ci.
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From fibrations to positive-dimensional components. We begin the proof
of the first part by studying more carefully the case of a fibration f : X → C; as
above, we assume that f has connected fibers, and so f∗OX ≃ OC . Our first goal
is to have a good description of the line bundles in Picτ (X, f).

For every point y ∈ C, the fiber f∗y can be written in the form

f∗y =

d∑
i=1

niEi,

where the Ei are irreducible and reduced; moreover, the union of all the Ei is
connected (by our assumptions on f).

Lemma 10.3. The classes [E1], . . . , [Ed] are linearly independent in H2(X,C).

Proof. The proof of this fact is based on the Hodge index theorem. Fix a Kähler
metric on X, with Kähler form ω. Recall that we have the intersection pairing

α · β =

∫
X

α ∧ β ∧ ωn−2

on the vector space H2(X,C); according to the Hodge index theorem, its signature
is (+1,−1, . . . ,−1) on the subspace H1,1(X). Since F = f∗y is a fiber of f , we
have [F ] · [F ] = 0; moreover, the restriction of the pairing to the subspace

(10.4) [F ]⊥ =
{
α ∈ H1,1(X)

∣∣ α · [F ] = 0
}

is negative semi-definite, and one has α · α = 0 if and only if α is a multiple of [F ].
(Exercise: Deduce these assertions about [F ]⊥ from the Hodge index theorem.)
Note that we have [Ei] · [F ] = 0 for every i = 1, . . . , d, and so [E1], . . . , [Ed] ∈ [F ]⊥.

Before we prove the linear independence, we shall first show that if

α =

d∑
i=1

ci[Ei]

is any element such that α · [Ej ] = 0 for every j = 1, . . . , d, then the coefficient
vector (c1, . . . , cd) ∈ Qd must be a multiple of (n1, . . . , nd). Suppose that this was
not the case. By adding a suitable multiple of [F ], we can then arrange that the
ci are nonzero and do not all have the same sign. The signs define a partition
{1, . . . , d} = I1 ⊔ I2 with ci > 0 for i ∈ I1 and ci < 0 for i ∈ I2, and we obtain∑

i∈I1

ci[Ei] ·
∑
j∈I1

cj [Ej ] =
∑
i∈I1

ci[Ei] ·
∑
j∈I2

(−cj)[Ej ].

Because the union of all the Ei is connected, we must have [Ei] · [Ej ] for at least one
pair (i, j) ∈ I1 × I2; it follows that the right-hand side is > 0. But this contradicts
the Hodge index theorem, because the left-hand side is the square of an element of
[F ]⊥. The conclusion is that (c1, . . . , cd) must be a multiple of (n1, . . . , nd).

To finish the proof, suppose that there is a linear relation c1[E1]+· · ·+cd[Ed] = 0.
By the above, (c1, . . . , cd) = (cn1, . . . , cnd), and so c[F ] = 0. But this can only be
true if c = 0, because F is an effective divisor. □

Now suppose that f∗y =
∑
niEi, and let m be the greatest common divisor of

the coefficients ni. If m > 1, we say that f∗y is a multiple fiber of f ; in that case,
we can write f∗y = mF for some effective divisor F . In the following, we shall
denote by m1F1, . . . ,msFs the multiple fibers of f .

Lemma 10.5. Let D be a divisor on X whose irreducible components are all con-
tained in the fibers of f . Then the class of D in H2(X,C) is equal to zero if and
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only if D = f∗δ +
∑
kiFi, where ki ∈ Z and δ is a divisor on C such that

deg δ +

s∑
i=1

ki
mi

= 0.

Proof. Let F be a general smooth fiber of f . The divisor D is contained in finitely
many fibers of f , and can be decomposed accordingly as D = D1 + · · ·+Dr; note
that [Di] · [F ] = 0. Now if [D] = 0, it follows that [Di] · [Di] = 0, and the Hodge
index theorem implies that [Di] is a multiple of [F ]. By Lemma 10.3, Di is therefore
a rational multiple of the fiber in which it is contained. It follows that

D = f∗δ +

s∑
i=1

kiFi.

Because F is linearly equivalent to miFi, we see that D is linearly equivalent toÅ
deg δ +

s∑
i=1

ki
mi

ã
· F ;

in particular, [D] is zero in H2(X,C) iff the number in parentheses is zero. □

After these preliminaries, we can now describe the set Picτ (X, f) more concretely.

Proposition 10.6. For L ∈ Picτ (X), the following three conditions are equivalent:

(a) The sheaf f∗L is nontrivial.
(b) The restriction of L to every smooth fiber of f is trivial.
(c) There is L0 ∈ Pic0(C) and integers k1, . . . , ks with

∑
ki/mi = 0, such that

L ≃ f∗L0 ⊗ OX
(∑

kiFi

)
.

Proof. Observe that the sheaf f∗L is torsion-free, and therefore locally free (because
C is a smooth curve). This fact makes the equivalence between (a) and (b) easy
to prove. Indeed, if the restriction of L to every smooth fiber of f is trivial, then
f∗L has generic rank one, and is therefore a line bundle on C. Conversely, f∗L ̸= 0
implies by base change that H0(F,L

∣∣
F
) ̸= 0 for every smooth fiber F ; since the

restriction of L is an element of Picτ (F ), and F is a compact smooth curve, it
follows that L

∣∣
F
must be trivial.

Since (c) obviously implies (b), all that remains is to prove the other implication.
Let U ⊆ C be the maximal open subset over which f is smooth. Then f∗L is torsion-
free and its restriction to U has rank one; therefore it must be a line bundle on C.
Now f∗f∗L → L is surjective on f−1(U); after choosing a nontrivial meromorphic
section of f∗L, this implies that L is isomorphic to a line bundle of the form OX(D),
where D is a divisor on X whose irreducible components are contained in the fibers
of f . Because [D] = c1(L) is zero in H2(X,C), we can apply Lemma 10.5 to get

D = f∗δ +

s∑
i=1

kiFi,

where δ is a divisor on C of degree deg δ = −
∑
ki/mi. By adding a suitable

multiple of mi to one of the integers ki, we can arrange that deg δ = 0; if we now
set L0 = OC(δ), we have

L ≃ OX(D) = f∗L0 ⊗ OX
(∑

kiFi

)
. □

Our next goal is to describe the connected components of Picτ (X, f). To that
end, we introduce the subgroup

Γτ (f) ⊆
s⊕
i=1

Z/miZ,
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consisting of all tuples (k1, . . . , ks) such that
∑
ki/mi is an integer. The following

proposition shows that the connected components of Picτ (X, f) are in bijection
with Γτ (f), and that each connected component is isomorphic to Pic0(C).

Proposition 10.7. We have an exact sequence

0 Pic0(C) Picτ (X, f) Γτ (f) 0
f∗ φ

Proof. Note that f∗ Pic0(C) → Picτ (X, f) is injective because f∗OX ≃ OC . Based
on the description of Picτ (X, f) in Proposition 10.6, we would like to define

φ : Picτ (X, f) → Γτ (f), f∗L0 ⊗ OX
(∑

kiFi

)
7→ (k1, . . . , ks).

With this definition, it is clear that φ ◦ f∗ = 0; but it is not clear that φ is inde-
pendent of the representation of the line bundle. We can prove both the exactness
of the sequence, and the fact that φ is well-defined, if we manage to show that

ψ : Γτ (f) → Picτ (X, f)

f∗ Pic0(C)
, (k1, . . . , ks) 7→ OX

(∑
kiFi

)
is an isomorphism. Proposition 10.6 says that ψ is surjective. To prove that ψ is
also injective, suppose that we have integers k1, . . . , ks such that the line bundle
L = OX

(
k1F1+ · · ·+ksFs

)
belongs to f∗ Pic0(C). The restriction of L to Fi is then

trivial; on the other hand, it equals OFi
(kiFi). One can show that the line bundle

OFi
(Fi) has order exactly mi in Pic(Fi); this implies that that mi | ki, which proves

our claim. □

The next step is to calculate H1(X,L) for L ∈ Picτ (X, f). Since we are going
to use the Leray spectral sequence for this, we need to know f∗L.

Proposition 10.8. Suppose that L ∈ Picτ (X) can be written in the form

L = f∗L0 ⊗ OX
(∑

kiFi

)
for L0 ∈ Pic(C) and integers k1, . . . , ks with 0 ≤ ki < mi and

∑
ki/mi ∈ Z. Then

f∗L is isomorphic to L0.

Proof. Let N = OX(k1F1 + · · · + ksFs); then it suffices to show that f∗N ≃ OC .
Consider the exact sequence

0 → N(−Fi) → N → N
∣∣
Fi

→ 0.

By induction on the integer k1 + · · · + ks, it suffices to show that if ki > 0, then
the restriction of N to Fi has no nontrivial global sections. But this restriction
is isomorphic to OFi

(kiFi), and it is known than OFi
(Fi) has order exactly mi in

Pic(Fi). In particular, OFi
(kiFi) is a nontrivial torsion element of Pic(Fi). With

some additional work, one can then show that OFi(kiFi) cannot have a nontrivial
global section. □

The following result generalizes the example from the beginning of class.

Proposition 10.9. Let S be a connected component of Picτ (X, f), and let k1, . . . , ks
be integers such that 0 ≤ ki < mi and such that the line bundles in S are of the
form f∗L0 ⊗ OX(k1F1 + · · ·+ ksFs) for L0 ∈ Pic(C). Then one has

(10.10) dimH1(X,L) ≥ g(C)− 1 +

s∑
i=1

ki
mi

for every L ∈ S.
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Proof. As before, the Leray spectral sequence gives rise to an exact sequence

0 → H1(C,L0) → H1(X,L) → H0
(
C,R1f∗L

)
→ 0,

using that f∗L ≃ L0. By the Riemann-Roch formula,

dimH1(C,L0) = dimH0(C,L0) + g(C)− 1− degL0 ≥ g(C)− 1− degL0;

note that H0(C,L0) ≃ H0(X,L) vanishes unless L ≃ OX . To compute the degree
of L0, let F be any smooth fiber of f ; then miFi is linearly equivalent to F , and so

0 = c1(L) = degL0 · [F ] +
s∑
i=1

ki
mi

[F ],

which implies that degL0 = −
∑
ki/mi. With some additional work, one can show

that the inequality is actually an equality except for finitely many L ∈ S; because
we do not need this fact to prove Theorem 10.2, we shall not dwell on this point. □

The inequality in Proposition 10.9 tells us whether a fibration f : X → C leads
to a positive-dimensional subset of S1(X). This proves one half of Theorem 10.2.

Corollary 10.11. Let f : X → C be a morphism with connected fibers, and let S
be a connected component of Pic0(X, f). Then S ⊆ S1(X), except possibly in the
case when g(C) = 1 and S = f∗ Pic0(C).

Proof. If g(C) ≥ 2, then the right-hand side of (10.10) is positive, and so L ∈ S1(X)
for every L ∈ S. If g(C) = 1, we can draw the same conclusion, except in the case
when k1 = · · · = ks = 0, which corresponds to having S = f∗ Pic0(C). Using
results about vector bundles on elliptic curves, Beauville shows that H1(X,L) = 0
for general L ∈ f∗ Pic0(C), and so f∗ Pic0(C) never contributes a component of
positive dimension when g(C) = 1; in the second part of the proof, we will give a
different argument for this fact. □

From positive-dimensional components to fibrations. We now turn to the
second part of the proof of Theorem 10.2. Suppose that L ∈ S1(X) is a non-isolated
point; we have to show that it lies on some Pic0(X, fi), but not on f∗i Pic

0(C) in
case g(Ci) = 1. Because L is not an isolated point, the criterion in Corollary 8.7
shows that there exists a nonzero holomorphic one-form ω for which the sequence

H0
(
X,L−1

)
H0

(
X,Ω1

X ⊗ L−1
)

H0
(
X,Ω2

X ⊗ L−1
)ω∧ ω∧

is not exact. Because L ∈ Pic0(X, f) if and only if L−1 ∈ Pic0(X, f), this re-
duces the proof of Theorem 10.2 to the following generalization of the classical
Castelnuovo-de Franchis lemma (which is the case L = OX).

Proposition 10.12. Let L ∈ Pic0(X), and suppose that there is a holomorphic
one-form ω ∈ H0(X,Ω1

X) for which the sequence

H0(X,L) H0(X,Ω1
X ⊗ L) H0(X,Ω2

X ⊗ L)ω∧ ω∧

is not exact. Then there is a morphism f : X → C to a curve of genus at least one,
such that ω ∈ f∗H0(C,Ω1

C) and

L ∈ Pic0(X, f) in case g(C) ≥ 2,

L ∈ Pic0(X, f) \ f∗ Pic0(C) in case g(C) = 1.

Proof. By assumption, there is a nonzero holomorphic section α ∈ H0(X,Ω1
X ⊗L)

with the property that α ∧ ω = 0. When L is nontrivial, α is automatically not
exact (because H0(X,L) = 0); when L is trivial, we may assume that α is not a
multiple of ω. The idea is to use α to construct a meromorphic function g on X
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such that dg ∧ ω = 0. This will give us a morphism to P1, and by taking the Stein
factorization, we will obtain the desired fibration of X over a curve.

To construct the meromorphic function, recall two facts from Hodge theory. The
first is that the line bundle L admits a Hermitian metric whose Chern connection
∇ : L → A1(L) is flat. Concretely, L can be described by an operator of the form
∂̄ + τ , for τ ∈ H0,1(X), and then ∇ = d + τ − τ̄ . The second fact is that every
holomorphic section of ΩpX⊗L is∇-harmonic, and therefore automatically∇-closed;
for the details, refer back to Theorem 6.2, whose proof was based on the Kähler
identities for the operators ∂̄ + τ and ∂ − τ̄ .

Now back to the construction of the meromorphic function g. The relation
α ∧ ω = 0 implies that α = ω ⊗ s for a meromorphic section of L; this section is
holomorphic at all points where ω is not zero. (See Lemma 10.13 for the proof.)
Hodge theory implies that ∇α = 0 and dω = 0, and so we get ω ∧ ∇s = 0 (as a
meromorphic section of Ω2

X⊗L). As before, this means that there is a meromorphic
function g on X with the property that ∇s = gω ⊗ s; note that g is holomorphic
on the set where ω⊗ s is holomorphic and nonzero. If we apply the flat connection
∇ one more time, we obtain

0 = ∇(∇s) = ∇
(
gω ⊗ s

)
= dg ∧ ω ⊗ s+ gdω ⊗ s− gω ∧∇s = dg ∧ ω ⊗ s,

which leads to the desired relation dg ∧ ω = 0.
We now use g to construct a fibration f : X → C with g(C) ≥ 1. By our

choice of α, the meromorphic section s cannot be holomorphic, and therefore has
poles; a local calculation shows that ∇s must have poles of higher order, which
means that the one-form gω = s−1∇s cannot be holomorphic. Equivalently, g is
not constant, and therefore defines a nontrivial meromorphic mapping from X to
P1. After resolving indeterminacies by blowing up along complex submanifolds,
we obtain holomorphic mappings p : X̃ → X and g̃ : X̃ → P1 such that g̃ is an
extension of g ◦ p. Now consider the Stein factorization

X̃ C P1

X

p

f

g̃

of g̃; by definition, f : X̃ → C has connected fibers, and C → P1 is finite. Because
dg∧ω = 0, the restriction of p∗ω to a general fiber of f is zero; consequently, p∗ω is
the pullback of a meromorphic one-form ω0 on C. Because f∗ω0 is holomorphic, ω0

is necessarily holomorphic as well; it follows that g(C) ≥ 1. Now all the exceptional

divisors of p : X̃ → X have to map to points in C, and so we conclude, after the
fact, that g was actually defined everywhere. In particular, we may assume without
loss of generality that X̃ = X and ω = f∗ω0. This gives us the desired fibration
f : X → C over a curve of genus at least one.

To prove that L ∈ Pic0(X, f), we return to the relation α = f∗ω0 ⊗ s. Because
α is holomorphic, there is an effective divisor δ on C such that pole divisor of s is
contained in f∗δ; for example, we can take the divisor of zeros of ω0. Now s is a
nontrivial holomorphic section of L⊗ OX(f∗δ), and so

H0
(
X,L⊗ OX(f∗δ)

)
≃ H0

(
C, f∗L⊗ OC(δ)

)
̸= 0.

This shows that f∗L is nontrivial, and therefore L ∈ Pic0(X, f) by Proposition 10.6.
To conclude the proof, it remains to eliminate the possibility that g(C) = 1 and

L = f∗L0 for some L0 ∈ Pic0(C). But if this was the case, then ω0 would be a
holomorphic one-form on an elliptic curve, and therefore without zeros. As above,
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the relation α = f∗ω0 ⊗ s shows that s is a holomorphic section of L, which is
only possible if L ≃ OX and s is constant; but then α would be proportional to ω,
contradicting our inital choice. □

During the proof, we used the following elementary lemma.

Lemma 10.13. If α ∈ H0(X,Ω1
X ⊗ L) satisfies ω ∧ α = 0 for some nonzero

ω ∈ H0(X,Ω1
X), then α = ω ⊗ s for a meromorphic section s of L.

Proof. The best way to see this is as follows: Choose a local trivialization of L, say
by a nonvanishing section σU ∈ H0(U,L), and write ω

∣∣
U
= f1dz1 + f2dz2 in local

holomorphic coordinates z1, z2 on U . Then

α
∣∣
U
= (u1dz1 + u2dz2)⊗ σ,

for holomorphic functions u1, u2 ∈ H0(U,OX), and ω ∧ α = 0 is equivalent to
u1f2 − u2f1 = 0. But then

α
∣∣
U
= ω ⊗ u1

f1
σU = ω ⊗ u2

f2
σU ,

and so sU = u1/f1σU = u2/f2σU is a meromorphic section of L on U , holomorphic
outside the zero locus of ω. Because α is a global section of Ω1

X⊗L, it is easy to see
that these sections glue together into a global meromorphic section of L on X. □

Exercises.

Exercise 10.1. Prove the assertions about the subspace in (10.4). (Hint: If ω is a
Kähler form on X, then the Hodge index theorem says that the intersection pairing
is negative definite on the subspace [ω]⊥.)

Exercise 10.2. Let mF be a multiple fiber of f : X → C. Show that OF (kF ) has
no nontrivial global sections unless m | k. (Hint: Use Lemma 10.5.)

Exercise 10.3. Show that Picτ (X, f) ̸= f∗ Pic0(C) exactly when the fibration
f : X → C has two multiple fibers miFi and mjFj that satisfy gcd(mi,mj) ̸= 1.

Exercise 10.4. Prove the classical Castelnuovo-de Franchis lemma: Suppose that
α, β ∈ H0(X,Ω1

X) are two linearly independent holomorphic one-forms on a com-
pact Kähler manifold, with α ∧ β = 0. Then there is a fibration f : X → C to a
curve of genus at least two such that α and β lie in the image of H0(C,Ω1

C).

Exercise 10.5. Let f1 : X → C1 and f2 : X → C2 be two fibrations over curves of
genus at least two. Show that if f∗1 Pic0(C1) ⊆ f∗2 Pic0(C2), then C1 = C2.

Exercise 10.6. Prove that on a given compact Kähler manifold, there are only
finitely many fibrations over curves of genus at least two. Find an example with
infinitely many fibrations over an elliptic curve.
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Lecture 11

The structure of cohomology support loci. Our topic today is the second
paper of Green and Lazarsfeld, which describes in more detail the structure of the
cohomology support loci

Sim(X) =
{
L ∈ Pic0(X)

∣∣ dimHi(X,L) ≥ m
}
.

Here is the main result, suggested by Beauville’s theorem about S1(X).

Theorem 11.1. Let Z ⊆ Sim(X) be an irreducible component. Then Z is a trans-
late of a subtorus of Pic0(X).

The idea of the proof is the following. Recall that we constructed Pic0(X) as
the quotient V/Λ, where V = H0,1(X) is the space of harmonic (0, 1)-forms on X.
Translates of subtori are characterized by the fact that their preimage in V is the
translate of a linear subspace. We will prove a much stronger statement, namely
that the higher direct image sheaves of the Poincaré bundle are locally computed
by a linear complex (= a complex of trivial vector bundles whose differentials are
matrices of linear forms).

Green and Lazarsfeld originally thought of this as the vanishing of higher ob-
structions. Recall that infinitesimal deformations of cohomology, and therefore the
infinitesimal structure of the locus Sim(X), are described by the derivative complex.
In the case of a linear complex, no information is lost when taking the derivative
complex; this means that there are no obstructions to extending infinitesimal de-
formations. Indeed, a linear space has the property that every tangent vector can
be continued to an actual line inside the space. We will see later how this fact leads
to improvements in the infinitesimal results, too.

The linearity theorem. During the proof of the generic vanishing theorem, we
appealed to the general result in Theorem 6.7 to find a bounded complex of vector
bundles that computes the higher direct image sheaves of the Poincaré bundle. This
time around, we shall use Hodge theory to write down such a complex explicitly.

We begin by recalling the definition of the Poincaré bundle. Choose a base point
x0 ∈ X, and let P denote the Poincaré bundle on X ×Pic0(X); it is a holomorphic
line bundle whose defining property is that

P
∣∣
X×{L} ≃ L and P

∣∣
{x0}×Pic0(X)

≃ OPic0(X).

From the construction of the Poincaré bundle in Proposition 6.5, the pullback of P
to X × V can be described as follows: the underlying smooth vector bundle is the
trivial bundle X × V × C, and the complex structure is given by the operator

∂̄P̃ = ∂̄X×V +

g∑
j=1

tj · p∗1vj .

Here v1, . . . , vg are a basis of V = H0,1(X), and t1, . . . , tg ∈ V ∗ is the dual basis,
which we view as a linear coordinate system on V (centered at the origin).

In the notation of the commutative diagram

X × V X × Pic0(X)

V Pic0(X)

p2

id×π

p2

π

we have π∗Rip2∗P ≃ Rip2∗P̃ , where P̃ = (id×π)∗P . Because the projection from
V to Pic0(X) is a local biholomorphism, we can therefore work on V .
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The first step is to construct a good resolution for the line bundle P̃ to compute
the higher direct images. To that end, we decompose the ∂̄-operator on X × V as

∂̄X×V = ∂̄X + ∂̄V ,

where ∂̄X is differentiation in the X-direction, and ∂̄V in the V -direction. We can
then introduce sheaves K q, defined by

Γ
(
U,K q

)
=

{
α ∈ A0,q

X×V/V (U)
∣∣ ∂̄V α = 0

}
for any open set U ⊆ X × V . To make this more concrete, let z1, . . . , zn be
local holomorphic coordinates on X, and recall that also have a coordinate system
t1, . . . , tg on V . Then sections of K q are smooth (0, q)-forms that can be locally
written in the form∑

j1,...,jq

fj1,...,jq (z1, . . . , zn, t1, . . . , tg) · dz̄j1 ∧ · · · ∧ dz̄jq ,

with fj1,...,jq smooth functions in the coordinates z1, . . . , zn, t1, . . . , tg that are holo-
morphic in t1, . . . , tg. We have the following variant of Lemma 5.5.

Lemma 11.2. Let n = dimX. Then the complex of sheaves

K 0 → K 1 → · · · → K n,

with differential ∂̄X +
∑g
j=1 tj · p∗1vj, is a resolution of P̃ .

Proof. With a little bit of care, this follows from the usual holomorphic Poincaré
lemma. Locally on X, we can certainly find smooth functions f1, . . . , fn with the
property that vj = ∂̄fj . Now it is easy to check that the function

ef = exp

g∑
j=1

tjfj

is a nowhere vanishing local solution of the differential equationÑ
∂̄X −

g∑
j=1

tj · p∗1vj

é
ef = 0.

Now suppose that we have a smooth form α ∈ K q(U) withÄ
∂̄X +

∑
tjp

∗
1vj
ä
α = 0.

Then the properties of ef imply that ∂̄X
(
efα

)
= 0; note that efα is still a local

section of K q. According to the usual holomorphic Poincaré lemma, we can find
β ∈ A0,q−1

X×V/X(U) with efα = ∂̄Xβ. But then

α =
Ä
∂̄X×V +

∑
tj · p∗1vj

ä
(e−fβ),

which almost proves the exactness of the complex. The only question is whether we
can take β ∈ K q−1(U), meaning subject to the condition ∂̄V β = 0. This actually
follows from the proof of the holomorphic Poincaré lemma: it involves integrating
efα, and by differentiating under the integral sign, one can show that β is again
holomorphic in t1, . . . , tg. □

This resolution is good for computing the higher direct images of P̃ , because of
the following fact.

Lemma 11.3. For each q = 0, . . . , n, we have Rip2∗K q = 0 for i > 0, which
means that the sheaf K q is acyclic for the functor p2∗.

Proof. This follows by using a partition of unity on X; the point is that we can
multiply by smooth functions on X without affecting the condition ∂̄V α = 0. □
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Because each of the sheaves K q in the resolution is acyclic for p2∗, the complex
of sheaves K• = p2∗K • computes the higher direct image sheaves of P̃ . Concretely,
we have

Γ(U,Kq) = Γ
(
U, p2∗K

q
)
=

{
α ∈ A0,q

X×V/V (X × U)
∣∣ ∂̄V α = 0

}
,

and so Kq is a sheaf of OV -modules. Even though the individual sheaves in the
complex are far from being coherent, we know from Grauert’s direct image theorem
that the cohomology sheaves of K• are coherent sheaves on V .

Now we will use Hodge theory to define a subcomplex H• ⊆ K• that is linear.
Fix a line bundle L ∈ Pic0(X), and choose a harmonic (0, 1)-form τ such that L
is isomorphic to the holomorphic line bundle defined by the operator ∂̄ + τ . For
convenience, we recenter the coordinate system t1, . . . , tg on V at the point τ ; then

∂̄P̃ =
(
∂̄X×V + p∗1τ

)
+

g∑
j=1

tj · p∗1vj .

Let ∇ = d+ τ − τ̄ be the Chern connection for the Hermitian metric on L (induced
from the isomorphism of smooth vector bundles L ≃ X×C), and consider the space
of ∇-harmonic forms

H0,q(X,L) =
{
α ∈ A0,q(X)

∣∣ α is ∇-harmonic
}
.

Recall from Theorem 6.2 that ∇-harmonic forms are automatically in the kernel of
∂̄ + τ and of ∂ − τ̄ ; moreover, every cohomology class contains a unique harmonic
representative, and so H0,q(X,L) ≃ Hq(X,L). We can then define locally free
sheaves

Hq = H0,q(X,L)⊗ OV ;

sections of Hq are naturally also sections of the sheaf p2∗K q, which means that
Hq ⊆ Kq. If we apply the differential ∂̄P̃ to a section α⊗ f of Hq, we find that

∂̄P̃ (α⊗ f) = (∂̄ + τ)α⊗ f +

g∑
j=1

(vj ∧ α)⊗ tjf =

g∑
j=1

(vj ∧ α)⊗ tjf,

because (∂̄ + τ)α = 0. This expression is linear in t1, . . . , tg. To prove that H• is
indeed a subcomplex, we have to show that ∂̄P̃ (α⊗ f) is again section of Hq+1.

Lemma 11.4. If α ∈ H0,q(X,L) and v ∈ H0,1(X), then v ∧ α ∈ H0,q+1(X,L).

Proof. Because of the Kähler identities, we have

1

2

(
∇∇∗ +∇∗∇

)
= (∂ − τ̄)(∂ − τ̄)∗ + (∂ − τ̄)∗(∂ − τ̄),

and so it suffices to show that

(∂ − τ̄)(v ∧ α) = 0 and (∂ − τ̄)∗(v ∧ α) = 0.

The second equality holds by default, and for the first one, we compute that

(∂ − τ̄)(v ∧ α) = ∂(v ∧ α)− τ̄ ∧ v ∧ α = −v ∧ (∂α) + v ∧ τ̄ ∧ α = 0,

using that ∂v = 0 and ∂α = τ̄ ∧α. We conclude that v∧α is again ∇-harmonic. □

The lemma shows that the complex of locally free sheaves

H0 → H1 → · · · → Hn,

with differential

α⊗ f 7→
g∑
j=1

(vj ∧ α)⊗ tjf,
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is a subcomplex of K0 → K1 → · · · → Kn. Now all that we have to do is prove that
the cohomology sheaves of the subcomplex are still isomorphic to Rip2∗P̃ . This is
true at least in a neighborhood of the point τ ∈ V ; because the subcomplex is
defined using the cohomology of L, a local result is the best we can hope for.

Lemma 11.5. The inclusion H• ↪→ K• is a quasi-isomorphism on an open neigh-
borhood of the point τ ∈ V .

Proof. Let R = OV,τ be the local ring at the point τ , and let m be its maximal
ideal; m is generated by the holomorphic functions t1, . . . , tg. Since the cohomology
sheaves of both complexes are coherent, it suffices to prove thatH•⊗R ↪→ K•⊗R is
a quasi-isomorphism. We shall prove this by using a spectral sequence calculation.

To simplify the notation, we continue to denote the two complexes of R-modules
by H• and K•. On K•, we define a decreasing filtration by setting

F pK• = mpK•,

and consider the associated spectral sequence. We have

Ep,q0 (K•) =
F pKp+q

F p+1Kp+q
≃ A0,p+q(X)⊗C

mp

mp+1
,

because Kp+q(τ) = p2∗K p+q ⊗ C(τ) ≃ A0,p+q(X). The differentials dp,q0 are given
by the formula (∂̄ + τ)⊗ id, and so Lemma 5.5 shows that

Ep,q1 (K•) ≃ Hp+q(X,L)⊗C
mp

mp+1
.

Because the R-modules Ki are not finitely generated, it is not immediately clear
that the spectral sequence converges. According to the standard convergence cri-
terion (which is proved for example in Theorem 3.3 of McLeary’s book on spectral
sequences), the spectral sequence of a filtered complex converges provided that⋃

p∈Z
F pKi = Ki and

⋂
p∈Z

F pKi = {0}.

In our case, the first condition is obviously true (F 0Ki = Ki), while the second,

∞⋂
p=1

F pKi =
∞⋂
p=1

mpKi = {0},

follows from the fact that sections of p2∗K i are holomorphic in t1, . . . , tg. Con-
sequently, the spectral sequence converges to the cohomology of K•, or in other
words, to the stalk at the point τ of the coherent sheaves Rip2∗P̃ .

Similarly, we have a decreasing filtration

F pH• = mpH•,

and the associated spectral sequence satisfies

Ep,q0 (H•) =
F pHp+q

F p+1Hp+q
≃ H0,p+q(X,L)⊗C

mp

mp+1
.

Because the differentials in the complex H• are linear in t1, . . . , tg, we have d
p,q
0 = 0,

and so the E1-page of the spectral sequence is also given by

Ep,q1 (H•) ≃ H0,p+q(X,L)⊗C
mp

mp+1
.

It converges to the cohomology of H•.
Now observe that the inclusion H• ↪→ K• induces a morphism between the two

spectral sequences. To prove that the resulting morphism between their limits is
an isomorphism, it suffices to show that Ep,q∞ (H•) ≃ Ep,q∞ (K•); this is because
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both spectral sequences are convergent, and because their limits are finitely gen-
erated R-modules. But in fact, we already have Ep,q1 (H•) ≃ Ep,q1 (K•) because
H0,p+q(X,L) ≃ Hp+q(X,L) by Hodge theory. This proves that the two complexes
are quasi-isomorphic on the level of stalks, and therefore in a small open neighbor-
hood of the point τ ∈ V . □

The structure theorem and its consequences. We can now prove the structure
theorem of Green and Lazarsfeld for cohomology support loci.

Theorem. Let Z ⊆ Sim(X) be an irreducible component. Then Z is a translate of
a subtorus of Pic0(X).

Proof. The result being trivial for m = 0, we may assume that m ≥ 1. After
increasing the value of m, if necessary, we can arrange that dimHi(X,L) = m for
all L in a Zariski-open subset Z0 ⊆ Z; without loss of generality, Z0 is contained
in the smooth locus of Z. Take any line bundle L ∈ Z0 and choose a harmonic
(0, 1)-form τ ∈ V such that the operator ∂̄ + τ represents L. By our choice of Z0,
the intersection π−1(Z0)∩U is a complex submanifold of any sufficiently small open
set U containing the point τ .

V

τ

U

We will use the linearity theorem to show that this submanifold must be the trace
of an affine subspace (namely, the tangent space to π−1(Z0) at the point τ). In a

neighborhood U of the point τ , the sheaves Rip2∗P̃ are computed by the complex

H0,0(X,L)⊗ OV → H0,1(X,L)⊗ OV → · · · → H0,n(X,L)⊗ OV

with differential α⊗f 7→
∑

(vj ∧α)⊗ tjf . The intersection between U and π−1(Z0)
consists of those points where the i-th cohomology of the complex ism-dimensional.
But dimH0,i(X,L) = dimHi(X,L) = m, and so this happens precisely at those
points where the two differentials next to H0,i(X,L) are zero. Because both are
matrices of linear forms in t1, . . . , tg, it follows that π

−1(Z0)∩U is an affine subspace
of V ; this affine subspace is of course nothing but the holomorphic tangent space
to π−1(Z0) at the point τ .

V

τ

U

We have now arrived at the following situation: π−1(Z0) is covered by open subsets
of V , each of which intersects π−1(Z0) in an affine subspace of V . This means that
the function that assigns to a point of π−1(Z0) its holomorphic tangent space, is
locally constant. But this function is clearly holomorphic, and because π−1(Z0) is
connected, it must be constant. Consequently, π−1(Z0) is a dense open subset of
an affine subspace, and π−1(Z) an affine subspace. You can prove as an exercise
that this can only happen when Z is a translate of a subtorus. □
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Exercises.

Exercise 11.1. Show that if Z is an analytic subvariety of a compact complex torus
V/Γ, and if π−1(Z) is equal to a linear subspace of V , then Z must be a subtorus.
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Lecture 12

Consequences for the infinitesimal results. Last time, we showed that, locally
on Pic0(X), the higher direct image sheaves Rip2∗P are computed by a linear
complex. This fact leads to several improvements in our infinitesimal results. The
point is that a linear complex is its own derivative complex (up to identifying a
neighborhood of the given point with a neighborhood in the tangent space). In
particular, the inclusion in Theorem 7.6 now becomes

(12.1) TC x

(
Sim(E•)

)
= Sim

(
D(E•, x)

)
.

All the consequences of this result also become stronger: for example, Corollary 7.11
now gives us the following formula for the dimension of cohomology support loci.

Corollary 12.2. Set m = dimHi
(
E•(x)

)
. Then

dimx S
i
m(E•) = dim

{
v ∈ T

∣∣ Dv(d
i, x) = 0 and Dv(d

i−1, x) = 0
}
.

Another useful improvement is a necessary and sufficient condition for isolated
points, strengthening Corollary 7.13.

Corollary 12.3. Set m = dimHi
(
E•(x)

)
. Then x is an isolated point of Sim(E•)

if and only if Hi
(
Dv(E

•, x)
)
= 0 for every nonzero v ∈ TxX.

Of course, all of those results hold for any linear complex E•.

Generalization of Beauville’s theorem. Returning to geometric consequences
of Theorem 11.1, we can now also prove a generalization of Beauville’s result about
S1(X).

Theorem 12.4. Let Z ⊆ Sim(X) be an irreducible component for some m ≥ 1.
Then there exists a normal analytic space Y with dimY ≤ i, and a surjective
holomorphic mapping f : X → Y with connected fibers, such that Z is contained
in a translate of f∗ Pic0(Y ). Moreover, any resolution of singularities of Y has
maximal Albanese dimension.

Note that the result is weaker than Beauville’s theorem, because we are not
claiming that f∗ Pic0(Y ) ⊆ Sim(X); in fact, there are examples where Z is strictly
smaller than the translate of f∗ Pic0(X) that it is contained in. Also note that
varieties of maximal Albanese dimension are one possible generalization of curves
of genus ≥ 1.

Proof. According to Theorem 11.1, there is a subtorus T ⊆ Pic0(X) such that Z

is equal to a translate of T . Let T̂ = Pic0(T ) be the dual torus; because Alb(X) is
dual to Pic0(X), the inclusion T ↪→ Pic0(X) gives rise to a surjective holomorphic

mapping Alb(X) → T̂ . By composing it with the Albanese mapping, we obtain a

holomorphic mapping h : X → T̂ ; consider its Stein factorization

(12.5) X Y T̂
f

h

g

Then Y is a normal analytic space, f : X → Y has connected fibers, and Y is finite
over its image in T̂ (which implies in particular that any resolution of singularities
of Y has maximal Albanese dimension). It remains to show that dimY ≤ i, and
that Z is contained in a translate of f∗ Pic0(Y ).

The second assertion is easy. After dualizing again, the mapping Alb(X) → T̂

induces an inclusion Pic0(T̂ ) ↪→ Pic0(X) that coincides with the original embedding

of T ≃ Pic0(T̂ ) into Alb(X) ≃ Pic0
(
Pic0(X)

)
. Because of the factorization in
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(12.5), the inclusion T ↪→ Pic0(X) factors through Pic0(Y ), which means precisely
that Z is contained in a translate of f∗ Pic0(Y ).

To prove that dimY ≤ i, let L be a sufficiently general point of Z, and let
v1, . . . , vd ∈ H0,1(X) be a basis for the tangent space to Z at the point L. By
assumption, dimHi(X,L) ≥ 1, and so there is a nonzero α ∈ H0,i(X,L). Because
vj belongs to the tangent space, the derivative complex in the direction of vj must
have zero differentials, which means that vj ∧ α = 0 for j = 1, . . . , d. If we set
ωj = vj ∈ H0(X,Ω1

X), and β = α ∈ H0
(
X,ΩiX⊗L−1

)
, then equivalently ωj∧β = 0

for j = 1, . . . , d.
Now it is not hard to show that〈

ω1, . . . , ωd
〉
= im

(
h∗ : H0

(
T̂ ,Ω1

T̂

)
→ H0(X,Ω1

X)
)
.

At a general point x ∈ X, the rank of the mapping h : X → T̂ is therefore equal
to the dimension of the span of ω1(x), . . . , ωd(x). On the other hand, the rank is
equal to the dimension of h(X) = g(Y ); because Y is finite over g(Y ), we get

dimY = dim
〈
ω1(x), . . . , ωd(x)

〉
for general x ∈ X. After choosing a local trivialization for L−1 near the point x,

we may consider β(x) as a nonzero element of
∧i

T ∗
xX; since ωj(x) ∧ β(x) = 0 for

j = 1, . . . , d, we conclude from Lemma 8.10 that

dimY = dim
〈
ω1(x), . . . , ωd(x)

〉
≤ i.

This completes the proof. □

As a matter of fact, Theorem 12.4 immediately gives us another proof of the
generic vanishing theorem.

Corollary 12.6. One has codimSi(X) ≥ dimalb(X)− i.

Proof. Let Z ⊆ Si(X) be any irreducible component, and let f : X → Y be a
fibration with the properties described in Theorem 12.4.

X Y

Alb(X) T̂

alb

f

g

In the notation of the preceding proof, alb(X) maps onto g(Y ), and the fibers are

contained in the fibers of the surjective mapping Alb(X) → T̂ ; this leads to

dimAlb(X)− dim T̂ ≥ dimalb(X)− dim g(Y ).

Because dim g(Y ) = dimY and dimZ = dim T̂ , we can rewrite this as

codimZ ≥ dimalb(X)− dimY ≥ dimalb(X)− i,

using that dimY ≤ i. This proves the asserted inequality. □

The advantage of this method – namely, of first proving a structure theorem for
cohomology support loci, and then deducing inequalities for their codimension – is
that it generalizes to other situations. For example, the results about holonomic D-
modules on abelian varieties that I talked about in last week’s seminar are proved
by the same method.
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Kodaira dimension. The results of Green and Lazarsfeld have many surprising
applications to algebraic geometry. The first one is a very simple proof for a theorem
of Kawamata about varieties of Kodaira dimension zero. In order to appreciate
those results better, let us first understand the problem.

In fact, we shall begin with a brief review of Kodaira dimension. (If you need
more details, please see Section 2.1 in Lazarsfeld’s book Positivity in algebraic
geometry.) Let X be a smooth projective variety – in fact, it would be enough to
assume that X is normal – and let L be a line bundle on X. If L⊗m has nontrivial
global sections, then it defines a rational mapping

ϕm : X P
(
H0(X,L⊗m)

)
and we let Ym = ϕm(X) denote the closure of its image. The Iitaka dimension of
the line bundle L is defined to be

κ(X,L) = max
m∈N

(
dimYm

)
if H0(X,L⊗m) ̸= 0 for at least one m ≥ 1; if not, we set κ(X,L) = −∞. In fact,
one has dimYm = κ(X,L) once m is sufficiently large and divisible; moreover, there
are positive constants C1, C2 with the property that

C1 ·mκ(X,L) ≤ dimH0(X,L⊗m) ≤ C2 ·mκ(X,L),

where m is again assumed to be sufficiently large and divisible.
One can show that, for m sufficiently large, the rational mappings ϕm stabilize

in the following sense: there is a morphism ϕ∞ : X∞ → Y∞ between two smooth
projective varieties, such that ϕm is birationally equivalent to ϕ∞. This morphism
is unique up to birational equivalence, and is called the Iitaka fibration of the line
bundle L. By construction, dimY∞ = κ(X,L); moreover, ϕ∞ is an algebraic fiber
space, meaning that it has connected fibers. It is also known that the restriction of
L to a very general fiber of ϕ∞ has Iitaka dimension equal to zero.

The most interesting case of the above considerations is when L = ωX is the
canonical bundle of a smooth projective variety. In that case, κ(X) = κ(X,ωX)
is called the Kodaira dimension of X, and ϕ∞ : X∞ → Y∞ is called the Iitaka
fibration of X. Note that X∞ is birational to X, and that a very general fiber of
ϕ∞ has Kodaira dimension zero. If we define the m-th plurigenus of X as

Pm(X) = dimH0(X,ω⊗m
X ),

then we have C1 ·mκ(X) ≤ Pm(X) ≤ C2 ·mκ(X) form sufficiently large and divisible,
and so the Kodaira dimension tells us the rate of growth of the plurigenera.

Varieties of Kodaira dimension zero. Because of the Iitaka fibration, an im-
portant problem in birational geometry is to understand the structure of varieties
of Kodaira dimension zero. There is the following precise conjecture, due to Kenji
Ueno; it is part of a general set of conjectures about the behavior of the Kodaira
dimension in algebraic fiber spaces.

Conjecture 12.7 (Ueno’s Conjecture K). Let X be a smooth projective variety
with κ(X) = 0, and let alb: X → Alb(X) denote its Albanese mapping. Then

(i) alb is surjective with connected fibers;
(ii) if F is a general fiber of alb, then κ(F ) = 0;
(iii) after passing to a finite étale cover, X becomes birational to F ×Alb(X).

The status of this conjecture is the following. (i) was proved by Yujiro Kawa-
mata, using rather difficult arguments from Hodge theory. Subsequently, Lawrence
Ein and Robert Lazarsfeld found a very simple proof based on Theorem 11.1, and
we shall discuss at least the first half of it today. (ii) has been proved by Junyan
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Cao and Mihai Păun; an earlier claimed proof by Jungkai Chen and Christopher
Hacon turned out to have a gap. (iii) is wide open.

Ueno’s conjecture is important because it is a test case of a more general con-
jecture, known as Iitaka’s Conjecture Cm,n, which predicts that if f : X → Y is
an algebraic fiber space with general fiber F , then κ(X) ≥ κ(Y ) + κ(F ). This
conjecture is only known in special cases, most importantly when the fiber F is of
general type (in the sense that κ(F ) = dimF ).

We will spend the remainder of today’s class by going through the very pretty
proof of the following theorem by Ein and Lazarsfeld.

Theorem 12.8. Let X be a smooth projective variety of Kodaira dimension zero.
Then the Albanese mapping alb: X → Alb(X) is surjective.

The proof is based on two surprisingly simple observations. But first, a word
about the meaning of the condition κ(X) = 0. By definition, the sequence of pluri-
genera Pm(X) is bounded; actually, we even have Pm(X) ≤ 1 for all m. Indeed,
if Pm(X) ≥ 2 for some m, then we could find two linearly independent sections of
ω⊗m
X , and by multiplying these together, we would get Pkm(X) ≥ k + 1, contra-

dicting κ(X) = 0. Thus we can say that if X has Kodaira dimension zero, then
Pm(X) = 1 for m sufficiently large and divisible.

For the time being, we shall assume that P1(X) = P2(X) = 1. The first obser-
vation is that this condition has an effect on the locus Sn(X), where n = dimX.

Proposition 12.9. If P1(X) = P2(X) = 1, then OX is an isolated point of Sn(X).

Proof. Since P1(X) ̸= 0, we have

Hn(X,OX) ≃ Hom
(
H0(X,ωX),C

)
̸= 0,

and so OX ∈ Sn(X). Suppose that it is not an isolated point. Then by Theo-
rem 11.1, Sn(X) contains a subtorus T of positive dimension. In particular, T is a
subgroup, and so if L ∈ T , then also L−1 ∈ T . This means that the image of the
multiplication map

H0(X,ωX ⊗ L)⊗H0(X,ωX ⊗ L−1) → H0(X,ω⊗2
X )

is nonzero for every L ∈ T . Now ω⊗2
X only has one global section because P2(X) = 1;

let D be the corresponding effective divisor on X. By the above, the divisor of any
global section of ωX ⊗L has to be contained in D; but because D has only finitely
many irreducible components, we can find two distinct points L1, L2 ∈ T , and
nontrivial sections s1 ∈ H0(X,ωX ⊗ L1) and s2 ∈ H0(X,ωX ⊗ L2), such that
div s1 = div s2. But then ωX ⊗ L1 ≃ ωX ⊗ L2, which contradicts the fact that L1

and L2 are distinct points of T . □

The second observation of Ein and Lazarsfeld is that Sn(X) is closely related to
the geometry of the Albanese mapping.

Proposition 12.10. If the origin is an isolated point of Sn(X), then the Albanese
mapping alb: X → Alb(X) is surjective.

Proof. Since OX lies in Sn(X), we have H0(X,ωX) ≥ 1. Let s ∈ H0(X,ωX) be
any nontrivial section. Because OX is an isolated point of Sn(X), the criterion in
Corollary 12.3 shows (after conjugating) that the mapping

H0(X,Ωn−1
X ) H0(X,ΩnX)ω∧

is surjective for every nonzero ω ∈ H0(X,Ω1
X). In particular, we have s(x) = 0

at every point x ∈ X where ω(x) = 0. From this, we can deduce without much
difficulty that alb must be surjective.
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Indeed, suppose that alb was not surjective. Take an arbitary point x ∈ X. The
differential TxX → Talb(x) Alb(X) of the Albanese mapping is obviously not sur-
jective; after dualizing and using Lemma 5.3, we find that the evaluation mapping
H0(X,Ω1

X) → T ∗
xX, ω 7→ ω(x), is not injective. Thus, there is at least one nonzero

holomorphic one-form with ω(x) = 0. By the above, we then have s(x) = 0; but
because x was an arbitrary point of X, this contradicts the fact that s ̸= 0. □

Together, the two propositions prove Theorem 12.8 in the case when P1(X) = 1.
The general case requires only a little bit of extra work.

Proof of Theorem 12.8. If P1(X) = 1, then κ(X) = 0 forces P2(X) = 1, and so we
are done by the above. If not, one can find a smooth projective variety Y of Kodaira
dimension zero, and a generically finite morphism f : Y → X, such that P1(Y ) = 1.
(This is Fujita’s lemma; it is proved by taking a resolution of the branched covering
defined by a nontrivial section of ω⊗m

X .) Then albY is surjective, and we can use this

to show that albX is also surjective. First, observe that f∗ : Pic0(X) → Pic0(Y )
has finite kernel: if f∗L is trivial, then we get L⊗f∗OY ≃ f∗OY from the projection
formula; setting r = deg f , it follows that L⊗r ⊗ det(f∗OY ) ≃ det(f∗OY ), which
shows that the r-th power of L is trivial. Dually, this means that Alb(Y ) → Alb(X)
is surjective. In the diagram

Y X

Alb(Y ) Alb(X)

f

albY albX

the composition Y → Alb(Y ) → Alb(X) is therefore surjective; the conclusion is
that albX must be surjective as well. □

Exercises.

Exercise 12.1. Prove the following assertion about X → T̂ that was used during
the proof of Theorem 12.4: if v1, . . . , vd ∈ H0,1(X) are a basis for the tangent space
to a subtorus T ⊆ Pic0(X), and if ωj = vj ∈ H0(X,Ω1

X), then〈
ω1, . . . , ωd

〉
= im

(
H0

(
T̂ ,Ω1

T̂

)
→ H0(X,Ω1

X)
)
.

Exercise 12.2. Let T = V/Λ be a compact complex torus.

(a) Show that the dual torus T̂ = Pic0(T ) is isomorphic to the quotient V̂ /Λ̂,

where V̂ = HomC
(
V ,C

)
is the space of conjugate-linear functionals on V ,

and Λ̂ = HomZ
(
Λ,Z(1)

)
.

(b) Prove that T ≃ Pic0(T̂ ).

Exercise 12.3. Show that when X is a compact Kähler manifold, one has

Pic0
(
Pic0(X)

)
≃ Alb(X).
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Lecture 13

Maximal Albanese dimension and holomorphic Euler characteristic. Let
X be a compact Kähler manifold that is of maximal Albanese dimension; recall
that this means that the Albanese mapping alb: X → Alb(X) is generically finite
over its image. We proved earlier on (in Corollary 8.13) that χ(X,ωX) ≥ 0; this
holds because, for general L ∈ Pic0(X), one has

χ(X,ωX) = χ(X,ωX ⊗ L) = dimH0(X,ωX ⊗ L),

the higher cohomology groups being zero because of the generic vanishing theorem.
We now want to study the boundary case χ(X,ωX) = 0. There are two reasons
for being interested in this case: (1) It will be important for our next application,
namely singularities of theta divisors. (2) Varieties that lie on the boundary of
some geometric inequality often have interesting properties; quite frequently, one
can even classify all such cases.

Theorem 13.1. Let X be a compact Kähler manifold of maximal Albanese dimen-
sion. If χ(X,ωX) = 0, then the Albanese image alb(X) is fibered by tori.

The converse is only partially true: If X itself is fibered by tori, then clearly
χ(X,ωX) = 0 because the holomorphic Euler characteristic of a compact complex
torus is zero. On the other hand, the Albanese image of X might be fibered by
tori without χ(X,ωX) being zero; this can happen for instance when the Albanese
mapping is surjective but of degree greater than one. The problem of classifying
all smooth projective varieties of maximal Albanese dimension with χ(X,ωX) = 0
is not solved. But in the case when X is also of general type, there is at least a
conjecture about what the answer might be; if you are interested, have a look at
the articles by Jungkai Chen, Olivier Debarre, and Zhi Jiang.

Now let us prove Theorem 13.1. As in the case of Theorem 12.4, we are going
to use an irreducible component of some cohomology support locus to construct
the desired fibration. An important ingredient is Proposition 8.15: it tells us that,
because X is of maximal Albanese dimension,

(13.2) Pic0(X) ⊇ Sn(X) ⊇ · · · ⊇ S1(X) ⊇ S0(X) = {OX},

where n = dimX. According to the generic vanishing theorem,

codimSi(X) ≥ dimalb(X)− i = n− i;

in particular, Si(X) ̸= Pic0(X) for every i ≤ n− 1. If χ(X,ωX) = 0, then we have
H0(X,ωX ⊗ L) = 0 for general L ∈ Pic0(X); using Serre duality, we conclude that
the biggest set Sn(X) is also a proper subset of Pic0(X).

Now fix an irreducible component Z ⊆ Sn(X), and let k ≥ 1 be its codimension
in Pic0(X). It is clear that Z cannot be contained in any Si(X) with i < n − k,
because codimSi(X) ≥ n − i. Our first task is to show that Z is necessarily an
irreducible component of Sn−k(X).

To that end, take a sufficiently general point L ∈ Z, with the property that
dimHi(X,L) is as small as possible for every 0 ≤ i ≤ n. Of course, we have
Hi(X,L) = 0 for i < n − k; our goal is to prove that Hn−k(X,L) ̸= 0. Observe
that if Hi(X,L) ̸= 0 for some n− k ≤ i ≤ n, then Z ⊆ Si(X), and because of the
containment in (13.2), Z is then actually an irreducible component of Si(X).

Lemma 13.3. In this situation, the derivative complex

0 Hn−k(X,L) Hn−k+1(X,L) · · · Hn(X,L) 0v∪ v∪ v∪

in the direction of a vector v ∈ H1(X,OX) is exact if and only if v ̸∈ TLZ.
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Proof. If v ∈ TLZ, then we have already seen before that all the differentials in the
derivative complex have to vanish; because Hn(X,L) ̸= 0, this means in particular
that the complex is not exact.

Conversely, suppose that for a certain v ∈ H1(X,OX), the complex is not exact
in some degree n − k ≤ i ≤ n. Then Hi(X,L) ̸= 0, and by the above, Z is an
irreducible component of Si(X). Because L ∈ Z is a general point, this implies that
TLS

i(X) = TLZ. Now recall from (12.1) that, as a consequence of the linearity
theorem, TLS

i(X) is equal to the i-th cohomology support locus of the derivative
complex. Because v lies in this locus by assumption, we see that v ∈ TLZ. □

We can now prove that Z has to be an irreducible component of Sn−k(X).

Lemma 13.4. In the situation described above, we have Z ⊆ Sn−k(X).

Proof. Let V ⊆ TL Pic0(X) be a k-dimensional subspace such that V ∩ TLZ =
{0}. By Lemma 13.3, the derivative complex in the direction of v is exact for
every nonzero v ∈ V . To exploit this fact, let P = P(V ∗) denote the (k − 1)-
dimensional projective space of lines in V . If we restrict the derivative complex in
Definition 7.5 from TL Pic0(X) to V , projectivize, and then tensor by OP(−n), we
obtain a complex of vector bundles

0 → Hn−k(X,L)⊗ OP(−k) → Hn−k+1(X,L)⊗ OP(−k + 1) → · · ·
· · · → Hn(X,L)⊗ OP → 0.

It is exact as a complex of sheaves, because the pointwise complexes are exact by
our choice of V . Now consider the hypercohomology spectral sequence

Ep,q1 = Hn+p(X,L)⊗Hq
(
P,OP(p)

)
;

it converges to the hypercohomology of the complex, which is zero (because the
complex is exact). Since we are on projective space, Ep,q1 = 0 for −k < p < 0;
this means that d1 = · · · = dk−1 = 0. In order for the limit to be zero, the final
differential dk has to be an isomorphism. In particular,

d−k,k−1
k : Hn−k(X,L)⊗Hk−1

(
P,OP(−k)

)
→ Hn(X,L)⊗H0

(
P,OP

)
must be an isomorphism. The conclusion is that Hn−k(X,L) ≃ Hn(X,L) ̸= 0;
because L ∈ Z was a general point, this proves that Z ⊆ Sn−k(X). □

We now have an irreducible component Z ⊆ Sn−k(X) of codimension k. Recall
from Theorem 11.1 that Z is a translate of a subtorus T ⊆ Pic0(X). From here

on, the proof is essentially the same as that of Theorem 12.4. Let T̂ = Pic0(T ) be

the dual torus; we obtain a surjective holomorphic mapping π : Alb(X) → T̂ whose
fibers are finite unions of translates of a k-dimensional subtorus K ⊆ Alb(X).

To conclude the proof, we are going to show that alb(X) is fibered by translates
of K. To that end, consider the composition

f : alb(X) → T̂ .

As in the proof of Theorem 12.4, the fact that a translate of T is contained
in Sn−k(X) implies that dim f

(
alb(X)

)
≤ n − k; because alb(X) itself is n-

dimensional, all fibers of f have dimension at least k. On the other hand, the
fibers of f are contained in the fibers of π, which are finite unions of translates of
K. Because dimK = k, this can only happen if every fiber of f is equal to a finite
union of translates of K. After replacing f by its Stein factorization, we have a
holomorphic mapping from alb(X) to an analytic space of dimension (n− k), all of
whose fibers are translates of K. This proves that alb(X) is fibered by tori.
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Principally polarized abelian varieties. Our next topic is perhaps the most
spectacular application of Green-Lazarsfeld theory: a theorem about the singular-
ities of the theta divisor on an arbitrary principally polarized abelian variety. To
motivate the result, let us first review some definitions, and then discuss a concrete
example, namely Jacobians of compact Riemann surfaces.

Throughout, we let A be a g-dimensional complex abelian variety. As a complex
manifold, A is a compact complex torus; to fix the notation, let us say that A = V/Γ,
where V is a g-dimensional complex vector space, and Γ ⊆ V a lattice of rank 2g. If
we let 0 ∈ A denote the image of the origin, then clearly V ≃ T0A and Γ ≃ π1(A, 0).
By saying that A is an abelian variety, we are assuming that A can be embedded
as a submanifold into complex projective space. This is basically a condition on
the lattice Γ; here is the precise criterion for V/Γ to be projective.

Theorem 13.5. A compact complex torus T = V/Γ is projective if and only if there
exists a positive definite Hermitian bilinear form h : V × V → C whose imaginary
part E = − Imh takes integral values on Γ× Γ.

Proof. A compact complex manifold X is projective iff it has a positive line bundle
L; this is a consequence of the Kodaira embedding theorem, which says that the
sections of a sufficiently high power of L separate points and tangent vectors. The
first Chern class c1(L) is represented by a closed positive (1, 1)-form whose coho-
mology class in H2(X,C) is integral; conversely, any such form is the first Chern
class of a positive line bundle. In order to prove that X is projective, it is therefore
enough to find a closed positive (1, 1)-form whose cohomology class is integral.

The two conditions in the proposition are saying precisely that T carries such
a form, although some translation is needed to see this. To begin with, choose a
basis v1, . . . , vg ∈ V , and let z1, . . . , zg ∈ V ∗ be the corresponding linear coordinate
system on V . The Hermitian form h is given by a g × g-matrix with entries

hj,k = h(vj , vk);

the matrix is Hermitian symmetric and positive definite. The associated (1, 1)-form

ω =
i

2

g∑
j,k=1

hj,kdzj ∧ dz̄k

is therefore positive and, obviously, closed. To see that its class in H2(T,C) belongs
to the image of H2(T,Z), we compute its integrals over a collection of 2-cycles that
generate H2(T,Z). We can use the images in T of

[0, 1]× [0, 1] → V, (x, y) 7→ xγ + yδ,

where γ, δ ∈ Γ are two arbitrary elements. Then

dzj ∧ dz̄k = (γj dx+ δj dy) ∧ (γk dx+ δk dy) =
(
γjδk − δjγj

)
dx ∧ dy

The integral in question thus becomes

i

2

g∑
j,k=1

∫ 1

0

∫ 1

0

hj,kdzj ∧ dz̄k =
i

2

g∑
j,k=1

hj,k
(
γjδk − δjγj

)
=
i

2

(
h(γ, δ)− h(δ, γ)

)
.

This is easily seen to equal E(γ, δ) = − Imh(γ, δ), and so we get the result. □

Note. If we denote by J : V → V the homomorphism given by multiplication by i,
then the fact that h is a Hermitian form implies h(Jv, Jw) = h(v, w). It follows
that E(Jv, Jw) = E(v, w); moreover,

h(v, w) = E(v, Jw)− iE(v, w),

and so E uniquely determines h.
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A Hermitian form h : V ×V → C with the above properties is called a polarization
of the abelian variety A; the proof shows that it corresponds uniquely to a positive
(and, therefore, ample) holomorphic line bundle L on A. The abelian variety is
principally polarized if H0(A,L) is one-dimensional; recall from the first lecture
that every ample line bundle on an abelian variety has sections. In that case, there
is a well-defined effective divisor Θ ⊆ A such that L ≃ OA(Θ); it is called the
theta divisor of the principal polarization. Using the Riemann-Roch formula and
Kodaira vanishing,

dimH0(A,L) = χ(A,L) =
1

g!
Θg =

1

g!

∫
X

c1(L)
∧g,

and so the polarization is principal iff g! = Θg. Let us restate this condition is
terms of the Hermitian form h. Since E = − Imh takes integer values on Γ × Γ,
it gives rise to a skew-symmetric 2g × 2g-matrix with integer entries. The square
root of the determinant of this matrix is equal to Θg/g! – this can be proved for
example by integrating the form ω∧g/g! over a 2g-dimensional cube in V spanned
by the vectors in a basis of Γ.

From now on, we assume that h is a principal polarization. By elementary linear
algebra, we can then find a basis of Γ ≃ Z2g in which E = − Imh takes the formÅ

0 idg
− idg 0

ã
;

here idg denotes the identity matrix of size g × g. By using the first g vectors
v1, . . . , vg as a basis for V , we can represent the embedding of the lattice Γ ⊆ V
by a g× 2g-matrix of complex numbers of the form (idg,Ω); concretely, this means
that the lattice is spanned by the 2g vectors

v1, . . . , vg and

g∑
j=1

Ω1,jvj , . . . ,

g∑
j=1

Ωg,jvj .

Exercise 13.1. Use the fact that E = − Imh to prove that, with respect to the
basis v1, . . . , vg of V , the Hermitian form h is represented by the matrix (ImΩ)−1.
Deduce that Ω = ΩT and that ImΩ is positive definite.

The above exercise shows that Ω is a point of the Siegel upper half space

Hg =
{
Ω ∈ Matg×g(C)

∣∣ Ω = ΩT and ImΩ > 0
}
.

One can show that two such matrices determine isomorphic principally polarized
abelian varieties iff they are conjugate by an element of the symplectic group
Sp2g(Z); the action by Sp2g(Z) amounts to choosing a different basis for the lattice.
This means that the quotient complex manifold

Ag = Hg/Sp2g(Z)
is the moduli space of g-dimensional principally polarized abelian varieties. It is
an open subset of the space of symmetric matrices, and therefore of dimension
g(g + 1)/2. In summary, we have the following result.

Theorem 13.6. For every g-dimensional principally polarized abelian variety A,
there is a matrix Ω ∈ Hg, unique up to conjugation by Sp2g(Z), such that

A ≃ Cg/
(
Zg +ΩZg

)
;

in the standard basis on Cg, the polarization is represented by the matrix (ImΩ)−1.

You have definitely seen this result before in the case of elliptic curves. We
can also describe the theta divisor from this point of view. To begin with, the line
bundle OA(Θ) can be constructed directly from Ω, as seen by the following exercise.
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Exercise 13.2. Define an action of Zg +ΩZg on the product Cg × C by

γ · (z, t) = (z + γ, t) and Ωγ · (z, t) =
(
z +Ωγ, t · eπi·γ

TΩγ+2πi·γT z
)
.

Show that the quotient is a holomorphic line bundle on Cg/
(
Zg +ΩZg

)
whose first

Chern class is represented by the (1, 1)-form

ω =
i

2

g∑
j,k=1

hj,kdzj ∧ dz̄k,

where h = (ImΩ)−1.

Since ImΩ is positive definite, we can then write down a global section of OA(Θ),
namely the so-called Riemann theta function

θ(z) =
∑
γ∈Zg

exp
(
πi · γTΩγ + 2πi · γT z

)
.

The series converges absolutely and uniformly for every z ∈ Cg, making θ a holo-
morphic function.

Exercise 13.3. Prove that θ(z) converges absolutely and uniformly, and that the
resulting holomorphic function on Cg satisfies the two functional equations

θ(z + γ) = θ(z) and θ(z +Ωγ) = e−πi·γ
TΩγ−2πiγT z · θ(z)

for every γ ∈ Zg. Deduce that θ defines a global section of OA(Θ).

In particular, the divisor of zeros of θ descends to a well-defined effective divisor
Θ on the quotient A = Cg/

(
Zg + ΩZg

)
. Unfortunately, this description of the

theta divisor is of limited use for understanding its geometric properties (such
as singularities). Next time, we will see how one can use the generic vanishing
theorem (and its consequences) to obtain a very surprising general result about the
singularities of theta divisors.
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Lecture 14

The example of Jacobians. Now let us discuss an important class of principally
polarized abelian varieties, namely Jacobians of compact Riemann surfaces. Let C
be a compact Riemann surface of genus g ≥ 1, and let J(C) be its Jacobian variety.
Recall that J(C) is equal to Pic0(C), the space of degree zero line bundles on C;
after choosing a base point x0 ∈ C, we have a holomorphic mapping

(14.1) C → J(C), x 7→ OC(x− x0).

Alternatively, we can think of the points of J(C) as being divisors of degree zero on
C (up to linear equivalence). Because C is one-dimensional, J(C) is also isomorphic
to the Albanese variety

Alb(C) =
Hom

(
H0(C,Ω1

C),C
)

H1(C,Z)
,

and the mapping from C to J(C) may be identified with the Albanese mapping. One
can show that the intersection pairing on H1(C,Z) defines a principal polarization
on Alb(C) ≃ J(C), making the Jacobian into a principally polarized abelian variety.
Corresponding to this polarization, there is a well-defined theta divisor Θ ⊆ J(C),
which has been studied at least since the days of Riemann. Perhaps the most famous
result about Θ is the Torelli theorem, which says that C is uniquely determined by
the pair

(
J(C),Θ

)
.

Most of what we know about the theta divisor comes from the study of linear
series on curves. For any integer d ≥ 1, let Cd denote the d-fold symmetric product
of C; it is a smooth projective variety of dimension d. We may identify the points
of Cd with effective divisors of degree d of the form D = x1 + · · · + xd. Using the
base point x0 ∈ C, we have a well-defined mapping

fd : Cd → J(C), x1 + · · ·+ xd 7→ OC(x1 + · · ·+ xd − dx0),

specializing to (14.1) when d = 1. What are the fibers of fd? Two cycles D and D′

map to the same point in J(C) exactly when OC(D) ≃ OC(D′). The fiber over the
point fd(D) is therefore in bijection with the linear system |D|, which is a projective
space of dimension h0(D) − 1. It can be shown that the scheme-theoretic fiber is
also isomorphic to |D|. For sufficiently large values of d – in fact, for d ≥ 2g − 1 –
fd is a projective bundle; but for smaller values of d, the fiber dimension can jump
around a lot.

Now consider the case d = g − 1. The image of fg−1 : Cg−1 → J(C) is an
irreducible divisor; Riemann showed that, up to a translate, this divisor is equal
to the theta divisor Θ. (The translate is unavoidable because fg−1 depends on
the choice of base point x0 ∈ C.) After suitably translating the image, we thus
obtain a resolution of singularities f : Cg−1 → Θ of the theta divisor. To see that
f is birational, it suffices to find a fiber that consists of a single point; or, in other
words, a line bundle of degree g−1 with a one-dimensional space of global sections.
Here we observe that the canonical bundle ωC has degree 2g − 2 and g global
sections; after subtracting g − 1 general points, we obtain a line bundle of degree
g − 1 with only one global section. Using this resolution of singularities, George
Kempf proved the following theorem.

Theorem 14.2 (Kempf). The theta divisor is irreducible and normal, with rational
singularities.

Recall that a variety X has rational singularities if there is a resolution of sin-
gularities f : X ′ → X with f∗OX′ ≃ OX and Rif∗OX′ = 0 for i ≥ 1. (Once there is
one such resolution, every other one has the same property.) Intuitively, this means
that on all the fibers of f , the higher cohomology groups of the structure sheaf are
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zero. In the case of the theta divisor, f : Cg−1 → Θ is such a resolution: in fact, all
fibers of f are projective spaces.

More precise information about the singularities of Θ comes from the so-called
Riemann singularity theorem. Let us denote by

Σk(Θ) =
{
x ∈ Θ

∣∣ multxΘ ≥ k
}

the set of points where the multiplicity of Θ is at least k. Since Θ is reduced,
Σ1(Θ) = Θ, whereas Σ2(Θ) is equal to the singular locus of Θ.

Theorem 14.3 (Riemann). Let D ∈ Cg−1 be an effective divisor of degree g − 1.
Then the multiplicity of Θ at the point f(D) is equal to h0(D).

Riemann’s theorem shows that understanding the singularities of the theta di-
visor is equivalent to understanding linear series on C. Let us denote by W r

d ⊆
Picd(C) the set of all line bundles of degree d with at least r + 1 global sections.
Several classical theorems give information about it; you can find more details in
the book by Enrico Arbarello, Maurizio Cornalba, Phillip Griffiths, and Joe Harris.

(1) Clifford’s theorem says that if D is an effective divisor of degree d ≤ 2g−1,
then one has h0(D) − 1 ≤ d/2 (and the inequality is strict unless C is
hyperelliptic, or D is a canonical divisor).

(2) Martens’ theorem says that for 2 ≤ d ≤ g − 1 and 2 ≤ 2r ≤ d, one has
dimW r

d ≤ d− 2r (and the inequality is strict unless C is hyperelliptic).

Riemann’s theorem shows that Σk(Θ) is, up to a translate, equal to the setW k−1
g−1 .

From Clifford’s theorem, we deduce that Σk(Θ) is empty unless k − 1 ≤ (g − 1)/2
or 2k − 1 ≤ g; from Martens’ theorem, we deduce that, in the remaining cases,

dimΣk(Θ) ≤ (g − 1)− 2(k − 1) = g − 2k + 1.

We can summarize both statements in the inequality

codimJ(C) Σk(Θ) ≥ 2k − 1,

valid for every k ≥ 1. It gives another proof for Kempf’s result that Θ is normal:
the singular locus Σ2(Θ) has codimension at least two in Θ; for a hypersurface in
a smooth variety, this property is equivalent to being normal.

Note. It is conjectured that the theta divisor on any principally polarized abelian
variety (A,Θ) satisfies the same inequalities

codimA Σk(Θ) ≥ 2k − 1,

provided it is irreducible. But because we lack a good resolution of singularities for
Θ as in the case of Jacobians, this looks like a very hard problem.

The point to take away from the example is that the geometry of Jacobians (and
their theta divisors) is very well understood, because it can be described in terms
of linear series on curves.

Singularities of theta divisors. Now the question is whether we can say some-
thing about the singularities of the theta divisor on an arbitrary principally polar-
ized abelian variety (A,Θ). This is difficult, because we do not have a good model
for Θ as in the case of Jacobians.

One thing to remember is that theta divisors do not have to be irreducible.

Example 14.4. The product A1×A2 of two principally polarized abelian varieties is
again principally polarized; the theta divisor on the product is Θ1 ×A2 +A1 ×Θ2,
which is reducible.
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On the other hand, Θ is always reduced. To see why, let us write

Θ =

n∑
k=1

mkDk

with mk ≥ 1 and Dk irreducible. Since OA(Θ) has only one section, the same is
clearly true for OA(mkDk). Now it is a general fact that, on an abelian variety, a
line bundle of the form OA(mD) with m ≥ 2 has at least two linearly independent
sections. In our situation, this is not possible, and so Θ must be reduced.

The first general result about the singularities of theta divisors was proved by
Kollár. He observed that one can use multiplier ideals and the Kawamata-Viehweg
vanishing theorem to get a handle on the singularities of Θ. As his result logically
precedes that of Ein and Lazarsfeld, we shall have a look at it first.

Fix a principally polarized abelian variety (A,Θ); for the time being, we think
of A as being a smooth projective algebraic variety. The line bundle OA(Θ) is then
ample, and dimH0

(
A,OA(Θ)

)
= 1. For any real number α ≥ 0, we can consider

the multiplier ideal J (A,αΘ). We briefly recall the definition; for more details,
see the second volume of Lazarsfeld’s book Positivity in Algebraic Geometry. In
general, let X be a smooth projective variety, and D an effective divisor on X.
Take a log resolution of the pair (X,D), meaning a birational morphism

µ : X ′ → X

such that both the proper transform µ∗D and the relative canonical divisor KX′/X

have simple normal crossing support. Then

J (X,αD) = µ∗OX′
(
KX′/X − ⌊α · µ∗D⌋

)
.

Since µ∗OX′(KX′/X) ≃ OX , this defines an ideal sheaf in OX ; one can show that
it is independent of the choice of log resolution. The multiplier ideals satisfy the
following version of the Kawamata-Viehweg vanishing theorem: If L is any divisor
such that L− αD is big and nef (as an R-divisor), then

Hi
(
X,OX(KX + L)⊗ J (X,αD)

)
= 0

for every i ≥ 1. Kollár’s idea is to apply this vanishing theorem to the case of
(A,Θ). Here is his main result.

Theorem 14.5. Let (A,Θ) be a principally polarized abelian variety.

(a) For 0 < ε < 1, one has J
(
A, (1− ε)Θ

)
= OA.

(b) One has codimA Σk(Θ) ≥ k for every k ≥ 0.

Proof. In the language of the minimal model program, the assertion about the
multiplier ideal means that the pair (A,Θ) is log canonical. Suppose to the contrary
that J

(
A, (1− ε)Θ

)
̸= OA for some 0 < ε < 1. Let Z denote the closed subscheme

defined by the multiplier ideal in question, and consider the exact sequence

0 → OA(Θ)⊗ J
(
A, (1− ε)Θ

)
→ OA(Θ) → OZ(Θ) → 0.

Since Θ−(1−ε)Θ = εΘ is ample, the Kawamata-Viehweg vanishing theorem shows
that the sheaf on the left has vanishing higher cohomology groups; in particular,
this means that the restriction morphism

H0
(
A,OA(Θ)

)
→ H0

(
Z,OZ(Θ)

)
is surjective. But since Z ⊆ Θ, the unique (!) section of OA(Θ) vanishes along Z,
and so we get H0

(
Z,OZ(Θ)

)
= 0. Now the simple Lemma 14.6 below gives us the

desired contradiction.
The result about Σk(Θ) follows from the triviality of the multiplier ideal. To

see why, take any irreducible component Z ⊆ Σk(Θ) and set ℓ = codimA Z. We
can construct a log resolution µ : X ′ → X by first blowing up Z and then resolving
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singularities afterwards. (Recall that the multiplier ideal is independent of the
choice of resolution.) Let E ⊆ X ′ denote the proper transform of the exceptional
divisor of the initial blowup. Since Z has codimension ℓ, the relative canonical
divisor KX′/X contains the divisor (ℓ−1)E. On the other hand, Θ has multiplicity
at least k at every point of Z, and so µ∗Θ contains the divisor kE. Consequently,

KX′/X − ⌊(1− ε)µΘ⌋ contains the divisor (ℓ− 1)E − ⌊(1− ε)k⌋E.

The coefficient at E has to be nonnegative for every 0 < ε < 1, otherwise the
pushforward would be contained in the ideal sheaf of Z. We conclude that

(ℓ− 1)− ⌊(1− ε)k⌋ ≥ 0;

if we make ε > 0 small enough, this gives ℓ ≥ k. □

Lemma 14.6. If Z ⊆ A is a nonempty subscheme, then H0
(
Z,OZ(Θ)

)
̸= 0.

Proof. For any point a ∈ A, denote by Θa = Θ + a the translate of Θ by a. If we
choose the point a sufficiently general, then Θa intersects Z transversely, and so
H0

(
Z,OZ(Θa)

)
̸= 0. Letting a→ 0, the result now follows by semicontinuity. □

In particular, Θ contains no points of multiplicity greater than g; Roy Smith and
Robert Varley later showed that if Θ contains a g-fold point, then (A,Θ) splits into
a product of g elliptic curves.

The theorem of Ein and Lazarsfeld. After this historical excursion, let us now
turn to the theorem of Ein and Lazarsfeld, which is to date the strongest general
result about theta divisors. You can get an idea for how surprising this was at the
time by reading Kollár’s review of the paper on MathSciNet.

Theorem 14.7. Let (A,Θ) be a principally polarized abelian variety. If Θ is irre-
ducible, then it is normal and has rational singularities.

The theta divisor is a hypersurface in a smooth variety, and therefore Gorenstein;
its dualizing sheaf is given by ωΘ ≃ OΘ(Θ). By duality, the condition on rational
singularities is equivalent to having ωΘ ≃ f∗ωX for every (or equivalently, one)
resolution of singularities f : X → Θ. The idea of the proof is to measure the
difference between the two sides by an ideal sheaf, and then to use the results of
Green and Lazarsfeld to prove that this ideal sheaf must be trivial.

The ideal sheaf in question is the so-called adjoint ideal ad(Θ); it is defined more
generally for any reduced effective divisor in a smooth projective variety.

Proposition 14.8. Let D be a reduced effective divisor in a smooth projective
variety M , and let f : X → D be any resolution of singularities. Then one has an
exact sequence

0 → OM (KM ) → OM (KM +D)⊗ adj(D) → f∗ωX → 0

in which adj(D) ⊆ OM is the adjoint ideal of D. Its cosupport is contained in the
singular locus of D, and adj(D) = OM if and only if D is normal and has rational
singularities.

Proof. We begin by defining the adjoint ideal. Choose a log resolution µ : M ′ →M
of the pair (M,D), and let D′ be the proper transform of the divisor D; note that
D′ will be a disjoint union of smooth subvarieties in case D is reducible. We can
then write µ∗D = D′ + F for an effective µ-exceptional divisor F , and define

adj(D) = µ∗OM ′
(
KM ′/M − F

)
.

For the same reason as before, this is an ideal sheaf in OM . From our choice of F ,
it is obvious that KM ′ +D′ = µ∗(KM +D) + (KM ′/M − F ), and therefore that

µ∗OM ′(KM ′ +D′) ≃ OM (KM +D)⊗ adj(D).
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By adjunction (applied to the smooth divisor D′), we have an exact sequence

0 → OM ′(KM ′) → OM ′(KM ′ +D′) → OD′(KD′) → 0.

Pushing forward and using that µ∗OM ′(KM ′) ≃ OM (KM ) and R1µ∗OM ′(KM ′) = 0
(by the Grauert-Riemenschneider theorem), we obtain the exact sequence

0 → OM (KM ) → OM (KM +D)⊗ adj(D) → ν∗OD′(KD′) → 0.

Here ν denotes the restriction of µ to D′; by construction, this is a resolution of
singularities of D. To obtain the asserted exact sequence, we only need to observe
that the sheaf f∗ωX is independent of the choice of resolution: indeed, any two
resolutions are dominated by a third, and so the claim follows again from the
Grauert-Riemenschneider theorem.

To prove the remaining assertions, note that D is a hypersurface in the smooth
variety M , and so its dualizing sheaf satisfies ωD ≃ OD(KM +D). From the exact
sequence above, we see that adj(D) is trivial iff f∗ωX ≃ ωD. By duality, this is
equivalent to the condition that f∗OX ≃ OD and Rif∗OX = 0 for i > 0, which is
in turn equivalent to D being normal and having rational singularities. □

We are now ready to prove the theorem of Ein and Lazarsfeld.

Proof of Theorem 14.7. According to Proposition 14.8, it is enough to show that
adj(Θ) = OA. To that end, let f : X → Θ be a resolution of singularities; note that
X is of maximal Albanese dimension, and therefore χ(X,ωX) ≥ 0 by Corollary 8.13.
In fact, we can say more: since Θ is irreducible, we must have χ(X,ωX) ≥ 1. This
is a consequence of Theorem 13.1: the Albanese image of X is equal to Θ, and Θ is
not fibered by tori. (If it was fibered by translates of a subtorus B ⊆ A, then every
translate of B would either be contained in Θ or disjoint from it; but this cannot
happen because Θ is an ample divisor.)

As in the proof of Kollár’s theorem, our starting point is the exact sequence

(14.9) 0 → OA → OA(Θ)⊗ adj(Θ) → f∗ωX → 0.

For a ∈ A, set Θa = Θ + a. Then the line bundle La = OA(Θa − Θ) belongs to
Pic0(A), and the resulting mapping

A→ Pic0(A), a 7→ La,

is an isomorphism of abelian varieties. (It is injective, and therefore bijective,
because no two translates of Θ can be linearly equivalent to each other, due to the
fact that dimH0

(
A,OA(Θ)

)
= 1.)

After tensoring (14.9) by the line bundle La = OA(Θa−Θ) ∈ Pic0(A), we obtain

0 → La → OA(Θa)⊗ adj(Θ) → La ⊗ f∗ωX → 0.

For a ̸= 0, we have H0(A,La) = H1(A,La) = 0, and therefore

dimH0
(
A,OA(Θa)⊗ adj(Θ)

)
= dimH0

(
X,ωX ⊗ f∗La

)
.

Now comes the crucial point. Since X is birational to Θ, it is of maximal Albanese
dimension; for general a ∈ A, the generic vanishing theorem implies that

dimH0
(
X,ωX ⊗ f∗La) = χ(X,ωX ⊗ f∗La) = χ(X,ωX) ≥ 1.

This means that the subscheme defined by adj(Θ) is contained in a general translate
of Θ. Of course, this can only happen if the subscheme in question is empty. We
conclude that adj(Θ) = OA. □

As in the case of multiplier ideals, one can deduce a bound on the codimension
of the sets Σk(Θ) from the triviality of the adjoint ideal.

Corollary 14.10. If Θ is irreducible, then codimA Σk(Θ) ≥ k+1 for every k ≥ 2.
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Note that we have to exclude the case k = 1, because Σ1(Θ) = Θ is a divisor.

Exercises.

Exercise 14.1. Show that the linear mapping

H0,1(C) → Hom
(
H1,0(C),C

)
, α 7→ 1

2πi

∫
C

α ∧ −

induces an isomorphism between Pic0(C) and Alb(C). Show that under this iso-
morphism, (14.1) is identified with the Albanese mapping of C.

Exercise 14.2. Show that the intersection pairing E(γ, δ) = γ · δ on the integral
homology group H1(C,Z) defines a principal polarization of Alb(C). The cor-
responding Hermitian form on Hom

(
H0(C,Ω1

C),C
)
induces a Hermitian form on

H0(C,Ω1
C); prove that it is given by the formula

(ω1, ω2) 7→ i

∫
C

ω1 ∧ ω2.

Exercise 14.3. Let D ⊆ M be a reduced divisor. Show that if adj(D) = OM , then
for k ≥ 2, every irreducible component of the locus Σk(D) has codimension at least
(k + 1) in M .
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Lecture 15

Products of principally polarized abelian varieties. To finish up the discus-
sion about principally polarized abelian varieties and their theta divisors, we shall
study the case when codimΣk(Θ) = k for some integer k ≥ 2. Recall that Smith
and Varley proved that when Θ has a point of multiplicity dimA (= the maximal
possible value), then (A,Θ) decomposes completely into a product of elliptic curves.
Another application of Theorem 14.7 is the following generalization of this fact.

Corollary 15.1. Let (A,Θ) be a principally polarized abelian variety. For k ≥ 2,
the set Σk(Θ) contains an irreducible component of codimension k if and only if
(A,Θ) splits into a product of k principally polarized abelian varieties.

Proof. Suppose that for some integer k ≥ 2, the set Σk(Θ) has an irreducible
component Z of codimension k. According to the remark above, this can only
happen if adj(Θ) ̸= OA; now Theorem 14.7 shows that Θ has to be reducible. By
general theory, (A,Θ) therefore splits into a product of several principally polarized
abelian varieties. (See for example the book Abelian varieties by Debarre.) Let

(A,Θ) ≃ (A1,Θ1)× · · · × (Ar,Θr)

be the decomposition into irreducible principally polarized abelian varieties; our
goal is to prove that r ≥ k. The product decomposition implies that

Θ =

r⋃
i=1

A1 × · · · ×Θi × · · · ×Ar.

Since Z ⊆ Σk(Θ), there are integers k1, . . . , kr ≥ 0 with k1+ · · ·+kr ≥ k, such that

Z ⊆ Σk1(Θ1)× · · · × Σkr (Θr).

We already know from Kollár’s theorem that codimAi
Σki(Θi) ≥ ki, and so

k = codimA Z ≥
r∑
i=1

codimAi
Σki(Θi) ≥

r∑
i=1

ki ≥ k.

It follows that codimAi
Σki = ki; because Θi is irreducible, the theorem of Ein and

Lazarsfeld implies that we must have ki ≤ 1. But now we get k ≤ k1+ · · ·+kr ≤ r,
which proves that (A,Θ) is the product of at least k principally polarized abelian
varieties. The converse is left as an exercise. □

Simpson’s theorem. Let X be a smooth projective variety. According to the
structure theorem for cohomology support loci, every irreducible component of
Sim(X) is a translate of a subtorus of Pic0(X). Around the time Green and Lazars-
feld proved this, Arnaud Beauville and Fabrizio Catanese conjectured – based, in
part, on Beauville’s results about the positive-dimensional components of S1(X) –
that the translates are always by points of finite order. This conjecture was proved
shortly afterwards by Carlos Simpson.

Theorem 15.2. Let X be a projective complex manifold. Every irreducible com-
ponent of Sqm(X) is a translate of a subtorus of Pic0(X) by a point of finite order.

This may seem like a minor improvement of Theorem 11.1, but in fact, it is
crucial for many applications. We will see several examples later in the course.

There are now three completely different proofs: (1) Simpson’s original argu-
ment, which is based on a result from transcendental number theory; (2) a proof by
reduction to positive characteristic, due to Richard Pink and Damian Roessler; (3)
a proof based on D-modules and the decomposition theorem that I found recently.
The first two are more elementary, but need the assumption that X is projective
(because they go through varieties defined over number fields); the third one is less
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elementary, but can be modified to prove the same result on compact Kähler mani-
folds. (This was recently done by Botong Wang.) The plan for the next few lectures
is to understand Simpson’s proof. As a preparation, we shall revisit Pic0(X) and
Alb(X), from the point of view of algebraic geometry.

The Picard variety is projective. Earlier in the semester, we discussed at length
how to define the Albanese and Picard variety of a compact Kähler manifold. In that
setting, Alb(X) and Pic0(X) are compact complex tori that are dual to each other;
they also satisfy certain universal properties. Now let X be a smooth projective
variety; our goal is to show that Alb(X) and Pic0(X) are then also projective – in
other words, abelian varieties.

The easiest way is to use the criterion from Theorem 13.5, which gives a necessary
and sufficient condition for a compact complex torus to be projective. Recall that
we defined

Pic0(X) =
H0,1(X){

τ ∈ H0,1(X)
∣∣ τ̄ − τ has periods in Z(1)

} ,
based on the description of holomorphic line bundles with trivial first Chern class
by operators of the form ∂̄ + τ . To show that Pic0(X) is projective, all we have to
do is find a Hermitian inner product

h : H0,1(X)×H0,1(X) → C
with the property that E = − Imh takes integer values on the lattice.

To do this, we need an additional result from Hodge theory. Let X be a compact
Kähler manifold, with Kähler form ω; recall that the inner product on forms is

(α, β) 7→
∫
X

α ∧ ∗β.

Here the ∗-operator is defined in terms of the metric, and satisfies

∗ : Ap,q(X) → An−q,n−p(X),

where n = dimX. The point is that one can describe the ∗-operator – and therefore
the inner product – more explicitly on a Kähler manifold. As in the case of the
Kähler identities, the key is the operator

Λω : A
p,q(X) → Ap−1,q−1(X),

which is defined as the adjoint of the Lefschetz operator Lω(α) = ω ∧ α. A form
α ∈ Ak(M) is called primitive if it satisfies Λωα = 0. One can show that nonzero
primitive forms only exist for k ≤ n; in fact, all the forms

α,Lωα, . . . , L
n−k
ω α

are then nonzero, whereas Ln−k+1
ω α = 0. This may remind you of the representation

theory for the Lie algebra sl2(C), and in fact, the two operators Lω and Λω are part
of such a representation. From this point of view, the primitive forms are exactly
the vectors of highest weight.

Lemma 15.3. Let α ∈ Ap,q(M) be a primitive form, meaning that Λωα = 0. Then

∗α = (−1)
k(k+1)

2 ip−q
Ln−kω

(n− k)!
α,

where k = p+ q ≤ n.

Observe that Ln−kω α is a form of type (p+n− k, q+n− k) = (n− q, n− p), and
that the same is true for ∗α; this makes it somewhat plausible that the two should
be the same up to a constant factor. As usual, the proof can be done on Cn with
the standard metric (because the identity does not involve any derivatives of the
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metric). Let me show you the calculation in the case k = 1, which is the one we
need below.

Proof of Lemma 15.3 (for k = 1). One-forms are automatically primitive; the lemma
is therefore asserting that

∗α = −i · Ln−1
ω

(n− 1)!
α

for every α ∈ A1,0(X). (The other formula follows by conjugation.) We may work
on Cn with the standard metric. Let z1, . . . , zn be the usual coordinates, and write
zj = xj + iyj ; then the Kähler form is given by

ω =

n∑
j=1

dxj ∧ dyj =
n∑
j=1

ωj .

Because dx1, dy1, . . . , dxn, dyn are a positively oriented orthonormal basis,

∗dxk = dx1 ∧ dy1 ∧ · · · ∧ d̂xk ∧ dyk ∧ · · · ∧ dxn ∧ dyn
= ω1 ∧ · · · ∧ ω̂k ∧ · · · ∧ ωn ∧ dyk

and

∗dyk = −dx1 ∧ dy1 ∧ · · · ∧ dxk ∧ d̂yk ∧ · · · ∧ dxn ∧ dyn
= −ω1 ∧ · · · ∧ ω̂k ∧ · · · ∧ ωn ∧ dxk.

Putting the two together, we get

∗dzk = ∗dxk + i ∗ dyk = ω1 ∧ · · · ∧ ω̂k ∧ · · · ∧ ωn ∧ (dyk − idxk)

= −i · ω1 ∧ · · · ∧ ω̂k ∧ · · · ∧ ωn ∧ dzk.

On the other hand, it is easy to see that

ω∧(n−1)

(n− 1)!
=

n∑
j=1

ω1 ∧ · · · ∧ ω̂j ∧ · · · ∧ ωn.

This implies the desired formula for ∗dzj ; because the ∗-operator is linear over
A0(X), we get the result. □

Now back to the problem of showing that Pic0(X) is an abelian variety when
X is projective. Fix an embedding of X into projective space, and let ω be the
Kähler form of the induced Kähler metric; note that [ω] ∈ H2(X,Z). We can define
a Hermitian inner product on the space H0,1(X) by setting

h(τ1, τ2) = C(n− 1)!

∫
X

τ1 ∧ ∗τ2 = −i · C
∫
X

τ1 ∧ τ2 ∧ ωn−1

with C > 0. It remains to show we can choose the constant C in such a way that
E = − Imh takes integer values on the lattice. Suppose that τj − τj = 2πi · αj ,
where all periods of αj ∈ H1(X) are integers. We have

E(τ1, τ2) = − Imh(τ1, τ2) =
C

2

∫
X

(
τ1 ∧ τ2 + τ1 ∧ τ2

)
∧ ωn−1

= −C
2
(2πi)2

∫
X

α1 ∧ α2 ∧ ωn−1 = 2π2C

∫
X

α1 ∧ α2 ∧ ωn−1.

This evaluates to an integer if we take C = (2π2)−1. The conclusion is that Pic0(X)
is an abelian variety; because Alb(X) is isomorphic to Pic0

(
Pic0(X)

)
, the same is

true for the Albanese variety of X.
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Algebraic definition of Albanese and Picard variety. For the purpose of
proving Theorem 15.2, it is enough to know that Pic0(X) and Alb(X) have the
structure of algebraic varieties. Although we have just shown this, we shall spend
some more time discussing the algebraic definition of the Picard and the Albanese
variety. This is partly to compare it with the analytic definition, and partly because
it involves some interesting results about abelian varieties that we will need later
on anyway.

Let me begin by saying something about Pic0(X). As one of the first applications
of scheme theory, Grothendieck gave an algebraic definition of the Picard scheme.
The idea is that one first defines a Picard functor, which associates to an arbitrary
scheme S all invertible sheaves (of a given type) on the product X×S, modulo the
equivalence relation defined by invertible sheaves coming from S. One then shows
that this functor is represented by a scheme, in the sense that invertible sheaves on
S × X as above are in one-to-one correspondence with morphisms from S to the
Picard scheme. The actual construction is not easy; if you are interested, you can
find a nice treatment of the surface case in Mumford’s book Lectures on curves on
an algebraic surface.

With the benefit of this general theory, we can define Pic0(X) as the component
of the Picard scheme parametrizing invertible sheaves of the same type as OX .
Because we are working over the complex numbers, Pic0(X) is a reduced projective
group scheme, and therefore a complex abelian variety. The theory works just as
well over any field of characteristic zero; in particular, if X is defined over a subfield
k ⊆ C, the same is true for Pic0(X). By definition, Pic0(X) represents the Picard
functor, and so there is a universal line bundle PX on the product X × Pic0(X),
unique up to line bundles coming from Pic0(X). If we choose a base point x0 ∈ X,
then we can eliminate this ambiguity by requiring that the restriction of PX to
{x0} × Pic0(X) is trivial; we shall assume this from now on. (When X is defined
over a subfield k ⊆ C, we should of course take x0 to be a k-rational point.)

Here is how the universal property of Pic0(X) works. Given an arbitrary mor-
phism S → Pic0(X), we can pull back the universal line bundle to X ×S to obtain
a family of line bundles on X, parametrized by the points of S. Conversely, any
line bundle on X × S, whose restriction to the fibers has the same type as OX , is
obtained from a unique morphism S → Pic0(X) in this way.

In principle, we could also define the Albanese variety by a universal property;
but then it is not so easy to show that Alb(X) and Pic0(X) are related. In the
analytic treatment, the compact complex tori Pic0(X) and Alb(X) are dual to each
other; this suggest defining

Alb(X) = Pic0
(
Pic0(X)

)
as the abelian variety dual to Pic0(X). Let PPic0(X) denote the universal line bundle

on the product Alb(X)×Pic0(X), normalized by the condition that its restriction
to Alb(X) × {0} is trivial. (Here and below, we use 0 to denote the zero element
in an abelian variety.)

Of course, this definition is only meaningful if we manage to construct an Al-
banese mapping alb: X → Alb(X) with the usual properties. Here the trick is to
consider PX as a family of line bundles on Pic0(X), parametrized by the points
of the scheme X. The universal property of the Picard scheme provides us with a
unique morphism

alb: X → Alb(X)

with the property that (alb× id)∗PPic0(X) ≃ PX . We call alb : X → Alb(X) the
Albanese morphism of X; remember that it depends on the choice of base point.

Lemma 15.4. For the base point x0 ∈ X, one has alb(x0) = 0.
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Proof. The restriction of PX to {x0} × Pic0(X) is trivial, and so the result follows
from the universal property of the Picard scheme. □

To show that this definition of Alb(X) makes sense, we should prove that it has
the same properties as on compact Kähler manifolds. This will take us some time.

Theorem 15.5. The morphism alb: X → Alb(X) satisfies:

(a) Every morphism f : X → A to an abelian variety factors through alb.
(b) The morphism alb∗ : Pic0

(
Alb(X)

)
→ Pic0(X) is an isomorphism.

To see what the issue is, let us consider for a moment the universal property.
From the given morphism f : X → A, we obtain f∗ : Pic0(A) → Pic0(X), which
is a morphism of abelian varieties. The construction of Alb(X) now gives us a
commutative diagram

(15.6)

X Alb(X)

A Alb(A)

albX

f φ

albA

in which φ is a morphism of abelian varieties. To get the desired factorization, we
clearly need to know that A→ Alb(A) is an isomorphism.

Theorem 15.7. Let A be a complex abelian variety, with base point a0 = 0. Then
the morphism albA : A→ Alb(A) is an isomorphism.

We will deal with this next time; in the process, we will prove several useful
results about line bundles on abelian varieties.

Exercises.

Exercise 15.1. Show that if (A,Θ) splits into a product of k principally polarized
abelian varieties, then Σk(Θ) contains an irreducible component of codimension k.

Exercise 15.2. Find a geometric interpretation for isolated points of S1(X). (Hint:
If L ∈ S1(X) is an isolated point, consider a finite étale covering on which L
becomes trivial.)

Exercise 15.3. Use the universal property of Pic0(X) to show that every morphism

f : X → Y induces a morphism of abelian varieties f̂ : Pic0(Y ) → Pic0(X). Show
that it takes the closed point corresponding to a line bundle L to the closed point
corresponding to the line bundle f∗L.
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Lecture 16

The Albanese variety of an abelian variety. Let A be an abelian variety
(defined over the complex numbers, although what I am going to say applies to any
algebraically closed field of characteristic zero). Recall that Pic0(A) denotes the
connected component of the Picard scheme containing OA; it is again an abelian
variety. There is a universal line bundle PA on the product A×Pic0(A), normalized
by the condition that its restriction to {0} × Pic0(A) is trivial. We defined

Alb(A) = Pic0
(
Pic0(A)

)
,

and (after swapping the two factors) have another universal bundle PPic0(A) on the

product Alb(A)×Pic0(A). The universal property of the Picard scheme gives us a
unique morphism (that we shall call the Albanese morphism)

alb : A→ Alb(A)

with the property that (alb× id)∗PPic0(A) ≃ PA. Last time, we showed that
alb(0) = 0; our goal today is to prove that alb is an isomorphism of abelian va-
rieties (see Theorem 15.7 from last time). We will prove this by purely algebraic
arguments, following the treatment in §8 of Mumford’s book Abelian varieties.

To warm up, let us first show that sending A to Pic0(A) is a contravariant functor
on the category of abelian varieties. This is an easy consequence of the universal
property; nevertheless, I will give a careful proof, because the same argument will
appear again later on.

Lemma 16.1. Let f : A→ B be a morphism of abelian varieties. It induces a mor-

phism f̂ : Pic0(B) → Pic0(A), with the property that the closed point corresponding
to the line bundle L is mapped to the closed point corresponding to f∗L.

Proof. By the universal property of the Picard scheme, the line bundle (f × id)∗PB
is of the form (id×f̂)∗PA for a unique morphism f̂ : Pic0(B) → Pic0(A).

A× Pic0(B) A× Pic0(A)

B × Pic0(B)

f×id

id×f̂

If we restrict the isomorphism to A× {L}, we obtain f̂(L) ≃ f∗L. □

From the universal property, you can easily show that (f ◦ g)̂ = ĝ ◦ f̂ , and so
the association A 7→ Pic0(A) is indeed a contravariant functor. The content of
Theorem 15.7 is that it behaves like a duality operation on the category of abelian
varieties. More on this later.

Before we begin the proof of Theorem 15.7, let me recall some basic properties
of line bundles in Pic0(A). Let m : A × A → A denote the group operation on A,
and let ι : A→ A denote the inverse, which can also be viewed as multiplication by
−1. The following result explains how line bundles in Pic0(A) behave under these
operations.

Lemma 16.2. Every L ∈ Pic0(A) satisfies

m∗L ≃ p∗1L⊗ p∗2L and ι∗L ≃ L−1.

In particular, if ta : A→ A denotes translation by a point a ∈ A, we have t∗aL ≃ L.

Proof. Roughly speaking, the point is that both identities are true for OA; from
there, they extend to arbitrary L ∈ Pic0(A) because we are dealing with an algebraic
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family of line bundles. To prove the first identity, we will show that

(16.3) (m× id)∗PA ≃ p∗13PA ⊗ p∗23PA

as line bundles on A×A× Â. Consider the line bundle

(m× id)∗PA ⊗ p∗13P
−1
A ⊗ p∗23P

−1
A .

Its restrictions to {0} × A × Pic0(A), to A × {0} × Pic0(A), and to A × A × {0}
are easily seen to be trivial. Because A and Pic0(A) are projective, we can now
apply the theorem of the cube (Theorem II.6 in Abelian varieties) to conclude that
the line bundle itself must be trivial. We get the first identity by restricting to
A×A× {L}. Because ta(x) = m(a, x), it follows that t∗aL ≃ L for every a ∈ A.

To prove the second identity, we pull back (16.3) along the morphism

(id, ι)× id : A× Â→ (A×A)× Â.

We find that (ι× id)∗PA⊗PA is the trivial bundle: the reason is our normalization
of PA, and the fact that m ◦ (id, ι) maps the whole of A into {0}. Consequently,

(ι× id)∗PA ≃ P−1
A ;

now the second identity follows by restricting to A× {L}. □

We can use these observations to give an algebraic proof for the following result
(which we had proved earlier with the help of the generic vanishing theorem).

Lemma 16.4. If L ∈ Pic0(A) is nontrivial, then Hk(A,L) = 0 for all k ≥ 0.

Proof. This is almost obvious for k = 0: if s is a nontrivial section of L, then ι∗s is
a nontrivial section of ι∗L ≃ L−1; of course this can only happen if L ≃ OA. For
the remaining cases, we use induction; we may assume that Hi(A,L) = 0 for every
0 ≤ i < k. Using the group operation m : A×A→ A, we factor id : A→ A as

A→ A×A→ A, a 7→ (a, 0) 7→ a.

On the level of cohomology, we therefore obtain a factorization

Hk(A,L) → Hk
(
A×A,m∗L

)
→ Hk(A,L)

of the identity morphism. Because m∗L ≃ p∗1L ⊗ p∗2L, we can use the Künneth
formula to compute the group in the middle as

Hk
(
A×A,m∗L

)
≃

⊕
i+j=k

Hi(A,L)⊗Hj(A,L).

It is zero by the inductive hypothesis, and so Hk(A,L) = 0 as well. □

We are now ready to start the proof of Theorem 15.7. The first step is to show
that A and Pic0(A) always have the same dimension. For a point a ∈ A, we have
the automorphism ta : A → A defined by ta(x) = a + x. Now fix an arbitrary line
bundle L on A, not necessarily in Pic0(A), and consider the morphism

φL : A→ Pic0(A), a 7→ t∗aL⊗ L−1.

We have φL(a) ∈ Pic0(A) becase φL(0) = OA and A is connected. According to
the theorem of the square (Abelian varieties, Section II.6),

L⊗ t∗a+bL ≃ t∗aL⊗ t∗bL,

and so φL is actually a group homomorphism. (The proof is similar to that of the
identity m∗L ≃ p∗1L⊗p∗2L, and so we shall skip it.) For L ∈ Pic0(A), the morphism
φL is identically zero; this is because L is translation invariant. In general, the
dimension of the image is related to the positivity of the line bundle.
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Proposition 16.5. Let L be an ample line bundle. Then φL : A → Pic0(A) is
surjective, and its kernel K(L) ⊆ A is a finite subgroup.

In fact, the order of K(L) is equal to the square of dimH0(A,L); as an exercise,
you can try to deduce this from the proof below. In any event, the lemma clearly
implies that dimPic0(A) = dimA.

Proof. The first observation is that on A×A, one has

(16.6) m∗L⊗ p∗1L
−1 ⊗ p∗2L

−1 ≃ (id×φL)∗PA.
To see why, consider again their difference

m∗L⊗ p∗1L
−1 ⊗ p∗2L

−1 ⊗ (id×φL)∗P−1
A .

From the definition of φL, it is clear that the restriction of this line bundle to
A × {a} is trivial for every a ∈ A; consequently, it comes from a line bundle on
A by p1 : A × A → A. Because the restriction to {0} × A is also trivial by our
normalization of PA, the line bundle in question must be trivial.

If we now invert the identity in (16.6), and pull back along (ι, id) : A → A× A,
we get

(ι∗L)⊗ L ≃ (ι, id)∗(id×φL)∗P−1
A ≃ (ι, φL)

∗P−1
A ;

notice that this is still an ample line bundle. Because (ι, φL)
∗P−1

A restricts to
the trivial line bundle on K(L), the restriction of this ample line bundle to the
subgroup K(L) is trivial; this is possibly only when dimK(L) = 0. This gives us
the finiteness part.

It remains to show that φL is surjective. Fix any line bundle M ∈ Pic0(A); we
have to prove that M ≃ t∗aL ⊗ L−1 for some a ∈ A. The idea is to consider the
cohomology of the line bundle

K = m∗L⊗ p∗1L
−1 ⊗ p∗2(L

−1 ⊗M−1) ≃ (id⊗φL)∗PA ⊗ p∗2M
−1

on A× A. If M is not in the image of φL, then the restriction of K to every fiber
{a} ×A is nontrivial; we will show that this assumption leads to a contradiction.

According to Lemma 16.4, we have

Hi
(
A,K

∣∣
{a}×A

)
= 0

for every i ≥ 0. Because K is flat over A, the base change theorem shows that
the direct image sheaves Rip1∗K are all trivial. If we now apply the Leray spectral
sequence to the morphism p1 : A×A→ A, we find that Hk(A×A,K) = 0 for every
k ≥ 0.

Now we use the same argument for the second projection p2 : A× A → A. The
restriction of K to A × {a} is trivial if and only if a ∈ K(L); by base change,
the support of the higher direct image sheaves Rip2∗K is therefore contained in
the finite set K(L). For dimension reasons, the Leray spectral sequence for p2
degenerates, and we get

H0(A,Rkp2∗K) ≃ Hk(A×A,K) = 0.

This implies that Rkp2∗K = 0 for every k ≥ 0. Another application of the base
change theorem shows that the restriction of K to every fiber A × {a} must have
vanishing cohomology; but this contradicts the fact that the line bundle in question
is the trivial bundle when a = 0. We conclude that φL : A → Pic0(A) is indeed
surjective. □

As a consequence of the proof, we obtain the following alternative description of
the line bundles in Pic0(A). (This is used as the definition of Pic0(A) by Mumford.)

Corollary 16.7. Let L be a line bundle on A. Then L ∈ Pic0(A) if and only if it
is translation invariant, meaning that t∗aL ≃ L for every a ∈ A.
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Proof. The argument above in fact works for any translation invariant line bundle
M ; because A is connected, it follows that those line bundles form a connected
subgroup of Pic(A). By definition, this says that every translation invariant line
bundle belongs to Pic0(A); the converse has already been shown earlier. □

The second step in the proof of Theorem 15.7 is to show that alb: A→ Alb(A)
is injective; since both abelian varieties have the same dimension, this is enough to
conclude that they must be isomorphic.

Proposition 16.8. The Albanese morphism alb: A→ Alb(A) is injective.

Proof. LetK ⊆ A be any finite subgroup of the kernel; what we have to prove is that
K = {0}. Let π : A → A/K denote the quotient morphism, and π̂ : Pic0(A/K) →
Pic0(A) the induced morphism between the Picard schemes; its defining property
is that (π × id)∗PA/K ≃ (id×π̂)∗PA. Because K lies in the kernel of alb, we have
a factorization

A A/K Alb(A)π

alb

f

If we define Q = (f × id)∗PPic0(A), then PA ≃ (alb× id)∗PPic0(A) ≃ (π× id)∗Q. By
the universal property of the Picard scheme, the line bundle Q defines a morphism

q : Pic0(A) → Pic0(A/K)

with (id×q)∗PA/K ≃ Q. The relation PA ≃ (π × id)∗Q gives us

PA ≃ (id×q)∗(π × id)∗PA/K ≃ (id×q)∗(id×π̂)∗PA,

which means exactly that the composition π̂ ◦ q is the identity:

Pic0(A) Pic0(A/K) Pic0(A)
q

id

π̂

Because all three abelian varieties have the same dimension, it follows that q and π̂
are isomorphisms. We can now apply the following lemma to show that K = {0},
and hence that alb: A→ Alb(A) must be injective. □

Lemma 16.9. Let π : A → B be a surjective morphism between two abelian vari-
eties of the same dimension. Then the kernel of π̂ : Pic0(B) → Pic0(A) is a finite
group of the same order as kerπ.

Proof. K = kerπ is an abelian group of some finite order d; it acts on the locally
free sheaf π∗OA, which therefore splits up as

π∗OA ≃
d⊕
i=1

Li

into a sum of d invertible sheaves. This holds because we are working over C;
more generally, any field containing all d-th roots of unity would be okay. The line
bundles L1, . . . , Ld are translation invariant, and therefore belong to Pic0(B). Note
that because H0(B, π∗OA) ≃ H0(A,OA) is one-dimensional, exactly one of the line
bundles Li has to be trivial.

To prove the lemma, we are going to show that L1, . . . , Ld are pairwise non-
isomorphic, and that

ker π̂ = {L1, . . . , Ld}.



88

The first step is to show that π∗Li ≃ OA for every i = 1, . . . , d. Consider the
following commutative diagram:

A×B A A

A B

p1

p2

π

π

It is easy to see that A×B A ≃ A×K, and that the above diagram is just

A×K A

A B

p1

m

π

π

which implies (by flat base change) that π∗π∗OA is isomorphic to O⊕d
A . But then

π∗Li ≃ OA, as claimed. This argument also proves that Li ≃ Lj can only happen
when i = j: the reason is that

H0
(
B,L−1

i ⊗ π∗OA
)
≃ H0

(
A, π∗L−1

i

)
≃ H0(A,OA).

At this point, we know that ker π̂ ⊇ {L1, . . . , Ld} contains at least d elements. To
finish the proof, we have to show that the two sets are equal.

Consider a line bundle L ∈ Pic0(B) that belongs to ker π̂, or in other words,
such that π∗L is trivial. By the projection formula,

π∗OA ≃ π∗π
∗L ≃ L⊗ π∗OA.

If we tensor by L−1 and take global sections, we see that L−1 ⊗ Li must be trivial
for some value of i, and hence that L ≃ Li. This proves that ker π̂ is a subgroup of
Pic0(B) of order d. □

From now on, we shall identify A with its Albanese variety Alb(A). Under this
identification, we have PA ≃ PPic0(A), which means that the universal line bundle on

A is also (after switching the two factors) the universal line bundle on Pic0(A)×A.
In the future, we shall denote this line bundle simply by P , and refer to it as the
normalized Poincaré bundle for the abelian variety A.

Exercises.

Exercise 16.1. Let L be an ample line bundle. Show that the size of kerφL is equal
to the square of dimH0(A,L). (Hint: Use the same argument as in Proposition 16.5,
but with M = L.)

Exercise 16.2. Use the universal property of the Picard scheme to show that the
diagram in (15.6) is commutative.

Exercise 16.3. Prove that alb∗ : Pic0
(
Alb(X)

)
→ Pic0(X) is an isomorphism.
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Lecture 17

The Albanese mapping. Let X be a smooth projective variety, and

alb: X → Alb(X)

its Albanese mapping; recall that it is defined by the condition (alb× id)∗PPic0(X) ≃
PX . To wrap up the discussion from last time, let me quickly explain how one
proves the universal property: every morphism from X to an abelian variety factors
uniquely through the Albanese mapping.

Suppose we are given such a morphism f : X → A. It induces a morphism of

abelian varieties f̂ : Pic0(A) → Pic0(X), and therefore also φ : Alb(X) → Alb(A),
and in fact, the diagram

X Alb(X)

A Alb(A)

albX

f φ

albA

is commutative. To prove this claim, recall from Lemma 16.1 that f̂ is uniquely
determined by the condition that

(f × id)∗PA ≃ (id×f̂)∗PX .
Likewise, φ is determined by the condition that

(id×f̂)∗PPic0(X) ≃ (φ× id)∗PPic0(A).

By the universal property of the Picard scheme, the identity φ ◦ albX = albA ◦f is
equivalent to

(albX × id)∗(φ× id)∗PPic0(A) ≃ (f × id)∗(albA× id)∗PPic0(A).

This follows without difficulty from the relations above:

(albX × id)∗(φ× id)∗PPic0(A) ≃ (albX × id)∗(id×f̂)∗PPic0(X)

≃ (id×f̂)∗(albX × id)∗PPic0(X)

≃ (id×f̂)∗PX
≃ (f × id)∗PA

≃ (f × id)∗(albA× id)∗PPic0(A).

We know from Theorem 15.7 that albA : A→ Alb(A) is an isomorphism; this gives
us the desired factorization of f . I will leave it as an exercise to show the uniqueness;
and also to prove that

alb∗ : Pic0
(
Alb(X)

)
→ Pic0(X)

is an isomorphism.

Line bundles with flat connection. Now let us return to our original topic,
namely Simpson’s theorem about the structure of cohomology support loci (see
Theorem 15.2 above). The proof is based on a detailed study of line bundles with
flat connection. We have already seen that, on a compact Kähler manifold, every
holomorphic line bundle with trivial first Chern class (represented by an operator
of the form ∂̄ + τ) has a canonical flat connection (represented by the operator
d+ τ − τ̄). The connections we obtain in this way are always unitary; in fact, they
are compatible with a Hermitian metric on the line bundle by construction. It turns
out that, by going to the larger class of all flat (but not necessarily unitary) con-
nections, some additional structure becomes visible; it is this additional structure
that Simpson uses in his proof.
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Let me start with some general remarks about line bundles with flat connection;
as usual, there is also a very concrete description that I shall explain afterwards.
Let X be a compact Kähler manifold, and let L be a holomorphic line bundle on
X. A (holomorphic) connection on L is an operator

∇ : L→ Ω1
X ⊗OX

L

that satisfies the Leibniz rule ∇(fs) = df ⊗ s+ f∇s; the connection is called flat if
its curvature ∇◦∇ is equal to zero. (Here we extend the connection to an operator
∇ : Ω1

X ⊗ L → Ω2
X ⊗ L by enforcing the Leibniz rule.) It is not hard to show that

L admits such a connection if and only if its first Chern class c1(L) ∈ H2
(
X,Z(1)

)
is torsion; this is equivalent to saying that the image of c1(L) in H

2(X,C) is zero.

Definition 17.1. We denote by MDR(X) the moduli space of all pairs (L,∇),
where L is a holomorphic line bundle and ∇ : L→ Ω1

X ⊗ L a flat connection.

This notation was invented by Simpson; the subscript stands for “de Rham”.
One can show that MDR(X) is a complex manifold, and in fact a complex Lie
group: the group operation is defined by the tensor product

(L1,∇1)⊗ (L2,∇2) = (L1 ⊗ L2,∇1 ⊗ id+ id⊗∇2),

and the unit element is the pair (OX , d). We will see below why this is the case.
Given (L,∇), we get a locally constant sheaf ker∇ of one-dimensional C-vector

spaces on X by taking the sheaf of local holomorphic solutions of the equation
∇s = 0; the integrability condition ∇ ◦ ∇ = 0 ensures that this equation always
has nowhere vanishing local solutions. We can recover the holomorphic line bundle
from the locally constant sheaf because L ≃ OX ⊗C (ker∇); this also determines
the connection because

∇(f ⊗ s) = df ⊗ s

for s a local section of ker∇. Thus holomorphic line bundles with flat connection,
and locally constant sheaves of one-dimensional C-vector spaces, are the same thing.
This is of course true also for vector bundles of higher rank.

Now a locally constant sheaf is equivalent to a representation of the fundamental
group. In fact, once we fix a reference point x0 ∈ X, we obtain a representation of
π1(X,x0) on the fiber of L at the point x0, by analytic continutation of solutions
to the equation ∇s = 0. Since L is a line bundle, this gives us a homomorphism

ρ : π1(X,x0) → C×,

or, in other words, a character of the fundamental group. Conversely, a character
ρ determines a locally constant sheaf Cρ, and therefore a line bundle with flat
connection. (More on this later.)

Definition 17.2. We denote by

MB(X) = Hom
(
π1(X,x0),C×)

the space of all characters of the fundamental group.

This notation is also due to Simpson; this time, the subscript stands for “Betti”.
MB(X) is a complex Lie group, too, with group operation given by the usual
product. In fact, we can easily describe its structure. By the Hurewicz theorem,
MB(X) ≃ H1(X,C×), and so it fits into an exact sequence

0 → H1(X,C)
H1

(
X,Z(1)

) →MB(X) → H2
(
X,Z(1)

)
tors

→ 0.

This shows that the connected component M0
B(X) of the trivial character is iso-

morphic to (C×)2g, where g = dimH0(X,Ω1
X); the quotient is a finite group, of
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the same order as the torsion subgroup of H1(X,Z). According to the discussion
above, we have an isomorphism of complex Lie groups

MDR(X) →MB(X)

that takes a pair (L,∇) to the unique character ρ such that Cρ ≃ ker∇ is isomorphic
to the local system of ∇-flat sections of L. The isomorphism has the property that
the image of ρ in the torsion subgroup of H2

(
X,Z(1)

)
is precisely the first Chern

class c1(L).

Concrete description. We now restrict our attention to the connected component
M0

DR(X) containing the point (OX , d). This means that we only consider pairs

(L,∇) with c1(L) = 0; just as in the case of Pic0(X), it is then possible to describe
all the objects very concretely in terms of harmonic one-forms.

Let ε ∈ H1(X) be a harmonic one-form; note that this is equivalent to both
ε1,0 and ε0,1 being d-closed. Then the operator d + ε determines a holomorphic
line bundle L with flat connection ∇. The holomorphic line bundle is the one
corresponding to the operator ∂̄+ε0,1; to describe the connection, note that locally,
ε0,1 = ∂̄f , and then e−f is a local holomorphic section of L because

(∂̄ + ε0,1)e−f = 0.

If we apply the operator d+ ε to this section, we get

(d+ ε)e−f = (ε1,0 − ∂f)⊗ e−f ,

which is a local holomorphic section of Ω1
X ⊗ L because

∂̄(ε1,0 − ∂f) = ∂∂̄f = ∂ε0,1 = 0.

What we get in this way is a well-defined connection ∇ on L. Using the analytic
description of Pic0(X) that we developed earlier in the semester, you can check
that every point of M0

DR(X) is obtained in this way.
Note that d+ ε gives the trivial pair precisely when there is a nowhere vanishing

global section f ∈ A0(X) that is both holomorphic and flat; this translates into the
condition that df + εf = 0. If we impose the condition that f(x0) = 1, the solution
is necessarily given by the integral

(17.3) f = exp

Å
−
∫ x

x0

ε

ã
.

This is well-defined on X if and only if all periods of ε belong to Z(1) = 2πi ·Z. In
other words:

Proposition 17.4. Let X be a compact Kähler manifold. Then one has

M0
DR(X) ≃ H1(X){

ε ∈ H1(X)
∣∣ ε has periods in Z(1)

} ,
with ε ∈ H1(X) corresponding to the line bundle with flat connection defined by the
operator d+ ε.

When ε does not have periods in Z(1), the formula in (17.3) only makes sense
by analytic continuation (because the integral depends on the choice of path). It
follows that the character corresponding to d+ ε must be

π1(X,x0) → C×, γ 7→ exp

Ç
−
∫
γ

ε

å
.

This rule defines an injective homomorphism of complex Lie groups

M0
DR(X) →M0

B(X);

because both sides have dimension dimH1(X,C), it must be an isomorphism.
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Example 17.5. Our earlier discussion of Pic0(X) fits into this framework as well.
Recall that the holomorphic line bundle defined by ∂̄ + τ has a flat connection
d+τ− τ̄ (from the Hermitian metric induced by the smooth trivialization). Because
the condition for triviality is the same, we get an embedding

Pic0(X) →M0
DR(X), [τ ] 7→ [τ − τ̄ ].

Its image inM0
B(X) is a connected component of the space of all unitary characters

Hom
(
π1(X,x0), U(1)

)
. Note that the image is not a complex submanifold.

Hodge theory for line bundles with flat connection. Some of the results from
Hodge theory carry over to the case of line bundles with (not necessarily unitary)
flat connection. The most important one is the Kähler identities. Recall that in
the case of a holomorphic line bundle given by ∂̄ + τ , the two operators ∂ − τ̄ and
∂̄ + τ satisfied the Kähler identities. The correct generalization of this fact to the
case d+ ε was found by Simpson.

Let us fix a harmonic one-form ε ∈ H1(X). Instead of the obvious decomposition
d+ε = (∂+ε1,0)+(∂̄+ε0,1) – for which the Kähler identities are not true in general
– we use the non-obvious decomposition

d+ ε =

Ç
∂ +

ε1,0 − ε0,1

2
+
ε0,1 + ε1,0

2

å
+

Ç
∂̄ +

ε0,1 − ε1,0

2
+
ε1,0 + ε0,1

2

å
.

We can write this somewhat more compactly as

d+ ε =
(
∂ − τ̄ + θ̄

)
+ (∂̄ + τ + θ),

by defining two auxiliary harmonic forms

θ =
ε1,0 + ε0,1

2
∈ H1,0(X) and τ =

ε0,1 − ε1,0

2
∈ H0,1(X).

The point of the funny decomposition above is that the two operators in parentheses
satisfy the Kähler identities:

(∂ − τ̄ + θ̄)∗ = i[Λω, ∂̄ + τ + θ]

(∂̄ + τ + θ)∗ = −i[Λω, ∂ − τ̄ + θ̄]

The reason is that τ∗ = i[Λω, τ̄ ] and θ∗ = −i[Λω, θ̄]; this is something we have
already proved (in Lemma 6.1).

Now suppose that [ε] ∈ M0
DR(X) is the unit element, which means that ε has

periods in Z(1). Then ε is purely imaginary, which means that ε0,1 = ε1,0, and
hence θ = 0 and ε = τ − τ̄ . In particular, [τ ] ∈ Pic0(X) is also trivial. We therefore
obtain a well-defined mapping

M0
DR(X) → Pic0(X)×H0(X,Ω1

X), [ε] 7→
(
[τ ], θ

)
,

which is an isomorphism of real (but not complex) Lie groups (because the formulas
for τ and θ involve complex conjugation). It associates to every line bundle with flat
connection in M0

DR(X) another line bundle together with a holomorphic one-form.
Note that the new line bundle is different from the original one (unless ε = τ − τ̄ ,
or equivalently, unless θ = 0).

Definition 17.6. A Higgs bundle of rank one is a pair (L, θ), where L ∈ Picτ (X) is
a holomorphic line bundle with c1(L) ∈ H2

(
X,Z(1)

)
torsion, and θ ∈ H0(X,Ω1

X)
a holomorphic one-form.

In higher rank, a Higgs bundle is a holomorphic vector bundle E with torsion
Chern classes, together with a morphism θ : E → Ω1

X ⊗ E that satisfies θ ∧ θ = 0;
for line bundles, this specializes to the definition from above.



93

Definition 17.7. We denote by

MDol(X) = Picτ (X)×H0(X,Ω1
X)

the moduli space of all Higgs bundles of rank one.

This is the third (and last) moduli space that we will use; the subscript stands for
“Dolbeault”. One can show that the isomorphism between M0

DR(X) and M0
Dol(X)

extends to an isomorphism between MDR(X) and MDol(X). To summarize, we
have three different models for the space of characters of the fundamental group:

MDR(X) MB(X) MDol(X)

All are isomorphic as real Lie groups, but their complex – and, whenX is projective,
also their algebraic – structures are very different.

Example 17.8. By taking θ = 0, we can realize Pic0(X) as a complex submanifold
of M0

Dol(X). But its image in M0
B(X) is the space of unitary characters, which is

no longer a complex submanifold.

The idea behind Simpson’s proof of Theorem 15.2 is to exploit the different
structures to obtain information about cohomology support loci. To get results
about Pic0(X), all we need to do is restrict to θ = 0 at the end.

Cohomology and harmonic forms. Now we turn to the computation of coho-
mology. Fix a harmonic one-form ε ∈ H1(X), and let ρ ∈ M0

B(X) denote the
associated character, and (L, θ) ∈M0

Dol(X) the associated Higgs bundle. We define
the cohomology groups of the Higgs bundle (L, θ) as

Hp,q(X,L, θ) =
ker

(
θ : Hq(X,ΩpX ⊗ L) → Hq(X,Ωp+1

X ⊗ L)
)

im
(
θ : Hq(X,Ωp−1

X ⊗ L) → Hq(X,ΩpX ⊗ L)
) .

Note that Hp,q(X,L, θ) is the cohomology in degree p of the complex

0 Hq(X,L) Hq(X,Ω1
X ⊗ L) · · · Hq(X,ΩnX ⊗ L) 0;θ θ θ

this complex already occured as (the conjugate of) the derivative complex during
our study of cohomology support loci for sheaves of holomorphic forms. Another
reason for introducing these cohomology groups is that they appear in the following
version of the Hodge decomposition.

Theorem 17.9. For every k = 0, . . . , 2 dimX, one has

Hk(X,Cρ) ≃
⊕
p+q=k

Hp,q(X,L, θ).

Proof. Because Cρ is the sheaf of local solutions to the equation df + εf = 0, it is
not hard to show that the complex of soft sheaves

A0
X A1

X · · · An
X

d+ε d+ε d+ε

is a resolution of Cρ. As usual, this means that the cohomology groups of Cρ are
computed by the complex A•(X) with differential d+ ε. By the same argument as
in Hodge theory, every cohomology class in Hk(X,Cρ) is uniquely represented by
a harmonic k-form, meaning a k-form that lies in the kernel of d+ ε and (d+ ε)∗.

Just as in Theorem 3.10, the Kähler identities lead to the relation

(d+ ε)(d+ ε)∗ + (d+ ε)∗(d+ ε)

= 2
(
(∂̄ + τ + θ)(∂̄ + τ + θ)∗ + (∂̄ + τ + θ)∗(∂̄ + τ + θ)

)
.
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between two Laplace operators; this shows that a k-form is harmonic if and only if
it is in the kernel of ∂ + τ + θ and (∂ + τ + θ)∗. It follows that the complex

A•(X), with differential ∂̄ + τ + θ,

also computes the cohomology of Cρ. This complex has the great advantage that
we have removed the differential operator ∂ from the picture.

To make the connection with the Higgs bundle (L, θ), we observe that our com-
plex is the single complex associated with the double complex

A•,•(X), with differentials θ and ∂̄ + τ .

Now let us consider the spectral sequence of this double complex:

Ep,q0 = Ap,q(X) =⇒ Hp+q(X,Cρ)
The differential d0 is induced by ∂̄+τ ; because the complex Ap,•(X) with differential
∂̄ + τ resolves ΩpX ⊗ L (by Lemma 5.5), we obtain

Ep,q1 ≃ Hq(X,ΩpX ⊗ L).

The differential d1 is induced by θ, and so

Ep,q2 ≃ Hp,q(X,L, θ)

is exactly the cohomology of the Higgs bundle (L, θ). The same argument as in
the proof of Proposition 9.7 (based on the principle of two types) shows that the
spectral sequence degenerates at E2; this gives us the desired decomposition of
Hk(X,Cρ) into the sum of Ep,q2 with p+ q = k. □

When ρ is unitary (which is equivalent to θ = 0), we obtain

Hk(X,Cρ) ≃
⊕
p+q=k

Hq(X,ΩpX ⊗ L)

for the associated holomorphic line bundle. We are of course interested in the
cohomology groups Hq(X,ΩpX ⊗ L); the isomorphism above relates them with the
purely topological cohomology groups Hk(X,Cρ).

Exercises.

Exercise 17.1. Let L be a holomorphic line bundle on a compact Kähler manifold.
Show that L admits a flat connection ∇ : L→ Ω1

X ⊗L if and only if the first Chern
class c1(L) is zero in H2(X,C).

Exercise 17.2. Show that the composition MDR(X) → MB(X) → H2
(
X,Z(1)

)
takes a pair (L,∇) to c1(L).

Exercise 17.3. Show that every point of M0
DR(X) can be realized as d+ ε for some

ε ∈ H1(X).
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Lecture 18

Cohomology jump loci. Recall from last time that when ρ ∈M0
B(X) is a unitary

character (which means that the corresponding Higgs bundle (L, θ) satisfies θ = 0),
one has a decomposition

Hk(X,Cρ) ≃
⊕
p+q=k

Hq(X,ΩpX ⊗ L).

This suggests that in order to understand the cohomology support loci

Sqm(X,ΩpX) =
{
L ∈ Pic0(X)

∣∣ dimHq(X,ΩpX ⊗ L) ≥ m
}
,

it should be enough to know the structure of the sets

Σkm(X) =
{
ρ ∈MB(X)

∣∣ dimHk(X,Cρ) ≥ m
}
.

In the literature, these sets are often called cohomology jump loci. Note that they
only depend on the underlying topological space of X.

Before we can say anything about Σkm(X), we first have to be more precise
about what the sheaf Cρ is. By the Hurewicz theorem, every character of π1(X,x0)
factors throughH1(X,Z); to simplify the notation, we put Λ = H1(X,Z). Now take
π : Y → X to be the covering space of X corresponding to the normal subgroup

ker
(
π1(X,x0) → Λ

)
;

then Λ is isomorphic to the group of deck transformations and acts transitively on
the fibers of π. The covering space has the property that the composition of ρ with
π1(Y, y0) → π1(X,x0) becomes trivial. (Here y0 ∈ π−1(x0) is a base point on Y .)

Lemma 18.1. For every open subset U ⊆ X, one has

H0(U,Cρ) =
ß
s : π−1(U) → C

∣∣∣∣ s(y) is locally constant, and
s(λy) = ρ(λ)−1s(y) for all λ ∈ Λ

™
.

Proof. Note that because Λ acts transitively on π−1(x), every stalk of the sheaf
defined by the right-hand side is indeed isomorphic to C. To simplify the argument,
we shall only do the case where ρ is the character corresponding to d+ε; here Cρ is
the sheaf of solutions to the equation df + εf = 0. Because we defined the covering
space in terms of H1(X,Z), the pullback π∗ε no longer has any periods, and so

F (y) = exp

Ç
−
∫ y

y0

π∗ε

å
is a well-defined function on Y . Now consider some f ∈ H0(U,Cρ). It solves the
equation df + εf = 0, and so π∗f = sF for a unique function s : π−1(U) → C that
satisfies ds = 0, and must therefore be locally constant. Because F (λy) = ρ(λ)F (y),
we see that s(λy) = ρ(λ)−1s(y), as claimed above. Conversely, for any such function
s, the product sF is invariant under the Λ-action, and therefore descends to a
solution of df + εf = 0 on U . □

We have already seen that the space of characters MB(X) is an affine algebraic
variety of dimension dimH1(X,C). Let us show that the cohomology jump loci are
closed algebraic subsets of this affine variety.

Proposition 18.2. Let X be a compact Kähler manifold. For every m, k ∈ Z,

Σkm(X) ⊆MB(X)

is a closed algebraic subset.
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Proof. It will be useful to have a more invariant description of the affine variety
MB(X). Recall that Λ = H1(X,Z) is a quotient of π1(X,x0); it is of course the
direct sum of a free abelian group of rank dimH1(X,C) and a finite abelian group.
Now denote by

R = C[Λ] =
⊕
λ∈Λ

C · eλ

the group ring of Λ; the ring structure is defined by setting eλ · eµ = eλ+µ. Then

MB(X) ≃ SpecR

is isomorphic to (the complex manifold defined by) the affine variety SpecR. In
fact, every character ρ ∈MB(X) gives rise to a maximal ideal

mρ = R ·
{
eλ − ρ(λ)

∣∣ λ ∈ Λ
}
⊆ R,

and therefore to a closed point of SpecR. Conversely, a maximal ideal m ⊆ R
determines a character by taking the composition

π1(X,x0) → Λ → Aut(R/m),

remembering that λ ∈ Λ acts on R as left multiplication by eλ. It is easy to see
that the two constructions are inverse to each other.

In order to show that the sets Σkm(X) are closed algebraic, we shall construct a
bounded complex of free R-modules that computes them. The main point is to have
a uniform way of computing the cohomology of Cρ for ρ ∈MB(X). One possibility

is to use Čech cohomology. SinceX is in particular a compact Riemannian manifold,
we can (with some work) find an open covering

X = U1 ∪ · · · ∪ Ud,
with the property that any intersection of open sets in the covering is contractible.1

For any ρ ∈ MB(X), the cohomology groups of the locally constant sheaf Cρ are

therefore computed by the Čech complex

C•(U1, . . . , Ud,Cρ) =

[⊕
i0

H0(Ui0 ,Cρ) →
⊕
i0<i1

H0(Ui0 ∩ Ui1 ,Cρ) → · · ·

]
Note that on each intersection of open sets, the space of sections of Cρ is non-
canonically isomorphic to C, and so we have a bounded complex of finite-dimensional
vector spaces. The advantage is that this way of calculating cohomology works the
same way for every ρ ∈MB(X).

To exploit this fact, we define a locally constant sheaf of R-modules LR on X
that acts much like a “universal object”; concretely,

H0(U,LR) =
ß
s : π−1(U) → R

∣∣∣∣ s(y) is locally constant, and
s(λy) = e−1

λ s(y) for all λ ∈ Λ

™
.

In the quotient R/mρ, the element e−1
λ gets identified with ρ(λ)−1, and so we have

LR ⊗R R/mρ ≃ Cρ. Now consider the Čech complex of the locally constant sheaf
of R-modules LR, which is

C•(U1, . . . , Ud,LR) =

[⊕
i0

H0(Ui0 ,LR) →
⊕
i0<i1

H0(Ui0 ∩ Ui1 ,LR) → · · ·

]
.

For the same reason as above, it is a bounded complex of free R-modules; it also
has the property that

C•(U1, . . . , Ud,LR)⊗R R/mρ ≃ C•(U1, . . . , Ud,Cρ)

1One can take each Ui to be a small geodesic ball; in suitable local coordinates, such sets (and
their intersections) are convex, hence contractible. Thanks to Paola Frediani for explaining this.
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for every ρ ∈ MB(X). The sets Σkm(X) are therefore nothing but the cohomology
support loci of this complex; in particular, they are closed algebraic subsets of
SpecR. □

Note. Each Σkm(X) is actually defined over Q. In fact, the proof above works just
as well for the ring R = Q[Λ]: the complex manifoldMB(X) is the set of C-rational
points of the affine variety SpecR; each Σkm(X) is the set of C-rational points of an
algebraic subset defined by a bounded complex of free R-modules. This observation
will be useful later on.

The structure of cohomology jump loci. We shall now prove the first part
of Simpson’s Theorem 15.2, namely that the cohomology support loci Sqm(X,ΩpX)

are finite unions of translates of subtori in Pic0(X). Here it is not necessary to
assume that X is projective; we shall therefore present the proof for an arbitrary
compact Kähler manifold. The idea, which goes back to the work of Beauville, is
to establish the desired result first for the sets Σkm(X). In this context, the correct
generalization of translates of subtori is the following.

Definition 18.3. A linear subvariety of MB(X) is a subset of the form

ρ · im
(
f∗ : MB(T ) →MB(X)

)
,

where f : X → T is a holomorphic mapping to a compact complex torus, and
ρ ∈MB(X) is a character.

The same definition applies to MDR(X) and MDol(X).

Example 18.4. The structure of linear subvarieties is easiest to understand in the
model MDol(X). Here we just get

im
(
Pic0(T )×H0(T,Ω1

T ) → Pic0(X)×H0(X,Ω1
X)

)
,

and so a linear subvariety is (up to translation by some character) the product of
a subtorus of Pic0(X) and the corresponding space of holomorphic one-forms.

Note that the Albanese mapping alb: X → Alb(X) induces an isomorphism

alb∗ : MB

(
Alb(X)

)
→M0

B(X);

because every morphism from X to a compact complex torus factors through
Alb(X), we could also define linear subvarieties in terms of surjective mappings
from Alb(X) to compact complex tori.

Here is the main result for today. As far as I can tell, it was first proved in this
form by Donu Arapura; the proof below is due to Simpson.

Theorem 18.5. Every Σkm(X) is a finite union of linear subvarieties of MB(X).

Before we prove this, let us see how it implies the structure theorem for coho-
mology support loci in Pic0(X). We define the auxiliary sets

Sp,qm (X) =
{
(L, θ) ∈MDol(X)

∣∣ dimHp,q(X,L, θ) ≥ m
}

in the moduli space of Higgs bundles.

Corollary 18.6. Every Sp,qm (X) is a finite union of linear subvarieties ofMDol(X).

Proof. This follows from the Hodge decomposition

Hk(X,Cρ) ≃
⊕
p+q=k

Hp,q(X,L, θ).

Suppose that Z is an irreducible component of some Sp,qm (X). Let k = p + q, and
for every 0 ≤ i ≤ k, define m(i) as the generic value of dimHi,k−i(X,L, θ) on Z.
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The image of Z inMB(X) is an irreducible real-analytic subvariety; with our choice
of m(0),m(1), . . . ,m(k), it is an irreducible component of

Σkm(0)+m(1)+···+m(k)(X),

According to the theorem, every such irreducible component is a linear subvariety
of MB(X); but then Z itself must also be a linear subvariety of MDol(X). □

Note that Sqm(X,ΩpX) = Sp,qm (X) ∩ Pic0(X), because when θ = 0, we have

Hp,q(X,L, 0) = Hq(X,ΩpX ⊗ L).

Since the intersection of a linear subvariety with Pic0(X) is a translate of a subtorus,
we have proved the following generalization of Theorem 11.1.

Corollary 18.7. Let X be a compact Kähler manifold. Then every irreducible
component of Sqm(X,ΩpX) is a translate of a subtorus of Pic0(X).

Proof of the theorem. To prove Theorem 18.5, we are going to exploit the
different structures of the two moduli spaces MB(X) and MDol(X). The general
idea is that any set that is sufficiently nice in at least two of the three spaces

MDR(X) MB(X) MDol(X)

has to be a finite union of linear subvarieties. Simpson’s paper contains several
other instances of this principle.

Let Z ⊆ Σkm(X) be an irreducible component; to simplify the argument, we shall
assume that Z ⊆ M0

B(X). By Proposition 18.2, Z is a closed algebraic subvariety
of M0

B(X). On the other hand, we have the decomposition

Hk(X,Cρ) ≃
⊕
p+q=k

Hp,q(X,L, θ).

Because the cohomology groups on the right-hand side do not change when we
multiply θ by a nonzero complex number, it follows that the image of Z inM0

Dol(X)
is stable under the natural C×-action

C× ×MDol(X) →MDol(X), λ · (L, θ) = (L, λθ).

This reduces the problem to the following general result.

Theorem 18.8. Let ZB ⊆MB(X) be an irreducible analytic subvariety, and denote
by ZDol its image in MDol(X). If ZDol is stable under the C×-action, then ZB is a
linear subvariety.

An interesting point is that we are originally interested in subsets of Pic0(X); in
order to get information about them, we go to the larger spaceM0

Dol(X) and exploit
the additional C×-action there . . . which is of course not visible on the subset θ = 0.

For the proof, we choose a smooth point of ZB; without any essential loss of
generality, we can assume that this point is the one corresponding to the triv-
ial character. (In fact, this can always be arranged by suitably translating ZB.)
Then ZDol contains the origin (OX , 0) in M0

Dol(X) as a smooth point. From our
construction of the two moduli spaces last time, it is clear that the holomorphic
tangent space to M0

B(X) at the origin is H1(X), while the one to M0
Dol(X) is

H0,1(X)×H1,0(X). They are isomorphic as R-vector spaces, and the isomorphism
between them is given by

h : H1(X) → H0,1(X)×H1,0(X), h(ε) =

Ç
ε0,1 − ε1,0

2
,
ε1,0 + ε0,1

2

å
.
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The formula for the inverse is h−1(τ, θ) = (θ− τ̄)+(τ+ θ̄); note that both h and h−1

are only R-linear. Let us denote by J the R-linear operator on H0,1(X)×H1,0(X)
induced by multiplication by i on H1(X). It is easy to see that

J(τ, θ) = h
(
i(θ − τ̄) + i(τ + θ̄)

)
=

(
iθ̄,−iτ̄

)
,

and so this is what the complex structure on H1(X) looks like when transported
to H0,1(X)×H1,0(X).

Now let W ⊆ H0,1(X)×H1,0(X) denote the tangent space to ZDol at the origin;
it is of course only an R-linear subspace. Because ZB is a complex submanifold in
a neighborhood of the origin, we do know that h−1(W ) is a C-linear subspace of
H1(X); this means that J(W ) ⊆ W . It is also clear that W is stable under the
C×-action on the second factor. This puts strong restrictions on what W can be.

Lemma 18.9. Let W ⊆ H0,1(X)×H1,0(X) be an R-linear subspace that is stable
under the C×-action on H1,0(X) and satisfies J(W ) ⊆W . Then

W = V × V

for a C-linear subspace V ⊆ H1,0(X).

Proof. Let w = (τ, θ) ∈ W be an arbitrary element. By assumption, (τ, λθ) ∈ W
for every λ ∈ C×; this clearly implies that

W =W 0,1 ×W 1,0,

where W 1,0 =W ∩H1,0(X) is a C-linear subspace, and W 0,1 =W ∩H0,1(X) is an
R-linear subspace. But now the formula for J shows that

W 0,1 =W 1,0,

and so it is in fact also C-linear. □

The remainder of the argument consists in showing that ZDol is in fact equal to
the image of this linear subspace in M0

Dol(X). Recall from the construction of the
two moduli spaces that we have a commuative diagram

H1(X) H0,1(X)×H1,0(X)

M0
B(X) Pic0(X)×H0(X,Ω1

X);

h

π×id

here π : H0,1(X) → Pic0(X) is our usual quotient map.
Consider the preimage (π× id)−1(ZDol). We already know that its tangent space

at the point (0, 0) is equal to V ×V ; the fact that the subset is closed and preserved
by the C×-action now implies that the entire subspace {0} × V must be contained
in (π × id)−1(ZDol).

Lemma 18.10. The subspace {0} × V is contained in (π × id)−1(ZDol).

Proof. Take an arbitrary nonzero vector θ ∈ V . Because (0, θ) belongs to the
tangent space, we can find a sequence of points (τn, θn) ∈ (π × id)−1(ZDol) that
converges to (0, 0) and has the property that

C · (τn, θn) → C · (0, θ).
For some choice of λn ∈ C×, the sequence λnθn converges to θ; because (π ×
id)−1(ZDol) is closed and invariant under the C×-action, it must contain (0, θ). □

We can use the fact that ZB is complex-analytic to show that (π × id)−1(ZDol)
contains its tangent space at the point (0, 0).

Lemma 18.11. The subspace V × V is contained in (π × id)−1(ZDol).
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Proof. Let θ1, . . . , θr ∈ V be a basis. According to the previous lemma,Ñ
0,

r∑
j=1

(aj + ibj)θj

é
∈ (π × id)−1(ZDol)

for every choice of a1, . . . , ar, b1, . . . , br ∈ R. If we apply h−1, we find that the point

(18.12)

r∑
j=1

(aj + ibj)θj +

r∑
j=1

(aj − ibj)θ̄j ∈ H1(X)

belongs to the preimage of ZB. This preimage is a complex-analytic subset of
H1(X), and therefore defined by holomorphic functions. Because a holomorphic
function on C2r that vanishes along R2r has to be identically zero, it follows that
(18.12) still belongs to the preimage of ZB even when a1, . . . , ar, b1, . . . , br ∈ C.
After relabeling the coefficients, the same is true for

r∑
j=1

ajθj +

r∑
j=1

bj θ̄j .

If we transform this back to H0,1(X)×H1,0(X), we getÑ
r∑
j=1

bj − aj
2

θ̄j ,

r∑
j=1

aj + bj
2

θj

é
∈ (π × id)−1(ZDol).

But every vector in V × V is of this form for some a1, . . . , ar, b1, . . . , br ∈ C □

The lemma shows that π(V ) × V is contained in ZDol. Both have the same
dimension (because V × V is the tangent space), and so this can only happen if

ZDol = π(V )× V.

As in the proof of the Theorem 12.4, T = π(V ) is therefore a subtorus of Pic0(X);
and V is isomorphic to the space of holomorphic one-forms on the dual torus. If
we define f : X → T̂ by composing the Albanese mapping of X with the induced
mapping Alb(X) → T̂ , this says exactly that

ZDol = im
(
f∗ : MDol(T̂ ) →MDol(X)

)
is a linear subvariety. But then ZB must be a linear subvariety of MB(X), too.

Exercises.

Exercise 18.1. In class, we only proved Theorem 18.5 for irreducible components
of Σkm(X) that lie in M0

B(X). The purpose of this exercise is to prove it in general.

(a) Choose a decomposition H1(X,Z) ≃ Z⊕ dimH1(X,C)⊕G, where G is a finite
abelian group, and let π : Y → X denote the covering space corresponding
to the kernel of π1(X,x0) → G. Show that MB(Y ) is connected.

(b) Show that π∗ : MB(X) → MB(Y ) is surjective, and that its kernel is a
finite subgroup of MB(X) that contains exactly one character from each
connected component.

(c) Now take a character σ ∈ MB(Y ), and consider the locally constant sheaf
π∗Cσ on X. Show that the natural G-action decomposes it as

π∗Cσ ≃
⊕

π∗(ρ)=σ

Cρ.

(d) Deduce from this decomposition that Theorem 18.5 is true for every irre-
ducible component of Σkm(X).
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Lecture 19

Points of finite order. From now on, we suppose that X is a smooth projective
variety. Recall that the cohomology jump loci

Σkm(X) =
{
ρ ∈MB(X)

∣∣ dimHk(X,Cρ) ≥ m
}

are finite unions of linear subvarieties of MB(X). Because X is projective, Pic0(X)
is an abelian variety, and so every subtorus of Pic0(X) is also an abelian variety.
Every linear subvariety is therefore of the form

ρ · im
(
f∗ : MB(A) →MB(X)

)
,

where f : X → A is a morphism to an abelian variety, and ρ ∈ MB(X) is some
character. In fact, the following stronger result is true.

Theorem 19.1. Every irreducible component of Σkm(X) contains a point of finite
order.

This means that Σkk(X) is a finite union of subsets of the form

ρ · im
(
f∗ : MB(A) →MB(X)

)
,

where ρ ∈MB(X) is a point of finite order. By the same argument as in the proof
of Corollary 18.7, we can deduce from this result about Σkm(X) the following result
about cohomology support loci.

Corollary 19.2. Let X be a smooth projective variety. Then every irreducible
component of Sqm(X,ΩpX) is a translate of an abelian subvariety of Pic0(X) by a
point of finite order.

The de Rham moduli space. To prove Theorem 19.1, we shall exploit the re-
lationship between the two moduli spaces MB(X) and MDR(X). We begin with a
few remarks about their algebraic structure. Recall that MB(X) is always an affine
algebraic variety, defined over Q. Since X is projective, Picτ (X) is projective, and

MDol(X) = Picτ (X)×H0(X,Ω1
X)

is also a quasi-projective algebraic variety; the algebraic description of the Picard
scheme implies that when X is defined over an algebraically closed subfield k ⊆ C,
then so are Picτ (X) and MDol(X).

One can show that the same is true for MDR(X); in fact, there is an algebraic
construction for the moduli space of line bundles with flat connection. We are not
going to discuss this construction in general; instead, I will show a simple proof for
why M0

DR(X) is quasi-projective.

Proposition 19.3. Let X be a smooth projective variety. Then M0
DR(X) is quasi-

projective.

The idea is to embedM0
DR(X) into a larger space of so-called flat λ-connections;

this larger space will then turn out to be a vector bundle over Pic0(X).

Definition 19.4. Let λ ∈ C be a complex number. A λ-connection on a holo-
morphic line bundle L is a C-linear morphism ∇ : L → Ω1

X ⊗ L that satisfies the
following version of the Leibniz rule:

∇(fs) = f∇(s) + λdf ⊗ s

The λ-connection is called flat if (after the usual extension) ∇ ◦∇ = 0.

Example 19.5. A (flat) 1-connection on L is a (flat) connection in the usual sense.
A 0-connection on L is the same thing as an OX -linear morphism from L to Ω1

X⊗L,
or in other words, a global holomorphic one-form; it is automatically flat.
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As in the case of usual connections, we can describe λ-connections on line bundles
with trivial first Chern class by operators of the form

λ∂ + ∂̄ + ε,

where ε ∈ H1(X) is a harmonic one-form. Let me briefly review how this works.
The holomorphic line bundle L is the one corresponding to the operator ∂̄ + ε0,1.
Locally, we have ε0,1 = ∂̄φ, and so e−φ is a nowhere vanishing local holomorphic
section of L. In

(λ∂ + ∂̄ + ε)e−φ = (ε1,0 − λ∂φ)⊗ e−φ,

the (1, 0)-form in parentheses is holomorphic; now the λ-connection is defined by
setting

∇(fe−φ) = f(ε1,0 − λ∂φ)⊗ e−φ + λdf ⊗ e−φ

for every local holomorphic function f . One can show that these local expressions
patch together to give a well-defined ∇ : L→ Ω1

X ⊗ L.
It is also not hard to figure out when λ∂ + ∂̄ + ε defines the trivial λ-connection

λd on the trivial line bundle OX . The condition for this is that there should be a
nowhere vanishing smooth function f ∈ A0(X) such that

(λ∂ + ∂̄ + ε)f = 0.

Now there are two cases:

(1) When λ ̸= 0, we can rewrite this condition as

(d+ λ−1ε1,0 + ε0,1)f = 0;

this happens if and only if λ−1ε1,0 + ε0,1 has periods in Z(1).
(2) When λ = 0, the condition becomes ε1,0 = 0 and (∂̄ + ε0,1)f = 0; this

happens when ε0,1 − ε0,1 has periods in Z(1).
To write this in a more symmetric form, let Γ ⊆ H1(X) denote the space of all

harmonic one-forms that have periods in Z(1). Then λ∂ + ∂̄ + ε defines the trivial
λ-connection if and only if ε = λγ1,0 + γ0,1 for some γ ∈ Γ.

Definition 19.6. We denote by M̃0
DR(X) the space of all pairs (L,∇), where

L ∈ Pic0(X) and ∇ is a flat λ-connection on L for some λ ∈ C.

The discussion above leads to the following analytic description of the moduli
space. We have an embedding

Γ× C → H1(X)× C, (γ, λ) 7→ (λγ1,0 + γ0,1, λ),

and M̃0
DR(X) is the quotient of H1(X)× C by the equivalence relation

(ε1, λ1) ∼ (ε2, λ2) ⇐⇒ λ1 = λ2 and ε1 = ε2 + (λγ1,0 + γ0,1) for some γ ∈ Γ.

The advantage is that M̃0
DR(X) has a much simpler structure that M0

DR(X).

Lemma 19.7. The projection M̃0
DR(X) → Pic0(X) is a holomorphic vector bundle.

Proof. It suffices to prove this after pulling back to the universal covering space
H0,1(X) of Pic0(X). With the help of the commutative diagram

H1(X)× C H0,1(X)

M̃0
DR(X) Pic0(X),

p

one can easily show that

H1(X)× C ≃ M̃0
DR(X)×Pic0(X) H0,1(X).
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Now the projection p takes (ε, λ) to ε0,1, and so the pullback is isomorphic to the
trivial bundle with fiber H0(X,Ω1

X)× C. □

When X is a smooth projective variety, Pic0(X) is an abelian variety; accord-
ing to Serre’s theorem, every holomorphic vector bundle is therefore automatically
algebraic. It follows that M̃0

DR(X) is a quasi-projective algebraic variety. We also
have a morphism of vector bundles

M̃0
DR(X) → Pic0(X)× C

that takes a flat λ-connection (L,∇) to the pair (L, λ); this morphism is also au-

tomatically algebraic. If we denote by λ : M̃0
DR(X) → C the induced morphism,

then
M0

DR(X) ≃ λ−1(1),

because a flat 1-connection is the same thing as a flat connection. This shows that
M0

DR(X) is a quasi-projective algebraic variety, too.
In fact, we can do slightly better and show that when X is defined over an

algebraically closed subfield k ⊆ C, the same is true for M̃0
DR(X) and M0

DR(X).
To do that, let EX denote the coherent sheaf of holomorphic sections of the vector
bundle M̃0

DR(X) → Pic0(X). By construction, it sits in an exact sequence

(19.8) 0 → H0(X,Ω1
X)⊗ OPic0(X) → EX → OPic0(X) → 0.

From our description above, we can easily determine the class of this extension.

Lemma 19.9. The extension class of (19.8) is

− id ∈ Hom
(
H0(X,Ω1

X), H0(X,Ω1
X)

)
≃ Hom

(
H0(X,Ω1

X),C
)
⊗H0(X,Ω1

X).

Proof. The extension class is an element of

Ext1
(
OPic0(X),OPic0(X) ⊗H0(X,Ω1

X)
)
≃ H1

(
Pic0(X),OPic0(X)

)
⊗H0(X,Ω1

X)

≃ Hom
(
H0(X,Ω1

X),C
)
⊗H0(X,Ω1

X).

The reason for the second isomorphism is thatH1
(
Pic0(X),OPic0(X)

)
is the tangent

space to Pic0
(
Pic0(X)

)
≃ Alb(X). To compute the extension class, we have to lift

the constant section 1 of OPic0(X) to a smooth section of EX , apply the ∂̄-operator

to it to obtain a (0, 1)-form with coefficients in H0(X,Ω1
X), and then take its

cohomology class.
The lifting comes from the fact that every L ∈ Pic0(X) has a canonical unitary

connection: if L is given by the operator ∂̄ + τ , this connection is d + τ − τ̄ . To
compute the necessary derivative, we can work on the universal covering space
H0,1(X). Here the lifting is

s : H0,1(X) → H1(X)× C, τ 7→ (τ − τ̄ , 1).

If we let τ1, . . . , τg ∈ H0,1(X) be a basis, and denote by z1, . . . , zg the dual basis,
then

s(z1, . . . , zg) =

Ñ
g∑
j=1

(
zjτj − z̄j τ̄j

)
, 1

é
and therefore ∂̄s = −

g∑
j=1

dz̄j ⊗ τ̄j .

Now τ̄1, . . . , τ̄g is a basis of H0(X,Ω1
X), and z̄1, . . . , z̄g is the dual basis; under the

isomorphism above, this element therefore corresponds to

− id ∈ Hom
(
H0(X,Ω1

X),C
)
⊗H0(X,Ω1

X). □

This formula for the extension class makes it clear that when X, and therefore
Pic0(X), are defined over k, the same is true for the exact sequence in (19.8). But

this means exactly that M̃0
DR(X) and M0

DR(X) = λ−1(1) are also defined over k.
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Exercises. The algebraic construction of the spaceMDR(X) is based on a different
interpretation of connections, due to Grothendieck. Let X be a smooth algebraic
variety. Let I∆ denote the ideal sheaf of the diagonal in X ×X, and consider the
closed subscheme X(1) ⊆ X × X defined by I2

∆. Denote by p1 and p2 the two

projections from X(1) to X.

Exercise 19.1. Show that a flat connection on a line bundle L is the same thing as
an isomorphism p∗1L ≃ p∗2L whose restriction to X ⊆ X(1) is the identity.

We know that MDR

(
Alb(X)

)
≃M0

DR(X); when X is smooth projective, we are
therefore dealing with the moduli space of line bundles with flat connection on the
abelian variety Alb(X).

Exercise 19.2. Let A be an abelian variety, and let L ∈ Pic0(A) be a translation
invariant line bundle on A. Show that a flat connection on L is the same thing as
a splitting of the short exact sequence

0 → mL/m2L→ L/m2L→ L/mL→ 0,

where m ⊆ OA stands for the ideal sheaf of the point 0 ∈ A. (Hint: Use the diagram

A×A

A A×A A

A

f

(id,0)

∆

p1

p2

where f(a, b) = (a, a+ b), and the fact that m∗L ≃ p∗1L⊗ p∗2L on A×A.)
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Lecture 20

Reduction to number fields. The proof of Theorem 19.1 will be carried out in
two steps:

(1) We reduce the problem to the case where everything is defined over Q̄.
(2) In that case, we use a result from transendence theory to prove that every

irreducible component contains a points of finite order.

Let us begin with the first step. Here the main point is that MB(X), as well
as the cohomology jump loci Σkm(X), only depend on the underlying topological
space of X. This leaves us free to deform the complex structure on X – basically
by varying the coefficients of the equations for X in a projective embedding – to
produce a smooth projective variety, with the same underlying topological space,
that is defined over Q̄.

In general, one can try to reduce questions about arbitrary complex algebraic va-
rieties to those that are defined over Q̄ with the help of a technique called spreading
out. We observe that X is (isomorphic to) a subvariety of projective space PNC , and
therefore defined by finitely many homogeneous polynomial equations. By taking
the coefficients of all those equations, we obtain a finitely generated subfield k ⊆ C;
clearly X is defined over k. Of course, k is the fraction field of a finitely generated
Q-algebra R (= the subalgebra of C generated by the coefficients of the equations),
and therefore the function field of the affine algebraic variety SpecR over Q. By
construction, the homogeneous polynomials defining X have coefficients in R, and
therefore define a closed subscheme of PNR . After throwing away certain bad points
(corresponding to those values of the coefficients where the subscheme defined by
the equations has the wrong dimension, is not smooth, and so on), we obtain a
smooth affine variety B with function field k, a smooth projective morphism

f : X → B

defined over Q, and a point b0 ∈ B(C), such that f−1(b0) is isomorphic to X.
Because f is smooth, all fibers have the same underlying topological space. Now
the fiber over any point b ∈ B(Q̄) is a smooth projective variety defined over Q̄.

Of course, we can apply the construction more generally to a finite collection of
quasi-projective varieties; and, by considering graphs, also to morphisms between
them. In our situation, we shall choose a finitely generated subfield k ⊆ C that
contains the coefficients of the defining equations for the following objects:

(i) The smooth projective variety X.
(ii) The Abelian varieties Pic0(X) and Alb(X).
(iii) The Albanese morphism alb: X → Alb(X).
(iv) The moduli space MDR(X).
(v) The images in MDR(X) of all the cohomology jump loci Σkm(X).

Note that the fifth condition makes sense because the image of Σkm(X) in MDR(X)
is a finite union of linear subvarieties, and therefore algebraic. (In fact, only this
last condition is essential, because we know from the algebraic construction of
Pic0(X) that if X and the base point x0 ∈ X are defined over Q̄, then so are the
other three.) We can then construct a morphism f : X → B as above, with the
additional property that over every point b ∈ B(Q̄), all the objects in the list above
are defined over Q̄. Because MB(X) and Σkm(X) are the same for every fiber of f ,
this reduces Theorem 19.1 to the case when everything is defined over Q̄.

The criterion of Schneider-Lang. Next, let me introduce the result from tran-
scendence theory that will be used in the proof of Theorem 19.1. Recall that we
have an isomorphism of complex Lie groups

Φ: MDR(X) →MB(X),
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that takes the line bundle with connection defined by d+ ε to the character

ρ : π1(X,x0) → C×, ρ(γ) = exp

Ç
−
∫
γ

ε

å
.

Because of the reductions from above, we may assume thatX is a smooth projective
variety defined over Q̄. We can also arrange that the abelian varieties Pic0(X) and
Alb(X), the Albanese morphism alb: X → Alb(X), the moduli space MDR(X),
and the sets Φ−1

(
Σkm(X)

)
, are defined over Q̄. The same is then true for every

irreducible component.
The main tool in the proof is the criterion of Schneider-Lang. It is a generaliza-

tion of the classical result, due to Lindemann and Weierstraß, that at least one of
the two numbers α and eα is always transcendental. This type of result is relevant
in our situation because, as you can see from the formula above, the mapping Φ
involves an exponential function. Here is the precise statement.

Theorem 20.1 (Schneider-Lang). Let G be a connected and commutative algebraic
group defined over Q̄, and let ψ : Cn → G(C) be an analytic homomorphism whose
differential dψ(0) is defined over Q̄. Let Γ ⊆ Cn be a subgroup that contains at
least n linearly independent elements. If ψ(Γ) ⊆ G(Q̄), then the dimension of the
Zariski closure of ψ(Cn) is at most n.

Example 20.2. To get a feeling for this theorem, let us see how it implies the classical
result that α and eα cannot both be algebraic numbers. Let G = C×C×, with the
obvious group structure, and consider the homomorphism

ψ : C → C× C×, ψ(z) = (z, eαz).

For the subgroup Γ ⊆ C, we take Γ = Z. The differential dψ(0) is equal to (1, α),
and ψ(k) = (k, ekα) for k ∈ Z. If α ∈ Q̄ and eα ∈ Q̄, then all the assumptions are
satisfied, and we conclude that ψ(C) is contained in an algebraic curve. In other
words, there is a nontrivial Laurent polynomial f(z, t) ∈ C[z, t, t−1] such that

f(z, eαz) = 0 for every z ∈ C.

By evaluating at the points z = 2πi/α · k, for k ∈ Z, we find that f(z, 1) has
infinitely many zeros, and is therefore identically zero. This means that (t − 1)
divides f(z, t). From this, we easily obtain a contradiction.

Points over number fields. Let A be an abelian variety defined over Q̄, and
suppose that ρ ∈ MB(A) is a Q̄-rational point, with the property that the corre-
sponding point (L,∇) ∈ MDR(A) is also defined over Q̄. Concretely, this means
that character ρ takes values in Q̄; and that both L and ∇ are defined over Q̄. In
the application to Simpson’s theorem below, A will be a subvariety of the Albanese
variety Alb(X).

Proposition 20.3. In this situation, ρ ∈MB(A) is a point of finite order.

To apply the criterion of Schneider-Lang, we let G be the group consisting of
all pairs (a, φ), where a ∈ A, and φ : t∗aL → L is an isomorphism. (Recall that
the line bundle L ∈ Pic0(A) is translation invariant.) Since L ∈ Pic0(A) is defined
over Q̄, this is clearly a commutative algebraic group defined over Q̄. Because
Aut(L) ≃ Gm, it sits in an exact sequence

1 → Gm → G→ A→ 0.

As a complex manifold, A = V/Γ, where V = T0A and Γ = π1(A, 0). The connec-
tion ∇ defines an analytic homomorphism

ψ : V → G(C)
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that lifts the quotient mapping π : V → A. To see why, note that π∗L has a
nowhere vanishing holomorphic section s with (π∗∇)(s) = 0; we can normalize it
by specifying the value s(0). We then obtain

ψ : V → G, ψ(v) =
(
π(v), s(v)/s(0)

)
.

Since (L,∇) is defined over Q̄, the differential dψ(0) is defined over Q̄. In fact, we
have ∇s(0) = ω ⊗ s(0) for an element ω ∈ T ∗

0A that is defined over Q̄, and then

dψ(0) : T0A→ T0A× C, v 7→
(
v, ω(v)

)
.

Finally, we observe that the restriction of ψ to the lattice Γ gives a homomorphism

Γ → A× C×, γ 7→
(
0, s(γ)/s(0)

)
;

this is of course nothing but the character ρ that we started from. It takes values in
Q̄, because the corresponding point ofMB(A) is defined over Q̄. All the assumptions
in the criterion of Schneider-Lang are therefore satisfied.

The conclusion is that ψ(V ) is contained in an algebraic subgroup G′ ⊆ G of
dimension at most n. In fact, dimG′ = n because the projection G′ → A must
be surjective; therefore G′ → A is finite, and so the intersection G′(C) ∩ C× is a
finite group. But this means exactly that the character ρ : Γ → C× takes values in
a finite group, and is therefore a point of finite order.

The proof of Simpson’s theorem. We can now do the general case.

Proposition 20.4. In the situation above, let ZB ⊆MB(X) be a linear subvariety.
If ZB and ZDR are both defined over Q̄, then ZB contains a point of finite order.

Proof. Because every connected component of MB(X) contains points of finite or-
der, we can assume without loss of generality that ZB ⊆ M0

B(X). Moreover, we
can replace X by the abelian variety Alb(X), because

MB

(
Alb(X)

)
≃M0

B(X).

By assumption, there is a morphism f from Alb(X) to an abelian variety such
that ZB is a translate of im f∗ by a point ρ ∈MB

(
Alb(X)

)
. Note that the abelian

variety and the morphism are uniquely determined by ZDR, and so they are defined
over Q̄ as well. Now let A ⊆ ker f denote the connected component of the kernel
containing the unit element; it is an abelian variety defined over Q̄. Restriction to
A defines a surjective morphism

i∗ : MB

(
Alb(X)

)
→MB(A),

and to prove that ZB contains a point of finite order, it is enough to show that its
image under i∗ does. Now every character in the image of f∗ is sent to the trivial
character by i∗, and so the image of ZB is equal to the point i∗(ρ) ∈MB(A). This
point, as well as its image in MDR(A), are both defined over Q̄. We can therefore
apply Proposition 20.3 to conclude that it must be of finite order. But then ZB

also contains a point of finite order. □

Together with the reductions above, this is enough to prove Theorem 19.1.

Exercises.

Exercise 20.1. Let X be a smooth projective variety defined over Q̄. Show that
if (L,∇) ∈ M0

DR(X) is a Q̄-rational point if and only if the line bundle L and the
connection ∇ are defined over Q̄.
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Lecture 21

Note. The second half of the course, which begins today, is devoted to an algebraic
treatment of the generic vanishing theorem on a smooth projective variety X. We
will only use two results from the first half of the course:

(a) The algebraic definition of Pic0(X) and Alb(X), and some results about
line bundles on abelian varieties.

(b) The structure theorem for cohomology support loci by Green-Lazarsfeld
and Simpson: every irreducible component of

Si(X) =
{
L ∈ Pic0(X)

∣∣ Hi(X,L) ̸= 0
}

is a translate of an abelian subvariety of Pic0(X) by a point of finite order.

If you would like to go back to those results, the notes from Lecture 15 are a good
place to start.

Hacon’s proof of the generic vanishing theorem. Several years after the orig-
inal papers of Green and Lazarsfeld had appeared, Christopher Hacon discovered
another proof of Theorem 6.6 in the case when X is a smooth projective complex
algebraic variety. His proof uses tools from algebraic geometry – most notably,
vanishing theorems and the derived category – and provides a very different view
of the original result.

Let me begin by restating the generic vanishing theorem in the form Hacon
uses. Let X be a smooth projective complex algebraic variety, say of dimension n.
According to Theorem 6.6, we then have

codim
{
L ∈ Pic0(X)

∣∣ Hi(X,L) ̸= 0
}
≥ dimalb(X)− i.

By Serre duality, Hi(X,ωX ⊗ L) is dual to Hn−i(X,L−1); we thus arrive at the
following equivalent formulation of the generic vanishing theorem.

Theorem 21.1. Let X be a smooth projective complex algebraic variety. Then

codim
{
L ∈ Pic0(X)

∣∣ Hi(X,ωX ⊗ L) ̸= 0
}
≥ i−

(
dimX − dimalb(X)

)
for every integer i ≥ 0.

Note that the term in parentheses is the dimension of the general fiber of the
Albanese mapping; we shall see later where this comes from.

In his proof, Hacon uses the following three tools:

(1) Derived categories, more precisely, the so-called bounded derived category
Db

coh(OX); here X can be any algebraic variety. For now, you can think of
the objects of this category as being bounded complexes of coherent sheaves
on X; for practical reasons, a more complicated definition is better. The
derived category makes it very easy to work with derived functors such as
Rf∗, and many useful results such as the projection formula, Grothendieck
duality, or the base change theorem, work best in the derived category.

(2) The Fourier-Mukai transform, discovered by Shigeru Mukai. This is an
equivalence RΦP : Db

coh(OA) → Db
coh(OÂ) between the derived category of

an abelian variety A and that of the dual abelian variety Â = Pic0(A). If
F is a coherent sheaf, then the complex RΦP (F ) contains the information
about all the cohomology groups

Hi(A,F ⊗ L), for L ∈ Pic0(A).

More precisely, if we tensor RΦP (F ) by the structure sheaf of a point
L ∈ Pic0(A), in the derived category, then the cohomology of the result-
ing complex of vector spaces computes Hi(A,F ⊗ L). The Fourier-Mukai
transform is another reason for using the derived category.
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(3) Results by Kollár about higher direct images of dualizing sheaves. Kollár
showed that for a surjective projective morphism f : X → Y with X
smooth, the higher direct image sheaves Rℓf∗ωX have very similar proper-
ties to ωX itself: they are torsion-free, and satisfy a Kodaira-type vanishing
theorem. Moreover, the complex Rf∗ωX splits, in the derived category,
meaning that in Db

coh(OY ), one has

Rf∗ωX ≃
⊕
ℓ

Rℓf∗ωX [−ℓ].

You can think of this as being a stronger form of E2-degeneration of the
Leray spectral sequence. Kollár’s theorem is the reason for restating the
generic vanishing theorem in terms of ωX .

We shall discuss all of these in more detail later on, as a preparation for un-
derstanding Hacon’s proof. In particular, we shall spend some time on reviewing
derived categories and derived functors, as well as the main technical results such
as Grothendieck duality and base change.

The derived category. Derived categories were introduced to have a better foun-
dation for the theory of derived functors. When we calculate derived functors such
as Tor or Ext, we typically find a (locally free, or flat, or injective) resolution of our
given module/sheaf, apply the functor in question to each term of the resolution,
and then take cohomology. The main idea behind the derived category is to keep
not just the cohomology modules/sheaves, but the complexes themselves. Because
the same module/sheaf can be resolved in many different ways, keeping the com-
plex only makes sense if we declare different complexes obtained in this way to be
isomorphic. This leads to the notion of a quasi-isomorphism: a morphism between
two complexes that induces isomorphisms on cohomology.

Example 21.2. Consider the case of modules over a ring. Every module M has a
(typically infinite) free resolution

· · · → F2 → F1 → F0 →M → 0,

and in the derived category, we want to consider the complex F• as being isomorphic
to M . If G• is another free resolution of M , then a basic result in homological
algebra says that there is a morphism of complexes f : F• → G• making the diagram

· · · F2 F1 F0 M

· · · G2 G1 G0 M

d

f

d

f f id

d d

commute. This morphism is only unique up to homotopy: for any other choice
f ′ : F• → G•, there are homomorphisms s : Fn → Gn+1 such that f ′ − f = ds+ sd.

· · · F2 F1 F0 M

· · · G2 G1 G0 M

d

f

d

f
s

f
s

id

d d

If we want to consider M , F•, and G• as being isomorphic to each other, the two
liftings of id : M →M should be equal, and so we are forced to consider morphisms
of complexes up to homotopy.

Example 21.3. In other cases, say for computing Ext, we might want to replace M
by an injective resolution of the form

0 →M → I0 → I1 → I2 → · · · ,
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Now an injective resolution and a free resolution do not have much in common; the
only thing we can say is that we have a morphism of complexes

· · · F2 F1 F0 0 0 · · ·

· · · 0 0 I0 I1 I2 · · ·

d d

d d

that is an isomorphism on the level of cohomology—being resolutions of M , both
complexes have cohomology only in degree zero. If we want both complexes to
be isomorphic as objects of the derived category, we need to make sure that such
quasi-isomorphisms have inverses.

Quasi-isomorphisms also arise naturally if we consider resolutions of complexes.

Example 21.4. An injective resolution of a complex M• of modules is a complex
I• of injective modules, and a morphism of complexes M• → I• that induces
isomorphisms on cohomology. This generalizes the usual definition for a single
module to complexes.

Unfortunately, not every quasi-isomorphism has an inverse. The following ex-
ample (in the category of Z-modules) shows one way in which this can happen.

Example 21.5. In the category of Z-modules, the morphism

0 Z Z 0

0 0 Z/2Z 0

2

is a quasi-isomorphism; but it clearly has no inverse, not even up to homotopy,
because there are no nontrivial homomorphisms from Z/2Z to Z.

Let me now explain the classical construction of the derived category. Let A be
an arbitrary abelian category (such as modules over a ring, or coherent sheaves on
a scheme). Depending on what kind of complexes we want to consider, there are
several derived categories: the unbounded derived category D(A), whose objects
are arbitrary complexes of objects in A; the categories D+(A) and D−(A), whose
objects are semi-infinite complexes that are allowed to be infinite in the positive
respectively negative direction; and finally the bounded derived category Db(A),
whose objects are bounded complexes of objects in A. All of these categories are
constructed in two stages; we explain this in the case of Db(A).

(1) Starting from the category of bounded complexes Kb(A), form the so-called
homotopy category Hb(A). It has exactly the same objects, but the mor-
phisms between two complexes are taken up to homotopy; in other words,

HomHb(A)(A
•, B•) = HomKb(A)(A

•, B•)
/
Hom0

Kb(A)(A
•, B•),

where Hom0
Kb(A)(A

•, B•) denotes the subgroup of those morphisms that
are homotopic to zero.

(2) Now form the derived category Db(A) by inverting quasi-isomorphisms; this
can be done by a formal construction similar to the passage from Z to Q.
That is to say, in Db(A), a morphism between two complexes A• and B• is
represented by a fraction f/h, which stands for the diagram

C•

A• B•

h f



111

where f : C• → B• is a morphism of complexes and h : C• → A• is a quasi-
isomorphism. As with ordinary fractions, there is an equivalence relation
that we shall not dwell on; it is also not entirely trivial to show that the
composition of two morphisms is again a morphism.

In other words, the objects of the derived category are still just complexes;
but the set of morphisms between two complexes has become more complicated
(especially because a morphism may involve an additional complex).

Example 21.6. For us, the most interesting case is when the abelian category is
Coh(X), the category of coherent sheaves on a scheme X. By applying the above
construction, we get the bounded derived category Db

(
Coh(X)

)
; once again, the

objects of this category are just bounded complexes of coherent sheaves. For prac-
tical purposes, a broader definition of the derived category is more useful. Inside
the unbounded derived category D(OX) of complexes of sheaves of OX -modules,
consider the full subcategory Db

coh(OX); by definition, a complex

· · · → F−1 → F 0 → F 1 → F 2 → · · ·

belongs to this subcategory if its cohomology sheaves Hi(F •) are coherent, and
nonzero for only finitely many values of i. Clearly,

Db
(
Coh(X)

)
⊆ Db

coh(OX),

and under some mild assumptions on X, this inclusion is actually an equivalence
of categories. The larger category has the advantage of being more flexible: for
example, an injective resolution of a coherent sheaf is an object of Db

coh(OX) but
not of Db

(
Coh(X)

)
.

Morphisms in the derived category. The definition of the derived category
leads to several questions. The first one is whether one can describe the space of
morphisms between two complexes in more basic terms. At least in the case of
complexes with only one nonzero cohomology object, this is possible.

We first define the following shift functor. Given a complex A• ∈ K(A) and an
integer n ∈ Z, we obtain a new complex A•[n] by setting

A•[n] = A•+n;

we also multiply all the differentials in the original complex by the factor (−1)n.
(This convention makes it easier to remember certain formulas.) For example, if
A• is the complex

· · · A−1 A0 A1 A2 · · ·d d d

then A•[1] is the same complex shifted to the left by one step,

· · · A0 A1 A2 A3 · · ·−d −d −d

and with the sign of all differentials changed. This operation passes to the derived
category, and defines a collection of functors [n] : D(A) → D(A).

Example 21.7. Morphisms in Db(A) are related to Ext-groups in the sense of
Yoneda. If A and B are two objects of the abelian category A, then one has

HomDb(A)

(
A,B[n]

)
≃ Extn(A,B);

in particular, this group is trivial for n < 0. Let us consider the case n = 1. An
element of Ext1(A,B) is represented by a short exact sequence of the form

0 → B → E → A→ 0.
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Now the morphism of complexes

0 B E 0

0 0 A 0

is obviously a quasi-isomorphism; on the other hand, we have

0 B E 0

0 B 0 0

id

and together, they determine a morphism in Db(A) from A (viewed as a complex
in degree 0) to B[1] (viewed as a complex in degree −1).

Exercise 21.1. Show that, conversely, every element of HomDb(A)

(
A,B[1]

)
gives rise

to an extension of A by B, and that the two constructions are inverse to each other.

Other models for the derived category. Recall that the objects of the bounded
derived category Db

coh(OX) are complexes of sheaves of OX -modules whose coho-
mology sheaves are coherent and vanish outside some bounded interval. I already
mentioned that, under some mild assumptions on X, this category is equivalent to
the much smaller category Db

(
Coh(X)

)
, whose objects are bounded complexes of

coherent sheaves on X. There are various other models for the derived category,
each based on a certain class of sheaves (such as injective sheaves or flat sheaves).
Let me illustrate this principle with the following example.

Example 21.8. Let Inj(OX) denote the (additive, but not abelian) category of in-
jective sheaves of OX -modules. Every OX -module has a semi-infinite resolution
by injectives; using the Cartan-Eilenberg construction, every semi-infinite complex
of OX -modules is quasi-isomorphic to a semi-infinite complex of injectives. This
means that the inclusion

D+
(
Inj(OX)

)
⊆ D+(OX)

is an equivalence of categories. By restricting to complexes with bounded and
coherent cohomology sheaves, we also obtain an equivalence of categories

Db
coh

(
Inj(OX)

)
≃ Db

coh(OX).

The advantage of using injectives is that we do not need to worry about inverses
for quasi-isomorphisms. Indeed, suppose that f : I•1 → I•2 is a quasi-isomorphism
between two complexes of injective OX -modules. The universal mapping property
of injectives implies that there is a morphism of complexes g : I•2 → I•1 such that
both f ◦ g and g ◦ f are homotopic to the identity. Thus

D+
(
Inj(OX)

)
≃ H+

(
Inj(OX)

)
and, extending our earlier notation in the obvious way, also

Hb
coh

(
Inj(OX)

)
≃ Db

coh(OX).

The same construction works for sheaves of flat OX -modules; under certain addi-
tional assumptions on the scheme X, one can also use locally free sheaves.

In this model for the derived category, the morphisms are much easier to describe.
Nevertheless, it is better to work with the category Db

coh(OX), because it gives us
more flexibility: we can choose injective or flat or locally free resolutions as the
occasion demands.



113

Lecture 22

Triangulated categories. The derived category is no longer an abelian category,
because the kernel and cokernel of a morphism do not make sense. (This is due to all
the additional morphisms that we have introduced when adding inverses for quasi-
isomorphisms.) But there is a replacement for short exact sequences, the so-called
distinguished triangles, and Db(A) is an example of a triangulated category.

A triangulated category is given by specifying a class of triangles. The motivation
for introducing triangles lies in the mapping cone construction from homological
algebra; let us briefly review this construction, and explain in what sense it acts as a
substitute for short exact sequences. Given a morphism of complexes f : A• → B•,
the mapping cone of f is the complex

C•
f = B• ⊕A•[1] = B• ⊕A•+1

with differential d(b, a) = (db + fa,−da). (As explained below, the terminology
comes from the mapping cone in algebraic topology.) Since we defined A•[1] by
changing the sign of all differentials, this makes the sequence of complexes

0 → B• → C•
f → A•[1] → 0

short exact. In total, we have a sequence of four morphisms

(22.1) A• → B• → C•
f → A•[1],

and the composition of any two adjacent morphisms is zero up to homotopy.

Exercise 22.1. Verify that the composite morphisms

A• → B• → C•
f and C•

f → A•[1] → B•[1]

are both homotopic to zero.

A sequence of four morphisms as in (22.1) is called a triangle; this is because
we can arrange it into the shape of a triangle, with the convention that the arrow
marked [1] really goes from C•

f to A•[1]:

A•

C•
f B•

[1]

The short exact sequence of complexes gives rise to a long exact sequence

· · · → Hi(A•) → Hi(B•) → Hi(C•
f ) → Hi+1(A•) → · · ·

for the cohomology of the complexes. In order to write down this long exact se-
quence, all we need is the four morphisms in (22.1). Taking this example as a
model, we say that any sequence of four morphisms of complexes

A• → B• → C• → A•[1]

is a distiguished triangle if it is isomorphic, in the derived category, to a triangle
coming from the mapping cone construction. (In particular, the composition of
two adjacent morphisms in the triangle is then actually homotopic to zero.) This
definition endows the derived category with the structure of a triangulated category.

Here are two basic properties of distinguished triangles that you should try to
verify as an exercise. There are many others, and by abstracting from this example,
Verdier arrived at the concept of a triangulated category; since the precise definition
is not relevant for our purposes, we shall not dwell on the details.
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Exercise 22.2. Suppose that A• → B• → C• → A•[1] is a distinguished triangle.
Show that B• → C• → A•[1] → B•[1] and C•[−1] → A• → B• → C• are again
distinguished triangles. This means that distinguished triangles can be “rotated”
in both directions.

Exercise 22.3. Show that a distinguished triangle A• → B• → C• → A•[1] gives
rise to a long exact sequence

· · · → Hi(A•) → Hi(B•) → Hi(C•) → Hi+1(A•) → · · ·
in the abelian category A.

I already mentioned that distinguished triangles are a replacement for short exact
sequences; let me elaborate on this point a bit. On the one hand, the prototypical
example of a distinguished triangle in (22.1) came from the short exact sequence
of the mapping cone. On the other hand, once we look at complexes up to quasi-
isomorphism, every short exact sequence of complexes is actually that of a mapping
cone (under some conditions on A). Let me illustrate this claim with the example
of modules over a ring.

Example 22.2. Suppose we have a short exact sequence of complexes of R-modules

0 → B• → C• → A•[1] → 0.

Up to quasi-isomorphism, we can replace any complex by a free resolution, and
so we may assume that A• is a complex of free R-modules. We can then choose
splittings

Cn ≃ Bn ⊕An+1.

With respect to this decomposition, the differential d : Cn → Cn+1 is represented
by a matrix Å

d f
0 −d

ã
for some homomorphism f : An → Bn; the identity d ◦ d = 0 implies that f defines
a morphism of complexes from A• to B•, and our exact sequence of complexes is
the one for the mapping cone of f .

In closing, let me mention one other general fact that is frequently useful.
Namely, suppose that A• → B• → C• → A•[1] is a distinguished triangle in
Db(A). Then for every E• ∈ Db(A), one gets two long exact sequences of abelian
groups

· · · → Hom(E•, A•) → Hom(E•, B•) → Hom(E•, C•) → Hom
(
E•, A•[1]

)
→ · · ·

· · · → Hom
(
A•[1], E•) → Hom(C•, E•) → Hom(B•, E•) → Hom(A•, E•) → · · ·

where Hom(−,−) means the set of morphisms in Db(A).

An analogy with algebraic topology. There is a useful analogy with algebraic
topology; it is explained in greater depth in Richard Thomas’ lectures notes De-
rived categories for the working mathematician. Suppose that X and Y are two
simply connected simplicial complexes. If they are homotopy equivalent, then their
singular homology groups Hi(X,Z) and Hi(Y,Z) are isomorphic; the converse is
not true. But it turns out that the simplicial chain complex C•(X) contains enough
information to detect homotopy equivalence. In fact, there is the following theorem
by Whitehead:

Theorem. Two (simply connected) simplicial complexes X and Y are homotopy
equivalent iff there is a third simplicial complex Z and two morphisms of complexes

h : C•(Z) → C•(X) and f : C•(Z) → C•(Y )

that induce isomorphisms on homology.
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In this way, the category of (simply connected) simplicial complexes up to homo-
topy equivalence embeds into the derived category of complexes of abelian groups.

Algebraic topology is also where the term “mapping cone” originated. Let
f : X → Y be a continuous mapping between two topological spaces. The mapping
cone Cf is formed by taking the disjoint union ofX×[0, 1] and Y , collapsingX×{0}
to a point, and identifying X × {1} with the image f(X) ⊆ Y . Schematically,

Cf =

X
Y

The resulting space fits into a sequence of mappings

X Y Cf
f i

It can serve as a sort of kernel and cokernel for f ; for example, if f is injective,
then Cf is homotopy-equivalent to the quotient space Y/X. We can apply the cone
construction to the natural inclusion i : Y → Cf , and extend the above sequence of
mappings to

(22.3) X Y Cf Ci
f i

Since Y ⊆ Ci can be retracted to one of the two vertices, the space Ci is homotopy-
equivalent to ΣX, the suspension of X; in a schematic drawing,

Ci =

X
Y

∼

X

= ΣX

Taking homology, and using the suspension isomorphism Hi(ΣX) ≃ Hi−1(X), we
then obtain a long exact sequence

· · · → Hi(X) → Hi(Y ) → Hi(Y,X) → Hi−1(X) → Hi−1(Y ) → · · ·

It is a pleasant exercise to check that Hi(Y,X) → Hi−1(X) agrees with the usual
boundary map in singular homology. Thus (22.3) is, in a sense, a distinguished
triangle of topological spaces (up to homotopy equivalence).

Here is one final point. Suppose that f : X → Y is a simplicial mapping between
two simplicial complexes. Then Cf is again a simplicial complex: its i-simplices
are the i-simplices in Y , together with the cones on the (i− 1)-simplices in X. One
can use this to show that the simplicial chain complex of Cf is given by

C•(Cf ) = C•(Y )⊕ C•−1(X),

with differential ∂(η, ξ) =
(
∂η + fξ,−∂ξ

)
. As you can see, this is precisely the

mapping cone of the morphism of complexes C•(X) → C•(Y ) induced by f .

Derived functors. From now on, we shall concentrate on the derived category
Db

coh(OX), where X is a scheme. Here is a very useful fact:

Example 22.4. If X is nonsingular and quasi-compact, so that every coherent sheaf
on X has a finite resolution by locally free sheaves, then every complex in Db

coh(OX)
is quasi-isomorphic to a bounded complex of locally free sheaves.
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Our goal is to define derived functors for the commonly used functors in algebraic
geometry, such as ⊗, Hom, or pushforwards and pullbacks. The original functors
are either left or right exact, and in classical homological algebra, the higher derived
functors correct the lack of exactness. In the setting of triangulated categories, the
relevant definition is the following.

Definition 22.5. An additive functor between two triangulated categories is exact
if it takes distinguished triangles to distinguished triangles.

If we have an exact functor F : Db(A) → Db(B) between the derived categories
of two abelian categories, we get a long exact sequence in cohomology: if A• →
B• → C• → A•[1] is a distinguished triangle in Db(A), then F (A•) → F (B•) →
F (C•) → F (A•)[1] is a distinguished triangle in Db(B), and so

· · · → HiF (A•) → HiF (B•) → HiF (C•) → Hi+1F (A•) → · · ·

is a long exact sequence in the abelian category B. This explains the terminology.
When defining a derived functor, we have two choices:

(1) Use a definition that works only for certain complexes, such as complexes of
injective sheaves or flat sheaves. Then show that the subcategory consisting
of such complexes is equivalent to the entire derived category. In this way,
we obtain a non-constructive definition of the functor.

(2) Use a definition that works for arbitrary complexes. This may require more
effort, but seems better from a mathematical point of view.

Example 22.6. Let f : X → Y be a morphism of schemes, say quasi-compact and
separated (in order for f∗ to preserve quasi-coherence). We want to define the
derived functor Rf∗ : D

+
(
QCoh(X)

)
→ D+

(
QCoh(Y )

)
. Since we already know

that injective sheaves are acyclic, we should obviously define

Rf∗I
• = f∗I

•

if I• is a complex of injective sheaves. Since the subcategory D+
(
Inj(X)

)
is equiv-

alent to D+
(
QCoh(X)

)
, we can choose an inverse functor to the inclusion – this

basically amounts to choosing an injective resolution for every complex of quasi-
coherent sheaves – and compose the two. In this way, we obtain a functor

Rf∗ : D
+
(
QCoh(X)

)
→ D+

(
QCoh(Y )

)
.

If f is proper, then f∗ preserves coherence, and Rf∗ restricts to a functor

Rf∗ : D
b
coh(OX) → Db

coh(OY ).

It remains to verify that Rf∗ is an exact functor.

Exercise 22.4. Show that Rf∗ takes distinguished triangles to distinguished trian-
gles. (Hint: It is enough to prove this for a triangle of the form

I•1 → I•2 → C•
φ → I•1 [1],

for φ : I•1 → I•2 a morphism between two complexes of injective sheaves.)

Example 22.7. If the above definition of Rf∗ involves too many choices for your
taste, here is another possibility. Flasque sheaves are also acyclic for f∗, and have
the advantage that there is a canonical resolution by flasque sheaves, the so-called
Godement resolution. Given a sheaf of abelian groups F , let G0(F ) denote the
sheaf of discontinuous sections: for any open subscheme U ⊆ X,

G0(F )(U) =
∏
x∈U

Fx.
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This sheaf is flasque and contains F as a subsheaf. Now we define G1(F ) by
applying the same construction to the cokernel of F ↪→ G0(F ); in general, we set
Gn+1(F ) = G0

(
Gn(F )/Gn−1(F )

)
. The resulting complex of sheaves

0 → F → G0(F ) → G1(F ) → G2(F ) → · · ·
is exact; this is the Godement resolution G•(F ). The same construction produces
canonical flasque resolutions for complexes of sheaves: apply the construction to
each sheaf in the complex to get a double complex, and then take the associated
single complex. This allows us to define Rf∗ by setting

Rf∗F = f∗G
•(F )

for any F ∈ D+(OX). One can show that Rf∗F is canonically isomorphic to f∗F
when F is a flasque sheaf; up to isomorphism, the two constructions of Rf∗ are
therefore the same.

By one of those methods, one can also define the derived functors
L
⊗, RHom,

RΓ, RHom, as well as Lf∗ for morphisms f : X → Y . All of the properties of the
underived functors carry over to this setting: for example, Lf∗ is the left adjoint
of Rf∗. In classical homological algebra, the composition of two functors leads to
a spectral sequence (such as the Grothendieck spectral sequence); in the derived
category, this simply becomes an identity between two derived functors.

Example 22.8. For two morphisms f : X → Y and g : Y → Z, one has Rg∗ ◦Rf∗ ≃
R(g ◦ f)∗. This can be proved by observing that the pushforward of an injective
sheaf is again injective: for a complex of injective sheaves,

(g ◦ f)∗I• = g∗
(
f∗I

•).
A special case of this is the formula RΓ(Y,−) ◦ Rf∗ ≃ RΓ(X,−), which is the
derived category version of the Leray spectral sequence.

Example 22.9. Similar reasoning proves the formula RΓ ◦RHom ≃ RHom.

The big advantage of working in the derived category is that many relations
among the underived functors that are true only for locally free sheaves, now hold
in general. Technically, this is true on nonsingular varieties, because every complex
in Db

coh(OX) is then quasi-isomorphic to a bounded complex of locally free sheaves.
As a case in point, let us consider the projection formula. The version in

Hartshorne says that if f : X → Y is a morphism of schemes, and if E is a lo-
cally free OY -module of finite rank, then f∗

(
F ⊗OX

f∗E
)
≃ f∗F ⊗OY

E . In the
derived category, we have the following generalization.

Proposition 22.10. Let f : X → Y be a morphism of schemes, with Y nonsingular
and quasi-compact. Then one has

Rf∗
(
F

L
⊗OX

Lf∗G
)
≃ Rf∗F

L
⊗OY

G

for every F ∈ Db
coh(OX) and every G ∈ Db

coh(OY ).

Proof. We may assume without loss of generality that G is a bounded complex of
locally free sheaves and that F is a complex of injective sheaves. In that case,

Rf∗
(
F

L
⊗OX

Lf∗G
)
= f∗

(
F ⊗OX

f∗G
)
,

and by the usual projection formula, this is isomorphic to

f∗F ⊗OY
G = Rf∗F

L
⊗OY

G. □
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Lecture 23

Grothendieck duality. The purpose of today’s class is to introduce three basic
tools for working with derived categories. One result that we shall use frequently
is Grothendieck duality. The general theory is fairly complicated, and so we shall
only discuss a special case that is sufficient for the purposes of this course.

Let me begin by recalling Serre’s duality theorem. It says that if F is a coherent
sheaf on a smooth projective variety X, then

Extn−i(F , ωX) ≃ HomC
(
Hi(X,F ),C

)
,

where n = dimX and ωX denotes the canonical bundle of X. We can reformulate
this using the derived category. Because of the relationship between Ext-groups
and morphisms in the derived category, we have

Hi(X,F ) ≃ Exti(OX ,F ) ≃ HomDb
coh(OX)

(
OX ,F [i]

)
Extn−i(F , ωX) ≃ Hom

(
F [i], ωX [n]

)
.

Serre duality can therefore be rewritten in the form

Hom
(
F, ωX [n]

)
≃ Hom

(
Hom(OX , F ),C

)
,

where F = F [i]. Using suitable resolutions, this can be improved to the following
general result in the derived category Db

coh(OX).

Theorem 23.1. Let X be a smooth projective variety, and let F and G be two
objects of Db

coh(OX). Then one has an isomorphism of C-vector spaces

HomDb
coh(OX)

(
F,G⊗ ωX [n]

)
≃ Hom

(
HomDb

coh(OX)(G,F ),C
)

that is functorial in F and G.

Grothendieck duality is a relative version of Serre duality, where instead of a
single variety, one has a proper morphism f : X → Y . In Grothendieck’s formu-
lation, duality becomes a statement about certain functors: we have the derived
pushforward functor Rf∗ : D

b
coh(OX) → Db

coh(OY ), and the problem is to construct
a right adjoint f ! : Db

coh(OY ) → Db
coh(OX), pronounced “f -shriek”. In other words,

we would like to define f ! in such a way that we have functorial isomorphisms

HomDb
coh(OY )

(
Rf∗F,G

)
≃ HomDb

coh(OX)

(
F, f !G

)
for F ∈ Db

coh(OX) and G ∈ Db
coh(OY ). For arbitrary proper morphisms, the con-

struction requires considerable technical effort; it is explained in Hartshorne’s book
Residues and Duality. (There is also a modern treatment by Amnon Neeman, based
on the Brown’ representability theorem.) But in the special case that both X and
Y are smooth projective, there is a much simpler construction due to Alexei Bondal
and Mikhail Kapranov.

Theorem 23.2. If f : X → Y is a morphism between two smooth projective vari-
eties, then

f !G = ωX [dimX]⊗ Lf∗
(
G⊗ ω−1

Y [−dimY ]
)

for any G ∈ Db
coh(OY ).

Proof. This follows very easily from the fact that Lf∗ is the left adjoint of Rf∗ – if
we use Serre duality to interchange left and right. Fix two objects F ∈ Db

coh(OX)
and G ∈ Db

coh(OY ). Applying Serre duality on Y , we get

Hom
(
Rf∗F,G⊗ ωY [dimY ]

)
≃ Hom

(
Hom

(
G,Rf∗F

)
,C

)
.

Because Lf∗ is the left adjoint of Rf∗, we have

Hom
(
G,Rf∗F

)
≃ Hom

(
Lf∗G,F

)
.
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If we now apply Serre duality on X, we get back to

Hom
(
Hom

(
Lf∗G,F

)
,C

)
≃ Hom

(
F,Lf∗G⊗ ωX [dimX]

)
.

Putting all three isomorphisms together, we obtain the desired formula for f !G. □

For a more concise statement, let ωX/Y = ωX ⊗ f∗ω−1
Y denote the relative

canonical bundle; then the formula in Theorem 23.2 becomes

f ! = ωX/Y [dimX − dimY ]⊗ Lf∗.

Note that dimX − dimY is simply the relative dimension of the morphism f . To
summarize, we have a functorial isomorphism

Hom
(
Rf∗F,G

)
≃ Hom

(
F, ωX/Y [dimX − dimY ]⊗ Lf∗G

)
for F ∈ Db

coh(OX) and G ∈ Db
coh(OY ). In this form, Grothendieck duality will

appear frequently in the derived category calculations below.

Base change. Another technical result that we shall use below is the base change
theorem. As in the case of Grothendieck duality, there is a very general statement
(in the derived category); for our purposes, however, two special cases are enough,
and so we shall restrict our attention to those.

The general problem addressed by the base change theorem is the following.
Suppose we have a cartesian diagram of schemes:

X ′ X

Y ′ Y

g′

f ′ f

g

We would like to compare the two functors g∗f∗ and f ′∗g
′∗; more generally, on the

level of the derived category, the two functors Lg∗Rf∗ and Rf ′∗Lg
′∗. Using the

adjointness of pullback and pushforward, we always have morphisms of functors

g∗f∗ → f ′∗g
′∗ and Lg∗Rf∗ → Rf ′∗Lg

′∗,

but without some assumptions on f or g – or on the sheaves or complexes to which
we apply the functors – they are not isomorphisms.

The simplest case where the two functors are isomorphic is when g (and hence
also g′) is flat. We begin by looking at the case of sheaves.

Lemma 23.3. Suppose that g is flat, and that f is separated and quasi-compact.
Then the base change morphism

g∗f∗F → f ′∗g
′∗F

is an isomorphism for every quasi-coherent sheaf F on X.

Proof. The statement is local on Y and Y ′, and so we may assume without loss of
generality that Y = SpecA and Y ′ = SpecA′ are affine, with A′ flat over A. Let
F ′ = g′∗F ; then all sheaves involved are quasi-coherent on Y ′, and so it suffices
to show that

F (X)⊗A A′ → F ′(X ′)

is an isomorphism.
We first consider the case when X = SpecB is also affine; in that case, X ′ =

SpecA′ ⊗A B. We have F = M̃ for some B-module M ; then g∗f∗F is the quasi-
coherent sheaf corresponding to the A′-module

A′ ⊗AMA,
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while f ′∗g
′∗F is the quasi-coherent sheaf corresponding to

(A′ ⊗A B)⊗B M.

The two are evidently isomorphic, which proves the assertion in case X is affine.
In general, cover X by finitely many affine open subsets U1, . . . , Un. Because F is
a sheaf, the complex of A-modules

0 → F (X) →
n⊕
i=1

F (Ui) →
n⊕

i,j=1

F (Ui ∩ Uj)

is exact. Now A′ is flat over A, and so

0 → F (X)⊗A A′ →
n⊕
i=1

F (Ui)⊗A A′ →
n⊕

i,j=1

F (Ui ∩ Uj)⊗A A′

remains exact. We conclude from the affine case above that the kernel is isomorphic
to F ′(X ′), which is the result we were after. □

In the derived category, we have the following version.

Proposition 23.4. Suppose that g is flat, and the f is separated and quasi-compact.
Then for any F ∈ D+

(
QCoh(X)

)
, the base change morphism

Lg∗Rf∗F → Rf ′∗Lg
′∗F

is an isomorphism.

Proof. After replacing F by an injective resolution, we may assume without loss of
generality that F is a complex of injective quasi-coherent sheaves. The result now
follows by applying Lemma 23.3 termwise. □

Another special case that we shall use below is that f : X → Y is a proper
morphism, and F is a coherent sheaf on X that is flat over Y . (For example, this
situation arises if f is proper and smooth, and F a locally free sheaf on X.) In
that case, we are interested in comparing the higher direct image sheaves Rif∗F
with the fiberwise cohomology groups Hi

(
Xy,Fy

)
, where Xy = f−1(y) denotes the

scheme-theoretic fiber over a point y ∈ Y , and Fy the restriction of F to Xy. This
case is discussed at depth in the section on the semicontinuity theorem (III.12) in
Hartshorne’s book.

The essential point is the following. Since the problem is local on Y , it may
be assumed that Y = SpecA is affine. The higher direct image sheaves are co-
herent (because f is proper), and correspond to the finitely generated A-modules
Hi(X,F ). The first step is to calculate these cohomology groups in a good way.
Here Hartshorne constructs a bounded complex

· · · → Ei−1 → Ei → Ei+1 → · · ·
of free A-modules of finite rank, such that one has functorial isomorphisms

Hi
(
E• ⊗AM

)
≃ Hi

(
X,F ⊗AM

)
for all A-modules M . By taking M = A, one gets

Hi(E•) ≃ Hi(X,F ),

and by taking M = A/P for a point P ∈ SpecA, one gets

Hi
(
E• ⊗A A/P

)
≃ Hi

(
XP ,FP

)
.

The second step is to solve the following purely algebraic problem about bounded
complexes of free A-modules of finite rank: to compare Hi(E•) ⊗A A/P and
Hi

(
E•⊗AA/P

)
. This is very similar to what we did in Lecture 7 when we studied
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cohomology support loci for complexes of vector bundles. You can find many re-
sults about this relationship in Hartshorne’s book; here we shall only cite the one
that will be used below.

Proposition 23.5. Let f : X → Y be proper, and let F be a coherent sheaf on X
that is flat over Y . Then⋃

i≥n

SuppRif∗F =
⋃
i≥n

{
y ∈ Y

∣∣ Hi
(
Xy,Fy

)
̸= 0

}
for every n ∈ Z.

Proof. The statement is local on Y , and so we may assume that Y = SpecA is
affine. According to the discussion above, the higher direct image sheaves are
computed by a bounded complex E• of free A-modules of finite rank; what we need
to prove is the following equality between subsets of SpecA:⋃

i≥n

{
P

∣∣ Hi(E•)⊗A A/P ̸= 0
}
=

⋃
i≥n

{
P

∣∣ Hi
(
E• ⊗A A/P

)
̸= 0

}
It is technically easier to prove this for the complements of the two sets:⋂

i≥n

{
P

∣∣ Hi(E•)⊗A A/P = 0
}
=

⋂
i≥n

{
P

∣∣ Hi
(
E• ⊗A A/P

)
= 0

}
Suppose P is an element of the left-hand side. After localizing at P , we may
assume that (A,P ) is a local ring. Nakayama’s lemma shows that Hi(E•) = 0 for
i ≥ n; by a simple spectral sequence argument, it follows that Hi

(
E•⊗AA/P

)
= 0

in the same range. Conversely, suppose that P is an element of the right-hand
side. After localising, we may again assume that (A,P ) is a local ring. We have
Hi

(
E• ⊗A A/P

)
= 0 for i ≥ n; now the construction in Lemma 7.7 shows that we

must have Hi(E•) = 0 for i ≥ n. This concludes the proof. □

This result will be very useful to us when we study cohomology support loci.

Kollár’s theorem. The third important result that I would like to discuss is
Kollár’s theorem about higher direct images of dualizing sheaves. The precise
result is the following.

Theorem 23.6. Let f : X → Y be a surjective morphism between projective com-
plex algebraic varieties. If X is smooth, then:

(i) The sheaves Rif∗ωX are torsion-free sheaves on Y .
(ii) One has a non-canonical isomorphism

Rf∗ωX ≃
⊕
i

Rif∗ωX [−i]

in the derived category Db
coh(OY ).

(iii) If L is an ample line bundle on Y , then Hj
(
Y,Rif∗ωX ⊗L

)
= 0 for j > 0.

Informally stated, Kollár’s result is that the higher direct image sheaves of ωX
behave much like ωX itself: they are torsion-free and satisfy the Kodaira vanishing
theorem. We have already proved (iii) in Theorem 4.6; the proof of (i) and (ii)
uses more advanced results from Hodge theory – in particular, some results about
polarized variations of Hodge structure – and so I can only give a brief outline here.

What we have to do is to construct a sequence of morphisms

Rif∗ωX [−i] → Rf∗ωX

in the derived category, in such a way that the induced morphism between the i-th
cohomology sheaves is the identity. We can then take the direct sum to obtain the
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required splitting in Db
coh(OY ). After a shift, this is equivalent to constructing a

collection of morphisms
Rif∗ωX → Rf∗ωX [i].

This comes for free in the case i = 0, because from the definition of the derived
functor, we automatically have a morphism f∗ωX → Rf∗ωX . Indeed, let

0 → ωX → I0 → I1 → I2 → · · ·
be an injective resolution; then Rf∗ωX = f∗I

•, and because f∗ is left-exact, the
resulting morphism f∗ωX → f∗I

• is an isomorphism in degree 0. We also observe
that f∗ωX is the pushforward of a locally free sheaf, and therefore torsion-free.

Proof of Theorem 23.6. Set k = dimX−dimY ; we proceed by induction on k ≥ 0.
In the case k = 0, the Grauert-Riemenschneider theorem shows that Rif∗ωX = 0
for i > 0; the natural morphism f∗ωX → Rf∗ωX is therefore a quasi-isomorphism,
and so everything is proved in that case.

When k ≥ 1, pick a sufficiently ample smooth hypersurface H ⊆ X with the
property that f(H) = Y and that Rif∗ωX(H) = 0 for every i > 0. Let g : H → Y
denote the restriction of f . Adjunction gives us a short exact sequence

0 → ωX → ωX(H) → ωH → 0.

After pushing forward to Y , we have an exact sequence

(23.7) 0 → f∗ωX → f∗ωX(H) → g∗ωH → R1f∗ωX → 0

as well as isomorphisms
Ri−1g∗ωH ≃ Rif∗ωX

for i ≥ 2. By the inductive hypothesis (applied to g : H → Y ), the sheaves Rif∗ωX
are therefore torsion-free for every i ̸= 1.

The key result that Kollár proves – by appealing to the theory of variations of
Hodge structure – is that the morphism g∗ωH → R1f∗ωX in (23.7) has a section.
This implies that R1f∗ωX is a direct summand of the torsion-free sheaf g∗ωH , and
hence torsion-free. We have therefore proved (i).

On the other hand, we can consider the direct image functor in the derived
category; it gives us a distinguished triangle

Rf∗ωX → Rf∗ωX(H) → Rg∗ωH → Rf∗ωX [1].

According to the inductive hypothesis (applied to g : H → Y ) we already have a
collection of morphisms

Ri−1g∗ωH → Rg∗ωH [i− 1].

By composing with the morphism in the distinguished triangle, we therefore obtain
the required morphisms

Rif∗ωX ≃ Ri−1g∗ωH → Rg∗ωH [i− 1] → Rf∗ωX [i]

for i ≥ 2. To deal with the remaining case i = 1, we take the composition

R1f∗ωX → g∗ωH → Rg∗ωH → Rf∗ωX [1]

with the section coming from (23.7). It remains to verify that, in each case, the
induced morphism between the cohomology sheaves in degree 0 is the identity; this
is an easy exercise. □

Corollary 23.8. Under the assumptions of the theorem, the Leray spectral sequence
for the cohomology of ωX degenerates at E2, and with k = dimX − dimY , one has

Hj(X,ωX) ≃
k⊕
i=0

Hj−i(Y,Rif∗ωX)
.
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Proof. Note that k is equal to the dimension of the general fiber of f . By base
change, the sheaf Rif∗ωX is supported on a proper subset of Y for i > k; being
torsion-free, it must be zero. We now obtain the result for the cohomology of ωX
by using the identity RΓ(X,−) ≃ RΓ(Y,−) ◦Rf∗ and the splitting in (ii). □
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Lecture 24

The Fourier-Mukai transform. We now come to a very important result in the
theory of abelian varieties: Shigeru Mukai’s version of the Fourier transform. Let A
be a complex abelian variety, and let Â = Pic0(A) denote the dual abelian variety.

We denote the normalized Poincaré bundle on A× Â by the letter P . For a point
α ∈ Â, we denote by Pα the corresponding line bundle on A; for a point a ∈ A, we
denote by P̂a the corresponding line bundle on Â. In other words,

P
∣∣
A×{α} = Pα and P

∣∣
{a}×Â = P̂a.

Mukai’s idea is to use P as the “kernel of an integral transform” – in the same
way that the Fourier transform from functions on a vector space to functions on the
dual vector space is defined by integration against a kernel function on the product.
In our situation, we consider the following product:

A× Â Â

A

p1

p2

Given a coherent sheaf F on A, we can pull it back to A × Â, tensor by P , and
then push forward to Â; the resulting sheaf

p2∗
(
p∗1F ⊗ P

)
is again coherent because p2 is a proper morphism. This is of course not an exact
functor, and so we should really perform these operations in the derived category.
For F ∈ Db

coh(OA), we therefore define

RΦPF = Rp2∗
(
Lp∗1F

L
⊗ P

)
= Rp2∗

(
p∗1F ⊗ P

)
which is an object of Db

coh(OÂ) because p2 is proper. (Note that the functors p∗1
and ⊗P are already exact.) In this way, we obtain an exact functor

RΦP : Db
coh(OA) → Db

coh(OÂ),

called the Fourier-Mukai transform. In analogy with the Fourier transform in
analyis, we can think of RΦP as decomposing a coherent sheaf (or complex of
coherent sheaves) with respect to the basic line bundles Pα; the support of the

Fourier-Mukai transform, inside Â, is something like the “spectrum” of the original
sheaf.

Two examples that show how the Fourier-Mukai transform works in practice:

Example 24.1. Let Oa be the structure sheaf of a closed point a ∈ A. The restriction
of P to {a} × Â is the line bundle P̂a, and so we have

RΦPOa ≃ P̂a.

In other words, the Fourier-Mukai transform takes a point of A to the corresponding
line bundle on Â. This means that the spectrum of a point is everything – do you
see the analogy with Fourier analysis?

Example 24.2. What is the Fourier-Mukai transform of the structure sheaf OA?
From the definition, we immediately get

RΦPOA ≃ Rp2∗P,

and Proposition 24.3 shows that this equals O0[−g].
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The following proposition is not only needed in the example above, but it also
plays a very important role in the general theory. (For example, we shall use it
later to prove that RΦP is an equivalence of categories.)

Proposition 24.3. Let g = dimA. Then we have

Rip2∗P ≃
®

O0 for i = g,

0 for i ̸= g.

Equivalently, Rp2∗P ≃ O0[−g] as objects of Db
coh(OÂ).

The proof takes longer than you might expect, but is very clever. To get started,
recall from Lemma 16.4 that all cohomology groups of a nontrivial line bundle in
Pic0(A) vanish: if α ̸= 0, then one has

Hi(A,Pα) = 0

for every i = 0, 1, . . . , g. Because P is flat over Â, we can now use the base change
theorem to conclude that the sheaves Rip2∗P are supported at the point 0 ∈ Â.
In particular, they all have finite length; we also note that, for dimension reasons,
Rip2∗P = 0 unless 0 ≤ i ≤ g = dimA.

In the next step, we use Serre duality to show that Rip2∗P = 0 for i < g.
Consider the Leray spectral sequence

Ep,q2 = Hp
(
Â, Rqp2∗P

)
=⇒ Hp+q

(
A× Â, P

)
.

We have Ep,q2 = 0 for p > 0; the spectral sequence therefore degenerates at E2 and
gives us isomorphisms

(24.4) Hi
(
A× Â, P

)
≃ H0

(
Â, Rip2∗P

)
.

In particular, this group vanishes for i > g. Because the canonical bundle of A× Â
is trivial, Serre duality shows that

Hi
(
A× Â, P

)∗ ≃ H2g−i(A× Â, P−1
)
≃ H2g−i(A× Â, P

)
.

The group on the right vanishes for 2g − i > g, and so (24.4) is zero for i < g.
Because the sheaf Rip2∗P has finite length, it follows that Rip2∗P = 0 for i < g.

Now we have to show that the remaining sheaf Rgp2∗P is isomorphic to O0. The
base change theorem gives us

Rgp2∗P ⊗ O0 ≃ Hg(A,OA) ≃ C.

By Nakayama’s lemma, it follows that Rgp2∗P ≃ OÂ/J for a certain ideal sheaf
J ⊆ OÂ whose cosupport is the point 0. If we let I0 denote the ideal sheaf of the
point, the problem is to show that J = I0. Here we shall make use of the universal
property of the Poincaré bundle on A × Â, in particular, the fact that it is trivial
on A× {0}, but not on any bigger subscheme.

Our main technical tool will be Grothendieck duality, applied to the second
projection p2 : A× Â→ Â. Recall from Theorem 23.2 that

Hom
(
Rp2∗P,G

)
≃ Hom

(
P, p!2G

)
.

Because the canonical bundles of A and Â are trivial, we get

p!2G ≃ ωA×Â/A[g]⊗ Lp∗2G ≃ Lp∗2G[g].

Since Rp2∗P ≃ Rgp2∗P [−g], we can put the isomorphism from Grothendieck dual-
ity into the more convenient form

Hom
(
Rgp2∗P,G

)
≃ Hom

(
P, p∗2G

)
,

where G can be an arbitrary coherent sheaf on Â.
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Lemma 24.5. In the above notation, we have J = I0.

Proof. Let Z ⊆ Â denote the closed subscheme defined by the ideal sheaf J ; re-
call that Rgp2∗P ≃ OZ . Because Grothendieck duality is functorial, we obtain a
commutative diagram

Hom
(
OZ ,OZ

)
Hom

(
P,OA×Z

)
Hom

(
OZ ,O0

)
Hom

(
P,OA×{0}

)
.

The identity morphism OZ → OZ corresponds to a morphism P → OA×Z ; by
adjunction, we obtain a morphism φ : P

∣∣
A×Z → OA×Z . Similarly, the quotient

morphism OZ → O0 corresponds to a nontrivial morphism φ̄ : P
∣∣
A×{0} → OA×{0};

the commutativity of the diagram means that φ̄ is nothing but the reduction of φ
modulo the ideal sheaf of A × {0}. Now the restriction of P to A × {0} is trivial,
and so φ̄ must be an isomorphism. By Nakayama’s lemma, φ itself is also an
isomorphism. In other words, the restriction of P to the subscheme A×Z is trivial;
by the universal property of P , the subscheme in question has to be contained in
A× {0}, which implies that Z is reduced, and hence that J = I0. □

This concludes the proof that Rp2∗P = O0[−g].

Mukai’s theorem. Now our goal is to show that RΦP : Db
coh(OA) → Db

coh(OÂ) is
an equivalence of categories; we shall do this by constructing an explicit inverse.

A× Â Â

A,

p1

p2

It is not hard to write down a functor going in the opposite direction – we only
have to interchange the role of A and Â. We then obtain a second exact functor

RΨP : Db
coh(OÂ) → Db

coh(OA), G 7→ Rp1∗
(
p∗2G⊗ P

)
.

There is, however, no reason why RΨP should be the inverse of RΦP . To see what
is happening, let us revisit the two examples from above. We found that

RΦP (Oa) ≃ P̂a

for any point a ∈ A, as well as RΦP (OA) ≃ O0[−g]. The latter can easily be
generalized to arbitrary elements of Pic0(A): the result is that

RΦP (Pα) ≃ O−α[−g]

for any α ∈ Â. Indeed, the support of the transform must be the point −α (cor-
responding to the line bundle P−1

α ) because Pα ⊗ Pβ ≃ Pα+β only has nontrivial
cohomology when α+ β = 0. Starting from a point a ∈ A, we then have

(RΨP ◦RΦP )(Oa) ≃ RΨP (P̂a) ≃ O−a[−g].

The composition is not the identity; but it is not off by much, either, because both
the shift [−g] and the inverse ι : A → A, a 7→ −a, are invertible operations. This
calculation suggests the following general result.

Theorem 24.6 (Mukai). One has natural isomorphisms of functors

RΨP ◦RΦP ≃ ι∗[−g] and RΦP ◦RΨP ≃ ι∗[−g].

In particular, both RΦP and RΨP are equivalences of categories.
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Note. Having a “natural isomorphism of functors” means that one should have a
collection of isomorphisms (RΨP ◦ RΦP )(F ) ≃ ι∗F [−g] that are functorial in F ;
we shall see during the proof that these isomorphisms come from the projection
formula, flat base change, etc.

Proof. The general idea is to compute the composition with the help of the projec-
tion formula and base change, using a few special properties of the Poincaré bundle
along the way. We shall use the following big diagram:

(24.7)

A× Â A×A× Â A× Â A

A× Â Â

A

m×id p23

p2

p13

p1

p1

p2

p2

p1

Fix an object F ∈ Db
coh(OA). Our goal is to calculate the composition

F ′ = (RΨP ◦RΦP )(F ) = Rp1∗

(
P ⊗ p∗2

(
Rp2∗(P ⊗ p∗1F )

))
.

Flat base change, applied to the square in (24.7), gives

p∗2
(
Rp2∗(P ⊗ p∗1F )

)
≃ Rp23∗

(
p∗13(P ⊗ p∗1F )

)
≃ Rp23∗

(
p∗13P ⊗ p∗1F

)
.

The projection formula for p23 lets us put everything on A×A× Â:

P ⊗Rp23∗
(
p∗13P ⊗ p∗1F

)
≃ Rp23∗

(
p∗23P ⊗ p∗13P ⊗ p∗1F

)
.

Now we use the identity (m× id)∗P ≃ p∗13P ⊗ p∗23P from the proof of Lemma 16.2;
here m : A×A→ A is the addition morphism. It gives us

F ′ ≃ Rp1∗Rp23∗
(
(m× id)∗P ⊗ p∗1F

)
≃ Rp2∗

(
(m× id)∗P ⊗ p∗1F

)
.

To simplify this further, consider the diagram

A× Â A

A×A× Â A×A A

A

p1

m×id

p12

p1

m

p2

p1

By decomposing both projections in the manner indicated above, we obtain

F ′ ≃ Rp2∗Rp12∗

(
(m× id)∗P ⊗ p∗12

(
p∗1F

))
≃ Rp2∗

(
p∗1F ⊗Rp12∗(m× id)∗P

)
;

in the second step, we used the projection formula for p12. Another application of
flat base change, and the important formula in Proposition 24.3, yield

Rp12∗(m× id)∗P ≃ m∗Rp1∗P ≃ m∗O0[−g].
If we define a closed embedding i : A→ A×A by i(a) = (−a, a), then another simple
base change calculation shows that m∗O0 ≃ i∗OA. Putting everything together,

F ′ ≃ Rp2∗
(
p∗1F ⊗ i∗OA[−g]

)
.
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Now consider the third (and last) diagram below:

A A×A A

A

i

ι

p2

p1

p2

A final application of the projection formula (for the closed embedding i) gives

F ′ ≃ Rp2∗Ri∗
(
Li∗p∗1F ⊗ OA[−g]

)
≃ Rp2∗ι

∗F [−g] ≃ ι∗F [−g].
This is the result we were after. Observe that all isomorphisms that we used during
the calculation either affected only the Poincaré bundle, or came from the projection
formula or the base change theorem; in particular, they are functorial in F . The
same formula holds for RΦP ◦RΨP : just swap the roles of A and Â. □

An important consequence of Mukai’s theorem is that we can recover an object
F ∈ Db

coh(OA), up to canonical isomorphism, from its Fourier-Mukai transform
RΦP (F ). When we pass from F to RΦP (F ), we therefore lose no information.

Ample line bundles. During the proof of Hacon’s theorem, we will need to know
how ample line bundles behave under the Fourier-Mukai transform.

Example 24.8. Let L be an ample line bundle on A; we would like to know RΦP (L).
As before, we can use the base change theorem to describe this object. By the
Kodaira vanishing theorem,

Hi(A,L⊗ Pα) ≃ Hi(A,ωA ⊗ L⊗ Pα) = 0

for i > 0, because L⊗ Pα is ample. It follows that

RiΦP (L) = Rip2∗
(
P ⊗ p∗1L

)
= 0

for i > 0, which means that

RΦP (L) = p2∗
(
P ⊗ p∗1L

)
is a sheaf. The dimension of H0(A,L ⊗ Pα) is constant by the Riemann-Roch
theorem, and so this sheaf is locally free of rank h0(A,L).

Mukai observed that one can describe the vector bundle EL = R0ΦP (L) explicitly

– not on Â itself, but after passing to a finite étale cover.

Proposition 24.9. We have φ∗
LRΦP (L) ≃ H0(A,L)⊗ L−1.

Proof. Recall that φL : A → Â is the morphism of abelian varieties given by
φL(a) = (t∗aL)⊗ L−1; it is surjective and of degree (h0(A,L))2. The calculation is
similar to the other one; here is the diagram of morphisms:

A×A A

A× Â Â

A

p2

id×φL

p1

φL

p2

p1

We define EL = RΦP (L). To begin with, we use flat base change to get

φ∗
LEL ≃ φ∗

LRp2∗
(
P ⊗ p∗1L

)
≃ Rp2∗

(
(id×φL)∗P ⊗ p∗1L

)
.
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The Poincaré bundle has the property that (id×φL)∗P ≃ m∗L ⊗ p∗1L
−1 ⊗ p∗2L

−1.
If we substitute this into the previous line, and also use the projection formula,

φ∗
LEL ≃ Rp2∗

(
m∗L⊗ p∗2L

−1
)
≃ L−1 ⊗Rp2∗m

∗L.

It remains to show thatRp2∗m
∗L is isomorphic to the trivial bundleH0(A,L)⊗OA.

To do this, we use a clever factorization of m:

A×A A×A A

A

f

m

p2

p1

p2

Here f(a, b) = (a+ b, b) is an isomorphism. This yields

Rp2∗m
∗L ≃ Rp2∗Rf∗

(
f∗p∗1L

)
≃ Rp2∗

(
p∗1L⊗Rf∗OA×A

)
≃ Rp2∗(p

∗
1L).

Another simple application of flat base change gives us that

Rp2∗(p
∗
1L) ≃ p∗Rp∗L ≃ H0(A,L)⊗ OA,

where p : A→ SpecC is the morphism to a point. □

Exercises.

Exercise 24.1. Show that ι∗RΨP [g] is a left adjoint to RΦP ; in other words, that

HomDb
coh(OÂ)

(
G,RΦP (F )

)
≃ HomDb

coh(OA)

(
ι∗RΨP (G)[g], F

)
,

with the isomorphism being functorial in F and G.

Exercise 24.2. Show that RΦP interchanges translations by points with tensor
products by line bundles: for a ∈ A and α ∈ Â, one has

RΦP ◦ t∗a ≃ (P̂−a ⊗−) ◦RΦP and t∗α ◦RΦP ≃ RΦP ◦ (Pα ⊗−).

Exercise 24.3. Prove the identity

(id×φL)∗P ≃ m∗L⊗ p∗1L
−1 ⊗ p∗2L

−1

that was used during the proof. (Hint: Use the see-saw theorem.)



130

Lecture 25

The generic vanishing theorem. Having completed our review of derived cat-
egories and the Fourier-Mukai transform, we are now ready for understanding the
algebraic proof of the generic vanishing theorem. Let me first remind you of the
statement again – the version below is equivalent to the original generic vanishing
theorem (in Theorem 6.6) because of Serre duality.

Theorem. Let X be a smooth projective variety. Then

codim
{
L ∈ Pic0(X)

∣∣ Hi(X,ωX ⊗ L) ̸= 0
}
≥ i−

(
dimX − dimalb(X)

)
for every integer i ≥ 0.

Note that dimX − dimalb(X) is the dimension of the general fiber of the Al-
banese mapping; we shall see in a moment where this comes from. To simplify the
notation, we let A = Alb(X) denote the Albanese variety of X, and f : X → A

the Albanese mapping (for some choice of base point). We also put Â = Pic0(A)

and let P be the normalized Poincaré bundle on the product A× Â; as before, the
line bundle corresponding to α ∈ Â will be denoted by Pα. Because Pic0(X) is

isomorphic to Â, the generic vanishing theorem is equivalent to

(25.1) codimSi(X,ωX) = codim
{
α ∈ Â

∣∣ Hi(X,ωX ⊗ f∗Pα) ̸= 0
}
≥ i− k,

where k = dimX − dim f(X).
To prove (25.1), we shall reduce it to a statement about certain coherent sheaves

on the abelian variety A. Given a point α ∈ Â, we can use the isomorphism
RΓ(X,−) ≃ RΓ(A,−) ◦Rf∗ and the projection formula to get

(25.2) Hi
(
X,ωX ⊗ f∗Pα

)
≃ RiΓ

(
A,Rf∗ωX ⊗ Pα

)
.

According to Kollár’s results about higher direct images of dualizing sheaves (in
Theorem 23.6), one has

Rf∗ωX ≃
k⊕
j=0

Rjf∗ωX [−j]

in the derived category Db
coh(OA); recall that the summation stops at j = k because

the sheaves Rjf∗ωX , viewed as coherent sheaves on their support f(X), are torsion-
free. If we substitute this isomorphism into (25.2), we obtain

Hi
(
X,ωX ⊗ f∗Pα

)
≃

k⊕
j=0

Hi−j(A,Rjf∗ωX ⊗ Pα
)
.

Obviously, the left-hand side is nonzero if and only if one of the summands on the
right-hand side is nonzero; on the level of cohomology support loci, this means that

(25.3) Si(X,ωX) =

k⋃
j=0

Si−j
(
A,Rjf∗ωX

)
,

as subsets of Â. This reduces the proof of (25.1) to the more uniform statement

(25.4) codimSi
(
A,Rjf∗ωX

)
≥ i for every i ≥ 0.

Hacon’s key insight is that this collection of inequalities is equivalent to a vanishing
theorem. Here is the general result.

Theorem 25.5 (Hacon). Let F be a coherent sheaf on a complex abelian variety.
The following four conditions are equivalent to each other:

(a) One has codim
{
α ∈ Â

∣∣ Hi(A,F ⊗ Pα) ̸= 0
}
≥ i for all i ∈ Z.
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(b) The Fourier-Mukai transform RΦP (F ) satisfies

codimSuppRiΦP (F ) ≥ i for all i ∈ Z.
(c) For every finite étale morphism φ : B → A of abelian varieties, and every

ample line bundle L on B, one has

Hi(B,L⊗ φ∗F ) = 0 for i > 0.

(d) There is a coherent sheaf G with the property that RΦP (F ) ≃ RHom(G ,OÂ).

Before we get to the proof of Hacon’s theorem, let us first see why it implies the
generic vanishing theorem. From Theorem 4.6, we already know that the coherent
sheaves Rjf∗ωX satisfy the vanishing

Hi
(
A,L⊗Rjf∗ωX

)
= 0 for every ample L and every i > 0.

It is not hard to strengthen this to the condition in (c).

Lemma 25.6. Let φ : B → A be a finite morphism of abelian varieties. Then

Hi
(
B,L⊗ φ∗Rjf∗ωX

)
= 0

for every ample line bundle L on B and every i > 0.

Proof. If we let Y = B×AX be the fiber product, we have a commutative diagram

Y X

B A

ψ

g f

φ

in which ψ is also finite étale. By flat base change,

φ∗Rjf∗ωX ≃ Rjg∗ψ
∗ωX ≃ Rjg∗ωY ,

and so the assertion follows from Theorem 23.6, applied to the morphism g. □

Combining this lemma with (25.3) and Theorem 25.5, we conclude that

codimSi(X,ωX) ≥ i− k,

which proves the generic vanishing theorem.

Proof of Hacon’s theorem. We now give the proof of Theorem 25.5. Through-
out, F denotes a fixed coherent sheaf on the abelian variety A. We first prove that
(a) and (b) are equivalent to each other; this is actually a direct consequence of the
base change theorem. Recall that

RΦP (F ) = Rp2∗
(
p∗1F ⊗ P

)
;

the restriction of p∗1F ⊗ P to the fiber p−1
2 (α) = A × {α} is therefore isomorphic

to F ⊗ Pα, and so the groups

Hi(A,F ⊗ Pα)

are precisely the fiberwise cohomology groups. By the base change theorem,⋃
i≥n

SuppRiΦP (F ) =
⋃
i≥n

{
α ∈ Â

∣∣ Hi(A,F ⊗ Pα) ̸= 0
}
.

From this, one can deduce quite easily (by descending induction on i ≥ 0) that (a)
and (b) are equivalent.

Next, let us see why (b) implies (c). To simplify the notation, we shall only
do the case φ = id; the general case is similar. Let G = RΦP (F ) denote the
Fourier-Mukai transform of F . According to Mukai’s Theorem 24.6,

F ≃ ι∗RΨP (G)[g],
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and so we can recover F , up to canonical isomorphism, from its Fourier-Mukai
transform. Now let L be any ample line bundle on A; then

Hi(A,F ⊗ L) ≃ Hom
(
OA,F ⊗ L[i]

)
≃ Hom

(
OA, L⊗ ι∗RΨP (G)[g + i]

)
,

where Hommeans the morphisms in the derived category Db
coh(OA). After replacing

the original ample line bundle L by ι∗L, which is of course equally ample, we
therefore need to prove that

Hi(A,F ⊗ ι∗L) ≃ Hom
(
OA, L⊗RΨP (G)[g + i]

)
= 0

for every i > 0. Using adjointness and the projection formula,

Hom
(
OA, L⊗RΨP (G)[g + i]

)
≃ Hom

(
OA×Â, P ⊗ p∗1L⊗ p∗2G[g + i]

)
≃ Hom

(
OÂ,RΦP (L)⊗G[g + i]

)
.

We know from Proposition 24.9 that EL = RΦP (L) is a locally free sheaf of rank
dimH0(A,L); this gives

Hi(A,F ⊗ ι∗L) ≃ Rg+iΓ
(
Â,EL ⊗RΦP (F )

)
.

We can now get the desired vanishing from dimension considerations. As usual, we
make use of the hypercohomology spectral sequence

Ep,q2 = Hp
(
Â,EL ⊗RqΦP (F )

)
=⇒ Hp+q−g(A,F ⊗ ι∗L).

By assumption, the dimension of SuppRqΦP (F ) is at most g − q; for that reason,
Ep,q2 = 0 once p > g − q. We conclude that Hi(A,F ⊗ ι∗L) = 0 for i > 0.

Continuing with the proof, we have to show that (c) implies (d). This is a long
(but purely formal) calculation with derived functors. We first note that

RHom
(
RHom(G ,OÂ),OÂ

)
≃ G ,

because the dual complex RHom(G ,OÂ) is computed by taking a locally free reso-
lution of RΦP (F ) and applying Hom(−,OÂ) to each term. It is therefore sufficient

to prove that RHom
(
RΦP (F ),OÂ

)
is isomorphic to a sheaf – in other words, that

the cohomology sheaves

RiHom
(
RΦP (F ),OÂ

)
are zero for i ̸= 0. Since Â is projective, we can decide whether or not this is the
case with the help of a sufficiently ample line bundle.

Lemma 25.7. Let X be a smooth projective variety, and G ∈ Db
coh(OX) an object

of the derived category. Then one has Hi(G) = 0 if and only if RiΓ(X,G⊗L) = 0
for every sufficiently ample line bundle L.

Proof. This is an easy consequence of Serre’s theorems about ample line bundles.
Consider the hypercohomology spectral sequence

Ep,q2 = Hp
(
X,Hq(G)⊗ L

)
=⇒ Rp+qΓ(X,G⊗ L).

If L is sufficiently ample, Ep,q2 = 0 for p > 0 by Serre’s vanishing theorem, whence

H0
(
X,Hq(G)⊗ L

)
≃ RqΓ(X,G⊗ L).

Because the coherent sheaf Hq(G) ⊗ L is generated by its global sections when L
is sufficiently ample, the vanishing of RqΓ(X,G⊗L) is therefore equivalent to that
of Hq(G). □
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Returning to the proof that (c) implies (d), we therefore need to show that the
complex of vector spaces

RΓ
(
Â,RHom

(
RΦP (F ),OÂ

)
⊗ L

)
≃ RHom

(
RΦP (F ), L

)
has cohomology only in degree 0. Using the isomorphism between Ext-groups and
morphisms in the derived category, we get

RiHom
(
RΦP (F ), L

)
≃ HomDb

coh(OÂ)

(
RΦP (F ), L[i]

)
;

given (c), this will turn out to be zero for every ample line bundle L and every
i ̸= 0. (From now on, all morphisms will be taken in the derived category, and
so we shall leave out the subscript on Hom.) The proof is a calculation with the
properties of various functors. To begin with, Grothendieck duality gives us

Hom
(
RΦP (F ), L[i]

)
≃ Hom

(
P ⊗ p∗1F , p!2L[i]

)
≃ Hom

(
P ⊗ p∗1F , p∗2L[g + i]

)
,

where g = dimA. We can rewrite this in the form

Hom
(
p∗1F , P−1 ⊗ p∗2L[g + i]

)
≃ Hom

(
F ,Rp1∗(P

−1 ⊗ p∗2L)[g + i]
)
.

Now P−1 ≃ (id×ι)∗P , and a simple base change argument shows that

Rp1∗(P
−1 ⊗ p∗2L) ≃ Rp1∗(P ⊗ p∗2ι

∗L) ≃ RΨP
(
ι∗L

)
.

Combining the three preceding isomorphisms, we get

Hom
(
RΦP (F ), L[i]

)
≃ Hom

(
F ,RΨP (ι

∗L)[g + i]
)
.

Because ι∗L is still ample, we can replace ι∗L by L without affecting the statement
we are trying to prove; in other words, it will be enough for us to show that

Hom
(
F ,RΨP (L)[g + i]

)
= 0

for every ample line bundle L on Â and every integer i ̸= 0.
Now it is time to make use of the vanishing in (c). Consider the finite étale

morphism φL : Â→ A determined by the ample line bundle L. Recall from Propo-
sition 24.9 that φ∗

LRΨP (L) ≃ H0(Â, L) ⊗ L−1. Because φL is finite étale, the
structure sheaf OA is a direct summand of φL∗OÂ; together with the projection
formula, this says that

Hom
(
F ,RΨP (L)[g + i]

)
is a direct summand of

Hom
(
φ∗
LF , φ∗

LRΨP (L)[g + i]
)
≃ Hom

(
φ∗
LF , L−1[g + i]

)
⊗H0(Â, L).

We are thus reduced to proving the vanishing of Hom
(
φ∗
LF , L−1[g + i]

)
for i ̸= 0.

By Serre duality, this is equivalent to the vanishing of

Hom
(
L−1[g + i], φ∗

LF ⊗ ωA[g]
)
≃ Hom

(
OÂ, L⊗ φ∗

LF [−i]
)
≃ H−i(Â, L⊗ φ∗

LF ).

For i > 0, this is obvious because F is a sheaf; for i < 0, it follows from (c). This
concludes the proof that (c) implies (d).

It remains to show that (d) implies (b); this implication is a general fact about
coherent sheaves on nonsingular varieties. By assumption, the cohomology sheaves
of the Fourier-Mukai transform satisfy

RiΦP (F ) ≃ Ext i(G ,OÂ).

Now Â is a nonsingular scheme, and so the local ring at every (possibly non-closed)
point is a regular. Because G is coherent, we can apply the following result from
commutative algebra to conclude that the support of Ext i(G ,OÂ) has codimension
at least i.
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Lemma 25.8. Let (A,m) be a regular local ring. If M is a finitely generated
A-module, then codimSuppExtiA(M,A) ≥ i for every i ∈ Z.

Proof. The support of ExtiA(M,A) consists of all prime ideals P ⊆ A with the
property that

ExtiA(M,A)⊗A AP ≃ ExtiAP
(MP , AP ) ̸= 0;

and the codimension of the closed subscheme determined by P is equal to dimAP .
After replacing A by AP (which is still regular) and M by MP , it is therefore
enough to show that ExtiA(M,A) ̸= 0 implies that dimA ≥ i; we shall prove the
equivalent statement that

ExtiA(M,A) = 0 for i > dimA.

This follows from the fact that M has a free resolution of length at most dimA,
which is a consequence of the Auslander-Buchsbaum formula pdAM+depthAM =
dimA. Here is a direct proof that pdAM ≤ dimA. Take a minimal free resolution

· · · → F2 → F1 → F0 →M → 0

of the A-module A; recall that this means that all differentials in the complex F•
have entries in the maximal ideal. With k = A/m, one has

rkFi = dimk

(
Fi ⊗A k

)
= dimk Tor

A
i (M,k),

and so it suffices to show that TorAi (M,k) = 0 for i > dimA; the trick is that
Tor can also be computed from a free resolution of k. Because A is regular, the
maximal ideal m is generated by a regular sequence of length dimA = dimk m/m

2,
and the Koszul complex gives a free resolution of k of the same length. From this
resolution, it is obvious that ToriA(M,k) = 0 for i > dimA; as explained above, it
follows that Fi = 0, and hence also that ExtiA(M,A) = 0, as soon as i > dimA. □
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Lecture 26

A conjecture by Green-Lazarsfeld. One advantage of Hacon’s approach is that
it gives certain additional results that are hard to get by classical means. For
instance, Green and Lazarsfeld had made the following conjecture at the end of
their second paper: when X has maximal Albanese dimension, the higher direct
image sheaves of the universal line bundle on X × Pic0(X) should vanish in all
degrees below dimX. Hacon showed that this is the case; in fact, he got the
following stronger result.

Theorem 26.1. Let X be a smooth complex projective variety, and let PX denote
a universal line bundle on X × Pic0(X). Then one has

Rip2∗PX = 0 for i < dimalb(X),

where alb: X → Alb(X) is the Albanese mapping of X.

This can be proved in a similar manner as Theorem 25.5.

Exercise 26.1. Prove Theorem 26.1 by showing that

RiΓ
(
Â, L⊗Rp2∗PX

)
= 0

for every i < dim f(X) and every ample line bundle L on Â.

In fact, one can be a bit more precise. If we denote the Albanese mapping of X
by the letter f : X → A, then we showed last time that

RΦP (R
jf∗ωX) ≃ RHom(Gj ,OÂ)

for certain coherent sheaves Gj on the dual abelian variety Â. If we denote as usual

by ι : Â→ Â the inverse morphism, then what is true is that

(26.2) RdimX−jp2∗PX ≃ ι∗Gj ,

and so Theorem 26.1 follows from the fact that, because of Kollár’s theorem, Gj = 0
outside the range 0 ≤ j ≤ dimX − dim f(X). This means that the conjecture of
Green and Lazarsfeld is actually equivalent to the generic vanishing theorem – but
this only becomes clear if one uses the formalism of derived categories.

Proof of Theorem 26.1. Let us prove the more precise result in (26.2). If we use
the same base point for normalizing the universal line bundle PX and the Albanese
mapping f : X → A, we have PX ≃ (f × id)∗P , where P is the Poincaré bundle

on A × Â. To keep the proof short, we shall use the following local version of
Grothendieck duality: if f : X → Y is a projective morphism between two smooth
varieties, then one has

RHomOY

(
Rf∗F,G

)
≃ Rf∗RHomOX

(
F, ωX/Y [dimX − dimY ]⊗ Lf∗G

)
,

and the isomorphism is functorial in F ∈ Db
coh(OX) and G ∈ Db

coh(OY ).

X X × Â

A A× Â Â

f

p1

f×id

p2

p1 p2

If we apply the local version of Grothendieck duality to the second projection
p2 : X × Â→ Â, whose relative dimension is n = dimX, we get

RHom
(
Rp2∗PX ,OÂ

)
≃ Rp2∗RHom

(
PX , p

∗
1ωX [n]

)
≃ Rp2∗

(
P−1
X ⊗ p∗1ωX [n]

)
.
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For the remainder of the calculation, please refer to the commutative diagram
above. We first use the projection formula to rewrite the right-hand side as

Rp2∗

(
P−1
X ⊗ p∗1ωX [n]

)
≃ Rp2∗R(f × id)∗

(
(f × id)∗P−1 ⊗ p∗1ωX [n]

)
≃ Rp2∗

(
P−1 ⊗R(f × id)∗p

∗
1ωX [n]

)
≃ Rp2∗

(
P−1 ⊗ p∗1Rf∗ωX [n]

)
,

where the last isomorphism involves flat base change. Now Kollár’s theorem gives

Rp2∗

(
P−1 ⊗ p∗1Rf∗ωX [n]

)
≃

k⊕
j=0

Rp2∗

(
P−1 ⊗Rjf∗ωX

)
[n− j],

where k = dimX − dim f(X) is again the dimension of the general fiber of the
Albanese mapping. Since P−1 ≃ (id×ι)∗P , it is not hard to see that

Rp2∗

(
P−1 ⊗Rjf∗ωX

)
≃ ι∗RΦP (R

jf∗ωX) ≃ ι∗RHom(Gj ,OÂ).

Putting everything together, we have shown that

RHom
(
Rp2∗PX ,OÂ

)
≃

k⊕
j=0

ι∗RHom(Gj ,OÂ)[n− j].

After dualizing again, this is clearly equivalent to

Rp2∗PX ≃
k⊕
j=0

ι∗Gj [j − n],

and so we get the asserted isomorphisms by passing to cohomology. □

GV-sheaves. The four equivalent conditions in Theorem 25.5 describe a certain
class of coherent sheaves on an abelian variety; following Pareschi and Popa, we
shall refer to them as GV-sheaves.

Definition 26.3. A coherent sheaf F on a complex abelian variety A is said to be
a GV-sheaf if its cohomology support loci

Si(A,F ) =
{
α ∈ Â

∣∣ Hi(A,F ⊗ Pα) ̸= 0
}

satisfy the inequalities codimSi(A,F ) ≥ i for every i ≥ 0.

We will see below that most of the results connected with the generic vanishing
theorem – with the exception of structural results such as Theorem 11.1 – are true
for arbitrary GV-sheaves; this makes them very useful in applications. Let me
remind you that, according to Theorem 25.5 from last time, each of the following
three conditions is equivalent to F being a GV-sheaf:

(a) The Fourier-Mukai transform RΦP (F ) satisfies

codimSuppRiΦP (F ) ≥ i for all i ≥ 0.

(b) For every finite étale morphism φ : B → A of abelian varieties, and every
ample line bundle L on B, one has

Hi(B,L⊗ φ∗F ) = 0 for i > 0.

(c) There is a coherent sheaf G with the property thatRΦP (F ) ≃ RHom(G ,OÂ).
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In practice, to show that something is a GV-sheaf, one typically uses the second
condition; on the other hand, the third condition is what is responsible for many
of the interesting properties of GV-sheaves. The reason is that

RiΦP (F ) ≃ Ext i(G ,OÂ),
and because both sides are computed by taking an (injective respectively locally
free) resolution of a single coherent sheaf, this leads to many nontrivial relations.

Here are some examples of GV-sheaves. The first one already appeared in Ha-
con’s proof of the generic vanishing theorem.

Example 26.4. If f : X → A is a morphism from a smooth projective variety X to
an abelian variety A, then the sheaves Rif∗ωX are GV-sheaves. As we saw earlier
(in Lemma 25.6), this follows more or less immediately from Kollár’s theorem.

The following generalization will be useful for us later.

Example 26.5. Continuing with the previous example, suppose that L ∈ Pic(X) is
a line bundle with Ld ≃ OX . Then the sheaves Rif∗(ωX ⊗ L) are GV-sheaves. To
prove this, we use the fact that L determines a finite étale covering p : Y → X of
degree d, and that

p∗OY ≃ OX ⊕ L−1 ⊕ · · · ⊕ L−(d−1).

This was the content of Proposition 4.2. Because Y is étale over X, we get

p∗ωY ≃ p∗p
∗ωX ≃ ωX ⊗ p∗OY ;

in particular, ωX ⊗L is a direct summand of p∗ωY . This means that Rif∗(ωX ⊗L)
is a direct summand of Ri(f ◦ p)∗ωY , and therefore itself a GV-sheaf.

Another very elementary class of examples are ample line bundles.

Example 26.6. Any ample line bundle L on A is a GV-sheaf. This is clear because
we saw earlier on that RΦP (L) is a locally free sheaf.

Properties of GV-sheaves. We shall now take a more careful look at the prop-
erties of GV-sheaves. The first property is suggested by a result of Green and
Lazarsfeld about varieties of maximal Albanese dimension: as we showed in Propo-
sition 8.15, the cohomology support loci of X satisfy

Pic0(X) ⊇ Sn(X) ⊇ · · · ⊇ S1(X) ⊇ S0(X) = {OX},
provided that dim alb(X) = n = dimX. The exact same result is true for arbitrary
GV-sheaves; the difference in indexing comes from the fact that, by Serre duality,
Si(X,ωX) = −Sn−i(X).

Proposition 26.7. Let F be a GV-sheaf on an abelian variety A. Then

Â ⊇ S0(A,F ) ⊇ S1(A,F ) ⊇ · · · ⊇ Sg(A,F ).

Proof. The assertion is that Hi(Â,F ⊗Pα) = 0 implies Hi+1(Â,F ⊗Pα) = 0. This
turns out to be a formal consequence of the fact that RΦP (F ) ≃ RHom(G ,OÂ)

for a coherent sheaf G on Â. By the base change theorem,

Hi(A,F ⊗ Pα) ≃ RiΓ
(
Â,RΦP (F )

L
⊗ Oα

)
≃ RiΓ

(
Â,RHom(G ,OÂ)

L
⊗ Oα

)
.

This may be rewritten in the form

RiΓ
(
Â,RHom(G ,Oα)

)
≃ H0

(
Â, Ext i(G ,Oα)

)
,

because the support of Ext i(G ,Oα) is a point. This reduces the problem to to
showing that Ext i(G ,Oα) = 0 implies Ext i+1(G ,Oα) = 0. After localizing at the
point α, this follows from a general result about local rings; see the exercise below
for details. □
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Exercise 26.2. Let (A,m) be a local ring with residue field k = A/m. Show that

ExtiA(M,k) = 0 implies Exti+1
A (M,k) = 0

for every finitely generated A-module M . (Hint: Use a minimal free resolution.)

By definition, we also have codimSi(A,F ) ≥ i for all i ≥ 0. One surprising
property of GV-sheaves is that this inequality cannot always be strict.

Lemma 26.8. If F is a nonzero GV-sheaf on A, then one has codimSi(A,F ) = i
for at least one value of 0 ≤ i ≤ g.

Proof. If codimSi(A,F ) > i for every i ≥ 0, then by base change, one also has
codimSuppRiΦP (F ) > i for every i ≥ 0. By the same reasoning as in the proof
of Theorem 25.5, this collection of inequalities implies that

H0(A,F ⊗ ι∗L) = 0

for every ample line bundle L on A. Let us briefly recall the argument. If G =
RΦP (F ) denotes the Fourier-Mukai transform of F , then according to Mukai’s
Theorem 24.6,

F ≃ ι∗RΨP (G)[g].

Based on this isomorphism, a calculation with base change and the projection
formula shows that

H0(A,F ⊗ ι∗L) ≃ RgΓ
(
Â,EL ⊗RΦP (F )

)
,

where EL is the locally free sheaf that we get by taking the Fourier-Mukai transform
of the ample line bundle L. By assumption, the dimension of SuppRqΦP (F ) is
strictly less than g − q; in the hypercohomology spectral sequence

Ep,q2 = Hp
(
Â,EL ⊗RqΦP (F )

)
=⇒ Rp+qΓ

(
Â,EL ⊗RΦP (F )

)
,

we therefore have Ep,q2 = 0 for p+ q ≥ g (for dimension reasons). We conclude that
H0(A,F ⊗ ι∗L) = 0; taking L sufficiently ample, this forces F = 0. □

For most GV-sheaves, one has S0(A,F ) = Â, and so equality happens for i = 0.

Example 26.9. A typical example is the canonical bundle ωX of a smooth subvariety
i : X ↪→ A that is not fibered in subtori. In that case, ωX is known to be ample,
and so H0(X,ωX ⊗ i∗Pα) ̸= 0 for every α ∈ Â. Thus S0(A, i∗ωX) = Â.

Recall from the discussion after Theorem 26.1 that the conjecture of Green and
Lazarsfeld about the vanishing of certain cohomology sheaves ofRp2∗PX turned out
to be a consequence of the generic vanishing theorem. Something similar happens
for arbitrary GV-sheaves: if it happens that S0(A,F ) ̸= Â, then the Fourier-Mukai
transform RΦP (F ) is forced to be concentrated in certain degrees.

Proposition 26.10. One has RiΦP (F ) = 0 for every i < codimS0(A,F ).

Proof. Recall that RΦP (F ) ≃ RHom(G ,OÂ) for a coherent sheaf G on Â. Now

SuppG = SuppRΦP (F )

=
⋃
i≥0

SuppRiΦP (F ) =
⋃
i≥0

Si(A,F ) = S0(A,F )(26.11)

by the base change theorem and the fact that Si(A,F ) ⊆ S0(A,F ) for all i ≥ 0.
Therefore the assertion is that

RiΦP (F ) ≃ Ext i(G ,OÂ) = 0
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for every i < codimSuppG . Since Â is nonsingular, this follows from the following
general result in commutative algebra: Let (A,m) be a regular (or just Cohen-
Macaulay) local ring, and let M be a finitely generated A-module. Then

min
{
i ≥ 0

∣∣ ExtiA(M,A) ̸= 0
}
= codimSuppM = dimA/Ann(M).

The quantity on the left is sometimes called the grade of M . The proof is basically
by induction on the codimension of SuppM , starting from the fact thatM a torsion
module exactly when Hom(M,A) = 0. You can find the argument in §16 and §17
of Matsumura’s book. □

Exercise 26.3. Give a geometric proof for the fact that

min
{
i ≥ 0

∣∣ Ext i(G ,OX) ̸= 0
}
≥ codimSuppG ,

where G is a coherent sheaf on a smooth projective variety X.

The result above also has a “local” variant that is very useful in practice. The
idea is that, instead of imposing a condition on all of S0(A,F ), we only consider
one irreducible component.

Proposition 26.12. Suppose that Z ⊆ S0(A,F ) is an irreducible component of
codimension k. Then Z is actually an irreducible component of Sk(A,F ); in par-
ticular, we must have dimSuppF ≥ k.

Proof. Since we have already convinced ourselves that

SuppG = SuppRΦP (F ) = S0(A,F ),

we know that Z is also an irreducible component of SuppG . By applying the same
argument as before to the local ring at the generic point of Z, we deduce that
the sheaves RiΦP (F ) ≃ Ext i(G ,OÂ) for i < k have to be zero in a Zariski-open
neighborhood of the generic point of Z. Now it follows from (26.11) that Z is an
irreducible component of SuppRkΦP (F ), and therefore also of Sk(A,F ). Because

Sk(A,F ) =
{
α ∈ Â

∣∣ Hk(A,F ⊗ Pα) ̸= 0
}
,

this can only happen if dimSuppF ≥ k. □

This result can be put to use in several ways. If we happen to know that S0(A,F )
contains an isolated point, then the same point must also lie in Sg(A,F ), where
g = dimA; for dimension reasons, this means that F has to be supported on all
of A. In applications, F is typically of the form Rif∗ωX , and the support of F is
therefore equal to the image f(X); in the situation above, we could then conclude
for instance that f has to be surjective.
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Lecture 27

Applications of GV-sheaves. From now on, we are going to study several ap-
plications of the theory of GV-sheaves. Let me remind you briefly of the basic
properties of GV-sheaves that we proved last time. If F is a GV-sheaf on an
abelian variety A, then:

(1) One has codimSi(A,F ) ≥ i for all i ≥ 0 (by definition).
(2) Moreover, codimSi(A,F ) = i for some 0 ≤ i ≤ dimA, unless F = 0.
(3) One has S0(A,F ) ⊇ S1(A,F ) ⊇ · · · ⊇ SdimA(A,F ).
(4) If Z ⊆ S0(A,F ) is a component of codimension k, then Z ⊆ Sk(A,F ); in

particular, dimSuppF ≥ k.
(5) Finally, RiΦP (F ) = 0 for every i < codimS0(A,F ).

Perhaps the most interesting application is the birational characterization of abelian
varieties by Jungkai Chen and Christopher Hacon. As a warm-up exercise, let us
first see how GV-sheaves can be used to give algebraic proofs for some of the results
of Green and Lazarsfeld (that we discussed during the first half of the course).

For the time being, we let X be a smooth projective variety of dimension n, and
alb: X → Alb(X) its Albanese mapping (for some choice of base point, irrelevant
for what follows). Recall that every irreducible component of

Si(X) =
{
L ∈ Pic0(X)

∣∣ Hi(X,L) ̸= 0
}

is a translate of a subtorus (Theorem 11.1) by a point of finite order (Theorem 15.2);
in this case, a subtorus is automatically an abelian variety because Pic0(X) is
projective. By Serre duality, Hi(X,L) is dual to Hn−i(X,ωX ⊗L−1), and so every
irreducible component of

Si(X,ωX) =
{
L ∈ Pic0(X)

∣∣ Hi(X,ωX ⊗ L) ̸= 0
}
= −Sn−i(X)

is also a translate of an abelian variety by a point of finite order.
Our first application of GV-sheaves is to give a different proof for Theorem 12.4,

which was itself a generalization of Beauville’s Theorem 10.2.

Theorem 27.1. Let Z ⊆ Si(X,ωX) be an irreducible component. Then there
exists a normal projective variety Y with dimY ≤ n − i, and a surjective mor-
phism g : X → Y with connected fibers, such that Z is contained in a translate of
g∗ Pic0(Y ). Any resolution of singularities of Y has maximal Albanese dimension.

Proof. Recall from Theorem 11.1 that Z is a translate of an abelian subvariety of
Pic0(X) by a torsion point L ∈ Pic0(X). If we let A denote the dual abelian variety,
we obtain a morphism

f : X → A

by composing Alb(X) → A with the Albanese morphism of X. We then have

Hi
(
X,ωX ⊗ L⊗ f∗Pα

)
̸= 0

for every α ∈ Â. As explained last time, Kollár’s theorem still applies to the sheaf
ωX ⊗ L because L has finite order; consequently, we get

Hi
(
X,ωX ⊗ L⊗ f∗Pα

)
≃

k⊕
j=0

Hi−j(A,Rjf∗(ωX ⊗ L)⊗ Pα
)

where now k = dimX−dim f(X) = n−dim f(X). Because the sheaves Rjf∗(ωX⊗
L) on the right-hand side are GV-sheaves, the left-hand side can only be nonzero

for every α ∈ Â if we have i− j = 0 for some 0 ≤ j ≤ k; this implies that

i ≤ k = n− dim f(X)
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or equivalently dim f(X) ≤ n − i. We now define g : X → Y by taking the Stein
factorization of f : X → f(X); in the resulting diagram

X Y A,
g

f

h

h is a finite morphism, and g is a surjective morphism with connected fibers. By
construction, dimY = dim f(X) ≤ n− i, and every resolution of singularities of Y
has maximal Albanese dimension; it is also clear from the diagram that the image
of f∗ : Pic0(A) → Pic0(X) is contained in that of g∗ : Pic0(Y ) → Pic0(X). □

The key point in the proof was to show that dim f(X) ≤ n− i; notice how this
kind of numerical result follows very easily by combining the structure theorem
for cohomology support loci with results about GV-sheaves. By almost the same
method, we can reprove the result of Ein and Lazarsfeld about the Albanese image
of varieties of maximal Albanese dimension with χ(X,ωX) = 0.

Theorem 27.2. Let X be a smooth projective variety of maximal Albanese di-
mension. If χ(X,ωX) = 0, then the Albanese image alb(X) is fibered by abelian
varieties.

Proof. Since X has maximal Albanese dimension, the Albanese mapping alb: X →
Alb(X) is generically finite over its image, and so Ri alb∗ ωX = 0 for i > 0 by
Kollár’s theorem. In particular, we have

Si(X,ωX) = Si
(
Alb(X), alb∗ ωX

)
for every 0 ≤ i ≤ n. Because alb∗ ωX is a GV-sheaf, Si(X,ωX) is a proper subvari-
ety of Pic0(X) for i > 0; the condition χ(X,ωX) = 0 says exactly that S0(X,ωX)
is also a proper subvariety of Pic0(X). We can now apply Proposition 26.12: for
some i ≥ 1, the locus Si(X,ωX) = Si

(
Alb(X), alb∗ ωX

)
must have an irreducible

component of codimension i. As before, such a component gives rise to a morphism

X Alb(X)

A

alb

f
p

to an abelian variety A such that dim f(X) ≤ n − i. Because dimA = g − i, the
fibers of p are finite unions of abelian varieties of dimension i; on the other hand,
every fiber of p : alb(X) → f(X) has dimension at least

dim alb(X)− dim f(X) = dimX − dim f(X) ≥ i.

This can only happen if alb(X) is a union of connected components of fibers of p,
and therefore a union of i-dimensional abelian varieties □

The birational characterization of abelian varieties. We now come to the
most surprising application of GV-sheaves, namely the birational characterization
of abelian varieties by Chen and Hacon. Before stating the theorem, let me briefly
describe the background.

A fundamental problem in algebraic geometry is to characterize certain classes
of varieties (up to birational equivalence) by their numerical invariants. In the
case of surfaces, the Enriques-Kodaira classification shows that a minimal smooth
projective surface S is abelian if and only if κ(S) = 0 and q(S) = 2. The first
general result in higher dimensions is due to Kawamata, who showed that an n-
dimensional smooth projective variety X is birational to an abelian variety exactly
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when κ(X) = 0 and dimH1(X,OX) = n. In essence, Kawamata proved that if
κ(X) = 0, then

alb: X → Alb(X)

is surjective with connected fibers; this is the first part of Ueno’s Conjecture 12.7.
If one knows in addition that dimAlb(X) = n, then alb must be birational, and so
X is birational to an abelian variety.

Of course, this result is not “effective”, because in order to be sure that κ(X) = 0,
one has to know that all the plurigenera Pm(X) = dimH0(X,ω⊗m

X ) are bounded
(and actually equal to 1 for every sufficiently large and divisible m). The first
effective result is due to Kollár, who showed that dimH1(X,OX) = n and Pm(X) =
1 for somem ≥ 3 are sufficient to conclude thatX is birational to an abelian variety.
Kollár also conjectured the following optimal statement, which was subsequently
proved by Chen and Hacon.

Theorem 27.3 (Chen-Hacon). Let X be a smooth projective variety with P1(X) =
P2(X) = 1 and dimH1(X,OX) = dimX. Then X is birational to an abelian
variety.

The arguments of Chen and Hacon were greatly simplified by Giuseppe Pareschi
(in his nice survey article Basic results on irregular varieties via Fourier-Mukai
methods); the resulting proof is another very pretty application of the theory of
GV-sheaves.

Recall that, by the work of Ein and Lazarsfeld, P1(X) = P2(X) = 1 guarantees
that the Albanese mapping of X is surjective. As a preparation for understanding
Pareschi’s proof, let us review their argument. The first step is to observe that the
condition on plurigenera gives information about S0(X,ωX).

Proposition 27.4. If P1(X) = P2(X) = 1, then the origin must be an isolated
point of S0(X,ωX).

Proof. Since P1(X) ̸= 0, we have H0(X,ωX) ̸= 0, and so OX ∈ S0(X,ωX). Sup-
pose that it is not an isolated point. Then by Theorem 11.1, S0(X,ωX) contains
an abelian variety Z of positive dimension. In particular, Z is a subgroup, and so
if L ∈ Z, then also L−1 ∈ Z. This means that the image of the multiplication map

H0(X,ωX ⊗ L)⊗H0(X,ωX ⊗ L−1) → H0(X,ω⊗2
X )

is nonzero for every L ∈ Z. Now ω⊗2
X only has one global section because P2(X) = 1;

let D be the corresponding effective divisor on X. By the above, the divisor of any
global section of ωX ⊗L has to be contained in D; but because D has only finitely
many irreducible components, we can find two distinct points L1, L2 ∈ Z, and
nontrivial sections s1 ∈ H0(X,ωX ⊗ L1) and s2 ∈ H0(X,ωX ⊗ L2), such that
div s1 = div s2. But then ωX ⊗ L1 ≃ ωX ⊗ L2, which contradicts the fact that L1

and L2 are distinct points. □

The second step is the following geometric result; this time around, we can give
a shorter proof based on Proposition 26.12.

Proposition 27.5. If the origin is an isolated point of S0(X,ωX), then the Al-
banese mapping alb: X → Alb(X) is surjective.

Proof. We always have S0(X,ωX) = S0
(
Alb(X), alb∗ ωX

)
. Now alb∗ ωX is a GV-

sheaf on Alb(X); according to Proposition 26.12, the origin is therefore automat-
ically a point of Sg

(
Alb(X), alb∗ ωX

)
, where g = dimAlb(X). In particular, we

must have dimalb(X) ≥ g, which means that alb is surjective. □
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If we assume in addition that dimAlb(X) = dimX, then we can conclude from
P1(X) = P2(X) = 1 that the Albanese mapping of X is generically finite and
surjective; in particular, X has maximal Albanese dimension. This is almost what
we want: to prove Theorem 27.3, we just need to show that the degree of alb is
equal to 1.

Pareschi’s criterion for birationality. Pareschi observed that the results about
GV-sheaves lead to the following criterion for the Albanese mapping to be bira-
tional. (This leads to an interesting point about the set S0(X,ωX): the “local”
property that OX is an isolated point ensures that alb is generically finite; the
“global” assumption that all points are isolated ensures that alb is birational.)

Proposition 27.6. Let X be a smooth projective variety of maximal Albanese
dimension such that dimS0(X,ωX) = 0. Then alb: X → Alb(X) is birational.

Proof. To simplify the notation, we shall write f : X → A for the Albanese mapping
of X. As explained above, f is surjective and generically finite; in particular,
g = dimA = dimX = n. We have to prove that deg f = 1; more precisely, we shall
show that the sheaf f∗ωX is isomorphic to OA.

To begin with, f∗ωX is a GV-sheaf on A. Kollár’s theorem shows that

Si(X,ωX) = Si(A, f∗ωX)

for every i ≥ 0. By assumption, every point of S0(A, f∗ωX) is an isolated point,
and therefore actually contained in Sg(A, f∗ωX) by virtue of Proposition 26.12. But
Sg(A, f∗ωX) = Sn(X,ωX) consists of just the origin; we deduce that Si(A, f∗ωX) =
{0} for every 0 ≤ i ≤ g. Looking back at Proposition 26.10, it follows that the

Fourier-Mukai transform RΦP (f∗ωX) is supported at the origin in Â, and that
RiΦP (f∗ωX) = 0 for i < n. A simple calculation gives

RnΦP (f∗ωX) ≃ Rnp2∗
(
PX ⊗ p∗1ωX

)
,

where PX = (f × id)∗P is the universal line bundle on X × Pic0(X). By the same
argument as in the proof of Lemma 24.5, one can show that this equals O0. Putting
everything together, we find that

RΦP (f∗ωX) ≃ RnΦP (f∗ωX)[−n] ≃ O0[−n] ≃ RΦP (OA).

But we know from Theorem 24.6 that the Fourier-Mukai transform is an equivalence
of categories; the conclusion is that f∗ωX ≃ OA, and hence that f is birational. □

Exercises.

Exercise 27.1. Describe all line bundles on an abelian variety that are GV-sheaves.

Exercise 27.2. Prove the following partial generalization of Proposition 24.3: Let
X be a smooth projective variety of dimension n, and let PX denote a universal line
bundle on X × Pic0(X). Then one has Rnp2∗

(
PX ⊗ p∗1ωX

)
≃ O0. (Hint: Imitate

the proof of Lemma 24.5.)
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Lecture 28

The proof of the Chen-Hacon theorem. In the first half of today’s class, we
shall finish the proof of Theorem 27.3. The statement was that ifX is a smooth pro-
jective variety of dimension n, and if P1(X) = P2(X) = 1 and dimAlb(X) = n, then
X must be birational to an abelian variety; more precisely, the Albanese mapping
alb: X → Alb(X) must be birational. We have already seen how the two assump-
tions imply that the Albanese mapping is generically finite. Pareschi’s criterion in
Proposition 27.6 therefore reduces the problem to proving that dimS0(X,ωX) = 0.
The following result describes what happens if dimS0(X,ωX) ̸= 0.

Proposition 28.1. Let X be a smooth projective variety of maximal Albanese
dimension. If dimS0(X,ωX) ̸= 0, then the intersection

S0(X,ωX) ∩ ι∗S0(X,ωX)

also has positive dimension.

Proof. Let Z ⊆ S0(X,ωX) be an irreducible component of positive dimension, and
let k denote its codimension; by construction, k < g = dimAlb(X). We know
from Theorem 15.2 that Z is a translate of an abelian variety by a torsion point
L ∈ Pic0(X). If Z contains the origin, then we are clearly done; for the remainder
of the argument, we may therefore assume that Z does not contain the origin. By
the same construction as in the proof of Theorem 27.1, we obtain a morphism

X Alb(X)

A

alb

f
p

to the dual abelian variety A, such that dimA = g − k and dim f(X) = n− k. An
important point is that we know the dimension of f(X); this is where we need the
assumption that X is of maximal Albanese dimension. The remainder of the proof
divides itself into four steps.

Step 1 . We show that Rkf∗(ωX ⊗ L) ̸= 0. Recall that Z has codimension k and is
an irreducible component of

S0(X,ωX) = S0
(
Alb(X), alb∗ ωX

)
;

because alb∗ ωX is a GV-sheaf, Z is automatically contained in

Sk(X,ωX) = Sk
(
Alb(X), alb∗ ωX

)
.

An application of Kollár’s theorem shows that

Hk(X,ωX ⊗ L⊗ f∗Pα) ≃
k⊕
j=0

Hk−j(A,Pα ⊗Rjf∗(ωX ⊗ L)
)
.

By construction, the left-hand side is nonzero for every α ∈ Â; in terms of coho-
mology support loci, this says that

Â =

k⋃
j=0

Sk−j
(
A,Rjf∗(ωX ⊗ L)

)
.

But the sheaves Rjf∗(ωX⊗L) are GV-sheaves on A, and so the cohomology support

loci with k − j ≥ 1 are proper subvarieties of Â; this is only possible if

Â = S0
(
A,Rkf∗(ωX ⊗ L)

)
.

In particular, the sheafRkf∗(ωX⊗L) has to be nonzero; recall from Kollár’s theorem
that it is torsion-free when viewed as a coherent sheaf on f(X).
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Step 2 . We show that Rkf∗(ωX ⊗ L−1) ̸= 0. The idea is to exploit the fact that
the general fiber of f : X → f(X) is k-dimensional. Since the fibers may not be
connected, consider the Stein factorization of f :

X Y A
g

f

p

Let F denote a general fiber of g; then F is a smooth projective variety of dimension
k. We know that Rkg∗(ωX ⊗ L) is a nontrivial torsion-free sheaf on g(X); by base
change, it follows that

Hk
(
F, ωF ⊗ L

∣∣
F

)
≃ Hk

(
F, (ωX ⊗ L)

∣∣
F

)
̸= 0.

Since dimF = k, we can use Serre duality to conclude that

L ∈ ker
(
Pic0(X) → Pic0(F )

)
.

But the kernel is a group, and so it also contains L−1; by running the same argument
backwards, we get that Rkf∗(ωX ⊗ L−1) ̸= 0, too.

Step 3 . We produce a nontrivial subset of ι∗S0(X,ωX). Observe that, because of
the isomorphism

Hk(X,ωX ⊗ L−1 ⊗ f∗Pα) ≃
k⊕
j=0

Hk−j(A,Pα ⊗Rjf∗(ωX ⊗ L−1)
)
,

the entire subset

L−1 ⊗ f∗S0
(
A,Rkf∗(ωX ⊗ L−1)

)
⊆ ι∗Z

is contained in Sk(X,ωX). But X has maximal Albanese dimension, and so Propo-
sition 26.7 shows that it is also contained in S0(X,ωX). Since ι∗Z ⊆ ι∗S0(X,ωX),
this reduces the whole problem to proving that

dimS0
(
A,Rkf∗(ωX ⊗ L−1)

)
≥ 1.

Step 4 . We prove that S0
(
A,Rkf∗(ωX⊗L−1)

)
does not contain any isolated points.

First of all, we observe that Rkf∗(ωX ⊗ L−1) is a nonzero GV-sheaf on A, and so

S0
(
A,Rkf∗(ωX ⊗ L−1)

)
̸= 0

by Lemma 26.8 and Proposition 26.7. Suppose that α ∈ S0
(
A,Rkf∗(ωX ⊗ L−1)

)
was an isolated point. Since dimA = g− k, we could then apply Proposition 26.12
and conclude that

α ∈ Sg−k
(
A,Rkf∗(ωX ⊗ L−1)

)
.

Because dim f(X) = n− k ≥ g − k, it would follow that f(X) = A and n = g, and
hence that

0 ̸= Hn−k(A,Pα ⊗Rkf∗(ωX ⊗ L−1)
)
⊆ Hn

(
X,ωX ⊗ L−1 ⊗ f∗Pα

)
;

the inclusion again comes from Kollár’s theorem. But then L−1 ⊗ f∗Pα would be
the trivial line bundle, which would mean that Z contains the origin. Since we
are assuming that this is not the case, S0

(
A,Rkf∗(ωX ⊗L−1)

)
cannot contain any

isolated points. This finishes the proof. □

Now suppose that P1(X) = P2(X) = 1. Then by the same argument is in the
proof of Proposition 27.4, the intersection S0(X,ωX) ∩ ι∗S0(X,ωX) cannot be of
positive dimension. According to Proposition 28.1, dimS0(X,ωX) = 0; Pareschi’s
birationality criterion in Proposition 27.6 therefore applies, and so X is birational
to its Albanese variety Alb(X).



146

Varieties of Kodaira dimension zero. Kawamata proved that if X is a smooth
projective variety of Kodaira dimension zero, then alb: X → Alb(X) is surjective
and has connected fibers. Last time, we reviewed the proof that P1(X) = P2(X) = 1
implies the surjectivity of the Albanese mapping. It turns out that this condition
is also enough to ensure that the fibers are connected; this optimal result is due to
Zhi Jiang.

Theorem 28.2. Let X be a smooth projective variety with P1(X) = P2(X) = 1.
Then the fibers of the Albanese mapping are connected.

Proof. We already know that the Albanese mapping of X is surjective. Let us
consider the Stein factorization

X Y Alb(X);
f

alb

p

the assertion is that the finite morphism p is an isomorphism. Note that Y may
be singular – all we know is that it is normal. After resolving singularities, we
can arrange that Y is smooth and that p is generically finite; this does not change
the fact that P1(X) = P2(X) = 1. Since dimY = dimAlb(X), it is clear that Y
has maximal Albanese dimension; moreover, the above factorization implies that
Pic0(X) is a factor of Pic0(Y ).

To prove the theorem, we need to show that Y is birational to an abelian variety;
the universal property of the Albanese morphism will then imply that p is birational.
As Y has maximal Albanese dimension, this is equivalent to the condition that
P1(Y ) = P2(Y ) = 1. We are going to argue that Pm(Y ) ≤ Pm(X); because of the
assumptions on X, this will clearly do the job. The problem is that there is no
direct relationship between sections of ωY and sections of ωX ; in fact, n = dimX is
typically greater than g = dimY . We shall overcome this problem by proving that
ωX ⊗ f∗ω−1

Y is effective. Unfortunately, I only know how to prove this with the
help of Hodge theory – it would be nice to have a proof that only uses properties
of GV-sheaves.

Let us first see how far we can get with the help of GV-sheaves. The starting
point is Proposition 27.4, which says that the origin is isolated in

S0(X,ωX) = S0
(
Alb(X), alb∗ ωX

)
.

If we apply Proposition 26.12 to the GV-sheaf alb∗ ωX , we see that the origin must
be contained in Sg

(
Alb(X), alb∗ ωX

)
; together with Kollár’s theorem, this says that

Hg(X,ωX) ̸= 0. Now Hodge theory and Serre duality show that

H0(X,Ωn−gX ) ≃ Hn−g(X,OX) ̸= 0.

We would like to say that the (essentially unique) section of ωX is the wedge product
of a holomorphic (n − g)-form with the pullback of a section of ωY . For that, we

need additional information about the space H0(X,Ωn−gX ), and so we have to leave
the theory of GV-sheaves and turn to Hodge theory.

We know that the origin is an isolated point in S0(X,ωX), and therefore also in
the intersection S0(Y, f∗ωX) ∩ Pic0(X); recall that Pic0(X) is a factor of Pic0(Y ).
Because of Corollary 12.3, this means that the derivative complex

0 H0(Y, f∗ωX) H1(Y, f∗ωX) · · · Hg(Y, f∗ωX) 0v∪ v∪ v∪
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is exact for every nonzero v ∈ H1(X,OX). It follows that the complex of locally
free sheaves

0 → H0(Y, f∗ωX)⊗ OP(−g) → H1(Y, f∗ωX)⊗ OP(−g + 1) → · · ·
· · · → Hg(f∗ωX)⊗ OP → 0

on P = Pg−1 is exact; we have already used this trick once before, during the proof
of Lemma 13.4. Recall from the discussion there that the differential is given by the
formula

∑
j vj⊗ tj , where v1, . . . , vg is a basis for H1(X,OX), and t1, . . . , tg are the

corresponding homogeneous coordinates on P. By analyzing the hypercohomology
spectral sequence, we find that

v1 ∪ · · · ∪ vg : H0(Y, f∗ωX) → Hg(Y, f∗ωX)

is an isomorphism. As usual, Kollár’s theorem shows that Hg(Y, f∗ωX) is a direct
summand in Hg(X,ωX). We have a commutative diagram

H0(Y, f∗ωX) Hg(Y, f∗ωX)

H0(X,ωX) Hg(X,ωX)

v1∪···∪vg

v1∪···∪vg

and so cup product with v1 ∪ · · · ∪ vg embeds H0(X,ωX) as a direct summand into
Hg(X,ωX). If we apply Serre duality again, it follows that

v1 ∪ · · · ∪ vg : Hn−g(X,OX) → Hn(X,OX)

is surjective. Now let ωi = vi ∈ H0(X,Ω1
X); after conjugating, we find that

ω1 ∧ · · · ∧ ωg : H0(X,Ωn−gX ) → H0(X,ωX)

is also surjective. If we consider ω1 ∧ · · · ∧ ωg as a holomorphic g-form on Alb(X),
then p∗(ω1 ∧ · · · ∧ ωg) is a section of ωY ; it follows that the (essentially unique)
section of ωX can be written as the wedge product of a section of f∗ωY and of a
holomorphic (n− g)-form. This clearly means that ωX ⊗ f∗ω−1

Y is effective.
We conclude that Pm(Y ) ≤ Pm(X) for allm ≥ 1; in particular, we have P1(Y ) =

P2(Y ) = 1, and so Y is birational to an abelian variety by Theorem 27.3. This
finishes the proof that alb has connected fibers. □

Notice how the argument with GV-sheaves and the argument with derivative
complexes both lead to the conclusion that Hg(X,ωX) ̸= 0; the main advantage
of the second method is that it produces an explicit embedding of H0(X,ωX) into
Hg(X,ωX).

Exercises.

Exercise 28.1. Let X be a smooth projective variety of maximal Albanese dimen-
sion. Show that S0(X,ωX) is a finite union of subsets of the form{

Lk
∣∣ gcd(k, d) = 1

}
⊗A,

where L ∈ Pic0(X) is a point of order d, and A ⊆ Pic0(X) is an abelian subvariety.

Exercise 28.2. Let F be a GV-sheaf on an abelian variety A, and suppose that
the origin is an isolated point of S0(A,F ). As we know, this implies that the
origin belongs to Sg(A,F ), and hence that Hg(A,F ) ̸= 0. Is there a more direct
relationship between H0(A,F ) and Hg(A,F ), similar to what appeared during
the proof of Theorem 28.2?
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Lecture 29

Inequalities among Hodge numbers. The theory of Green and Lazarsfeld can
also be used to prove numerical statements about irregular varieties. The general
idea is that certain geometric assumptions about a smooth projective variety X
lead to inequalities among certain numerical invariants such as the dimension of X,
the Hodge numbers h0,q = dimHq(X,OX), or the holomorphic Euler characteristic
χ(X,ωX). We have already seen one example of this phenomenon in Corollary 8.13:
if X has maximal Albanese dimension, then χ(X,ωX) ≥ 0.

In fact, the prototypical example is an old theorem by Castelnuovo and de Fran-
chis about surfaces. Let S be a smooth projective surface, and denote by pg(S) its
geometric genus, and by q(S) its irregularity. The following result is known as the
Castelnuovo-de Franchis inequality.

Theorem 29.1. If pg(S) ≤ 2q(S)− 4, then there exists a fibration (= a surjective
morphism with connected fibers) from S to a curve of genus ≥ 2.

Proof. The proof is not all that difficult. Consider the Plücker embedding

G
(
2, H0(S,Ω1

S)
)
→ G

(
1,
∧2

H0(S,Ω1
S)
)

of the Grassmannian of 2-planes in H0(S,Ω1
S). The image is a closed subvariety of

dimension 2q(S)− 4, and because we are assuming that pg(S) ≤ 2q(S)− 4, it has
to intersect the hyperplane corresponding to the kernel of∧2

H0(S,Ω1
S) → H0(S,Ω2

S).

This means that there are two linearly independent holomorphic one-forms α, β ∈
H0(S,Ω1

S) whose wedge product α ∧ β ∈ H0(S,Ω2
S) is zero. During the proof of

Beauville’s Theorem 10.2, we showed how to construct from α and β a surjective
morphism with connected fibers from S to a curve of genus ≥ 2. (In fact, we proved
a slightly more general result in Proposition 10.12. The idea was that β = f ·α for
some meromorphic function f on S; we then got the fibration by taking the Stein
factorization of the resulting morphism to P1.) □

Equivalently, we can say that if S does not admit any fibration over a curve of
genus ≥ 2, then the inequality pg(S) ≥ 2q(S)− 3 must hold.

What about a higher-dimensional version? Since χ(S, ωS) = pg(S) − q(S) + 1,
we can rewrite the Castelnuovo-de Franchis inequality in the form

χ(S, ωS) ≥ q(S)− dimS.

This suggests a statement in arbitrary dimension; it was proved by Giuseppe
Pareschi and Mihnea Popa. But before we can state this and related inequali-
ties, we have to decide what the correct generalization of an irregular fibration (=
a fibration over a curve of genus ≥ 2) should be. One possibility would be fibrations
over varieties of general type; from the point of view of Green-Lazarsfeld theory, a
more natural class is varieties of maximal Albanese dimension.

Definition 29.2. An irregular fibration on a smooth projective variety X is a
morphism f : X → Y with connected fibers to a normal projective variety Y , such
that 1 ≤ dimY ≤ dimX − 1, and such that (any smooth model of) Y has maximal
Albanese dimension.

Let me now explain a nice result from a recent paper by Rob Lazarsfeld and
Mihnea Popa. They showed that when X admits no irregular fibrations, its Hodge
numbers h0,q = dimHq(X,OX) are related to each other by many nontrivial in-
equalities. The basic idea is to relate the absence of irregular fibrations to the
cohomology support loci Si(X). Here is how this works.
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Suppose that X admits no irregular fibrations. Then clearly X itself has to be of
maximal Albanese dimension – otherwise, alb : X → alb(X) would be an irregular
fibration. But more is true. Recall that when we proved the structure theorem
for cohomology support loci, we showed (in Theorem 12.4) that any irreducible
component of Si(X) of positive dimension gives rise to a morphism

f : X → Y

with connected fibers, such that dimY ≤ i, and such that any smooth model of
Y has maximal Albanese dimension. Since S0(X) = {OX}, the non-existence of
irregular fibrations on X therefore implies that

dimSi(X) = 0 for every i < n = dimX.

Putting this together with Proposition 8.15, we find that OX is an isolated point
of Si(X) for every i < n.

In order to derive numerical consequences from this fact, Lazarsfeld and Popa use
the derivative complex. Recall that the infinitesimal properties of the loci Si(X)
near the point OX are governed by the complex

H0(X,OX) → H1(X,OX) → · · · → Hn(X,OX);

the differentials are given by cup product with v ∈ H1(X,OX), which we think of
as a tangent vector to Pic0(X). Recall from Corollary 12.3 that OX is an isolated
point of Si(X) if and only if the derivative complex is exact in degree i for every
nonzero v ∈ H1(X,OX). This criterion, in turn, was based on the fact that the
complex Rp2∗PX on Pic0(X) is, in a sufficiently small neighborhood of the point
OX , quasi-isomorphic to a linear complex.

Now let P = Pg−1 denote the projective space of lines in H1(X,OX). As in the
previous lecture, we consider the complex of vector bundles

H0(X,OX)⊗ OP(−n) → H1(X,OX)⊗ OP(−n+ 1) → · · · → Hn(X,OX)⊗ OP;

the differentials are given by the formula
g∑
j=1

vj ⊗ tj ,

where v1, . . . , vg are a basis of H1(X,OX), and t1, . . . , tg the corresponding homo-
geneous coordinates on P. If X does not admit irregular fibrations, this complex
of vector bundles is exact except possibly at the right end; this suggests defining a
coherent sheaf FX as the cokernel of the right-most differential.

Lemma 29.3. If X does not admit irregular fibrations, then FX is locally free and

(29.4) 0 → H0(X,OX)⊗ OP(−n) → · · · → Hn(X,OX)⊗ OP → FX → 0

is exact. In particular, FX is a globally generated vector bundle of rank χ(X,ωX).

Proof. We have already seen that the complex in (29.4) resolves FX . Because the
derivative complex is exact for every nonzero v ∈ H1(X,OX), the restriction of
(29.4) to any point of P is also exact; this implies that FX is locally free. Now

rkFX =

n∑
i=0

(−1)i dimHn−i(X,OX) =

n∑
i=0

(−1)i dimHi(X,ωX) = χ(X,ωX)

because the complex of vector bundles is exact. □

From the fact that FX is globally generated, we can obtain various inequalities
among the Hodge numbers h0,q = dimHq(X,OX). The idea is that the Chern
classes ci = ci(FX) are represented by effective cycles, and therefore nonnegative.
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Note. More generally, this holds for any Schur polynomial in the ci. The first few
Schur polynomials are

c1, c2, c
2
1 − c2, c3, c1c2 − c3, c

3
1 − 2c1c2 + c3.

For the precise definition, and a proof that the Schur polynomials in the Chern
classes of an ample/globally generated vector bundle are positive/nonnegative, see
Section 8.3 of Lazarsfeld’s book Positivity in algebraic geometry.

To obtain formulas for the Chern classes, consider the Chern polynomial

c(FX , t) = 1 + c1t+ c2t
2 + · · ·+ crt

r,

where r = rkFX = χ(X,ωX). The Chern polynomial is multiplicative in short
exact sequences, and so the resolution in the lemma yields

c(FX , t) ≡
n∏
j=0

(1− jt)(−1)jh0,n−j

mod tg

because the Chern polynomial of OP(−j) is equal to 1 − jt. The formula is an
identity between formal power series; since we are on Pg−1, this relation is only
meaningful for the coefficients at 1, t, . . . , tg−1.

Extracting information from this formula is a bit tedious; we shall therefore
consider only one example. By looking at the linear terms, one finds that

c1(FX) =

n∑
j=0

(−1)j−1j · h0,n−j ≥ 0;

in a slightly rearranged form, this becomes

h0,n−1 ≥ 2h0,n−2 − 3h0,n−3 + 4h0,n−4 − 5h0,n−5 + · · ·+ (−1)n−1n.

The higher Chern classes of FX (and Schur polynomials in them) lead to many
additional polynomial inequalities of this type.

A higher-dimensional Castelnuovo-de Franchis inequality. Another very
pretty result, due to Pareschi and Popa, is the following higher-dimensional gener-
alization of the Castelnuovo-de Franchis inequality.

Theorem 29.5. Let X be a smooth complex projective variety. Then one has

χ(X,ωX) ≥ dimPic0(X)− dimX,

provided that X does not admit irregular fibrations.

Proof. As usual, we let n = dimX and g = dimPic0(X). Since X has maximal
Albanese dimension, we have g − n ≥ 0; by Corollary 8.13, also χ(X,ωX) ≥ 0.

We begin by dealing with the case χ(X,ωX) = 0. In that case, Sn(X) is a proper
subset of Pic0(X), and therefore equal to Sn−1(X). According to the discussion
above, the origin is an isolated point of Sn(X), and we conclude from Proposi-
tion 12.10 that the Albanese mapping of X is surjective. Consequently, n = g, and
so the inequality is satisfied in this case.

We may therefore assume for the remainder of the argument that χ(X,ωX) ≥ 1.
We shall deduce the inequality from the exactness of the complex in Lemma 29.3.
Our main tool will be a splitting criterion due to Ein, which says that if E is a
vector bundle of rank r on Pd, and if one knows that

Hi
(
Pd,E (j)

)
= 0 for 1 ≤ i ≤ r − 1 and every j,

then E splits into a direct sum of line bundles. (The converse is obviously true.) You
can find a short proof of this result, based on vanishing theorems and Castelnuovo-
Mumford regularity, in Ein’s paper An analogue of Max Noether’s theorem.
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We can take the exact sequence in (29.4), tensor it by OP(j), and then take
cohomology; the most convenient way to organize the resulting information is by
using the hypercohomology spectral sequence. Except for the column with FX , all
entries on the E1-page are of the form

Ep,q1 (j) = Hn−p(X,OX)⊗Hq
(
Pg−1,OP(−p+ j)

)
with −n ≤ p ≤ 0 and 0 ≤ q ≤ g − 1. Here is a picture of the E1-page:

E−n,g−1
1 (j) E−n+1,g−1

1 (j) · · · E0,g−1
1 (j) Hg−1

(
Pg−1,FX(j)

)
0 0 · · · 0 Hg−2

(
Pg−1,FX(j)

)
...

...
...

...

0 0 · · · 0 H1
(
Pg−1,FX(j)

)
E−n,0

1 (j) E−n+1,0
1 (j) · · · E0,0

1 (j) H0
(
Pg−1,FX(j)

)
A little bit of diagram chasing shows that we have

Hi
(
Pg−1,FX(j)

)
= 0 for 1 ≤ i ≤ g − n− 2 and every j.

Now let us suppose that the asserted inequality for the holomorphic Euler charac-
teristic was violated. Then

0 ≤ rkFX − 1 = χ(X,ωX)− 1 ≤ g − n− 2,

and so we have the vanishing necessary to apply Ein’s theorem and to conclude
that FX splits into a sum of line bundles; say

FX ≃ OP(a1)⊕ OP(a2)⊕ · · · ⊕ OP(ar).

Because FX is globally generated, it is clear that a1, . . . , ar ≥ 0.
Now we observe that the spectral sequence degenerates at E2; in fact, because

g − n− 2 ≥ 0, there is no room for any nonzero differentials other than d1. As the
spectral sequence is converging to zero, this means that the complex

(29.6) 0 → E−n,0
1 (j) → E−n+1,0

1 (j) → · · · → E0,0
1 (j) → H0

(
Pg−1,FX(j)

)
→ 0

in the bottom row of the E1-page is exact. From this, we can easily obtain a
contradiction. Indeed, if at least one ak ≥ 1, then we get a contradiction by choosing
j = −1 (because E0,0

1 (−1) = 0, but r ≥ 1). The only possibility is that FX is a
trivial bundle of rank r; by taking j = 0, we see that Hn(X,OX) ⊗ OP → FX

must be an isomorphism. If we now choose j ≥ 1 minimal with the property that
Hn−j(X,OX) ̸= 0, we obtain a contradiction to the exactness of (29.6). □
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Lecture 30

In the next two lectures, I would like to discuss a more recent result that appeared
after I wrote the first version of these notes. Let f : X → A be a morphism from a
smooth projective variety to an abelian variety. We already know that the sheaves
Rjf∗ωX are GV-sheaves; the following theorem gives a much better result.

Theorem 30.1. Let f : X → A be a morphism from a smooth projective variety
to an abelian variety. Then each Rjf∗ωX decomposes into a finite direct sum of
sheaves of the form

L⊗ q∗F ,

where q : A→ B is a surjective morphism of abelian varieties with connected fibers,
L ∈ Pic0(A) is a line bundle of finite order, and F is an M-regular coherent sheaf
on B.

M-regular sheaves are a special class of GV-sheaves; roughly speaking, if GV-
sheaves are “nef”, then M-regular sheaves are “ample”. The decomposition in the
theorem is called the Chen-Jiang decomposition. The history is as follows. Jungkai
Chen and Zhi Jiang originally proved the result for the Albanese mapping on vari-
eties of maximal Albanese dimension (by a geometric argument). Pareschi, Popa,
and I then generalized it arbitrary morphisms to abelian varieties, but our proof
used the theory of Hodge modules. Later on, my former student Mads Villadsen
found a more elementary argument that combines the methods of Chen and Jiang
with some results about variations of Hodge structure. I will present an outline of
the proof (in the case of maximal Albanese dimension) next time; today, we will
concentrate on M-regular sheaves and their properties.

M-regular sheaves. M-regularity was introduced by Pareschi and Popa in a series
of papers, as a generalization of Castelnuovo-Mumford regularity on projective
space. (The letter M apparently stands for Mukai.)

Definition 30.2. Let F be a coherent sheaf on an abelian variety A. We say that
F is M-regular if codimSi(A,F ) ≥ i+ 1 for every i ≥ 1.

An M-regular sheaf is obviously a GV-sheaf, but being M-regular is a much
stronger condition: in fact, the small change in the numbers turns out to have
rather drastic consequences.

Example 30.3. An ample line bundle L is M-regular, because Si(A,L) = ∅ for i ≥ 1.
On the other hand, the trivial line bundle OA is not M-regular, because Sg(A,OA)
is nonempty for g = dimA.

The condition of being M-regular has the following nice interpretation in terms
of the Fourier-Mukai transform.

Proposition 30.4. Let F be a GV-sheaf on an abelian variety A, so that RΦP (F ) ∼=
RHom(G ,OÂ) for a coherent sheaf G on the dual abelian variety Â = Pic0(A).
Then F is M-regular if and only if G is torsion-free.

For example, the Fourier-Mukai transform of an ample line bundle L is

RΦP (L) = (p2)∗(p
∗
1L⊗ P ),

and we saw earlier that this is the dual of an ample vector bundle. On the other
hand, the Fourier-Mukai transform of OA is the dual of a skyscraper sheaf, and
therefore torsion.
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Proof. One consequence of the base change theorem (in [?prop:base-change-Si])
was that ⋃

i≥n

SuppRiΦP (F ) =
⋃
i≥n

Si(A,F ).

Consequently, F is M-regular if and only if

codimSupp Ext i(G ,OÂ) = codimSuppRiΦP (F ) ≥ i+ 1

for every i ≥ 1. Now we only have to explain why this condition on the Ext-sheaves
is equivalent to G being torsion-free. This is a local problem, and so we may assume
that (R,m) is a regular local ring – in fact, a local integral domain would be enough
– and that M is a finitely-generated R-module. The claim is that M is torsion-free
if and only if codimExti(M,R) ≥ i+ 1 for all i ≥ 1.

Suppose first that M is torsion-free. For any nonzero f ∈ R, the sequence

0 →M
f−→M →M/fM → 0

is exact. By looking at the long exact sequence for Ext, we deduce the exactness of

Exti(M,R)
f−→ Exti(M,R) → Exti+1(M/fM,R)

for every i ≥ 1. Since codimExti(M,R) ≥ i, we can choose a nonzero element f ∈ R
that annihilates Exti(M,R); but then Exti(M,R) injects into Exti+1(M/fM,R),
and since codimExti+1(M/fM,R) ≥ i+ 1, this gives us what we want.

Now suppose that codimExti(M,R) ≥ i + 1 for i ≥ 1. We need to prove that
the multiplication map f : M → M is injective for nonzero f ∈ R. Let K be the
kernel, so that we have a short exact sequence

0 → K →M → fM → 0.

Since K is torsion, we have Hom(K,R) = 0. From the long exact sequence, we
again get the exactness of

Exti(M,R) → Exti(K,R) → Exti+1(fM,R),

and so codimExti(K,R) ≥ i+1 for all i ∈ Z (including i = 0). Fro the same reason
as in Lemma 26.8, this implies that K = 0. □

One very nice property of M-regular sheaves is that they are “essentially” globally
generated, in the following sense.

Proposition 30.5. Let F be an M-regular coherent sheaf on A. Then there is an
isogeny φ : A→ A such that the pullback sheaf φ∗F is globally generated.

This generalizes a classical result for ample line bundles on abelian varieties.
Namely, an ample line bundle L on A always has global sections (because h0(A,L) =
χ(A,L) ̸= 0), but the example of the Theta divisor shows that it can have just one
global section, and therefore fail to be globally generated. But it is known that L2

is always globally generated, and that L3 is always very ample.

Proof. Let us again write RΦP (F ) ∼= RHom(G ,OÂ), with G torsion-free on Â.
The nice thing about this result is that the proof shows very clearly why it is useful
to have G be torsion-free.

Since it is difficult to produce global sections of F itself, we instead look at
global sections of the twists F ⊗ Pα. For any α ∈ Â, consider the evaluation map

H0(A,F ⊗ Pα)⊗ P−1
α → F .

By Nakayama’s lemma, this is surjective on a neigborhood of a point a ∈ A if and
only if the map on fibers

H0(A,F ⊗ Pα)⊗ P−1
α

∣∣
a
→ F

∣∣
a
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is surjective. A short calculation with the Fourier-Mukai transform and duality
shows that this linear mapping is dual to the restriction mapping

H0(Â,G ⊗ P̂−1
a ) → (G ⊗ P̂−1

a )
∣∣
α
.

Now G is torsion-free on Â, and points of finite order are obviously dense in Â, and
so any global section of G ⊗ P̂−1 is uniquely determined by its values at sufficiently
many points of finite order. If we write Â[m] for the set of α ∈ Ah with mα = 0,
this means that

H0(Â,G ⊗ P̂−1
a ) →

⊕
α∈Â[m]

(G ⊗ P̂−1
a )

∣∣
α

is injective for m≫ 0. Dually, it follows that⊕
α∈Â[m]

H0(A,F ⊗ Pα)⊗ P−1
α → F

is surjective in a neighborhood of the given point a ∈ A. Since A is compact, finitely
many such neighborhoods cover A; consequently,⊕

α∈Â[m]

H0(A,F ⊗ Pα)⊗ P−1
α → F

must be surjective for m ≫ 0. If we now pull back by the isogeny φ : A → A,
φ(a) = m · a, all the line bundle Pα become trivial, and therefore φ∗F becomes
globally generated. □

The Chen-Jiang decomposition. Let us now go back to Theorem 30.1 and try
to understand what it is saying. Consider one of the summands L ⊗ q∗F , where
q : A → B is a morphism of abelian varieties (surjective with connected fibers),
and F is M-regular on B. Since the Fourier-Mukai transform of F is the dual of a
torsion-free sheaf, we have S0(B,F ) = B̂. Let us compute the cohomology support
loci of L⊗ q∗F . Because the fibers of q : A→ B are abelian varieties,

Hi(A,L⊗ q∗F ⊗ Pα)

can only be nonzero if L⊗Pα is trivial on the fibers, and therefore of the form q∗Pβ
for some β ∈ B̂. By the projection formula, we get

Hi(A,L⊗ q∗F ⊗ Pα) ∼=
k⊕
j=0

Hi−j(B,F ⊗ Pβ ⊗Rjq∗OA)

where k = dimA− dimB. Now Rjq∗OA is a trivial bundle of rank
(
k
j

)
, and so the

right-hand side is nonzero for every β ∈ Pic0(B), as long as 0 ≤ i ≤ k. This gives

S0(A,L⊗ q∗F ) = · · · = Sk(A,L⊗ q∗F ) = L−1 ⊗ q∗ Pic0(B) ⊆ Pic0(A).

In particular, Sk(A,L⊗ q∗F ) has codimension exactly k.
Now suppose that, as in Theorem 30.1, we have a GV-sheaf F (such as Rjf∗ωX)

with a Chen-Jiang decomposition

F ∼=
n⊕
i=1

Li ⊗ q∗iFi

with qi : A→ Bi and Fi M-regular on Bi. Then S
0(A,F ) is the union of the trans-

lated subtori L−1
i ⊗ q∗i Pic

0(Bi); more precisely, the i-th summand is responsible
for a component of codimension ki in S

ki(A,F ), where ki = dimA− dimBi.
There is also a very useful interpretation using the Fourier-Mukai transform.

We have RΦP (F ) ∼= RHom(G ,OÂ) for a coherent sheaf G on Â, and RΦP (Fi) ∼=
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RHom(Gi,OB̂) for torsion-free coherent sheaves Gi on B̂i. Then a calculation (that
we will do next time) shows that

G ∼=
n⊕
i=1

(tLi)∗(q̂i)∗Gi,

where q̂i : B̂i → A is the closed embedding dual to qi : A → Bi, and tLi
means

translation by the point Li ∈ Â. The i-th summand is the pushforward of the
torsion-free sheaf Gi by the closed embedding tLi

◦ q̂i : B̂i → A; this kind of sheaf
is sometimes called a “pure sheaf” in the literature. So we see that G is very
special: it is a direct sum of pure sheaves, and so each component of its support is
“explained” by one of the summands in the decomposition.
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Lecture 31

Today, we are going to look at the proof of Theorem 30.1. We will prove the result
only in the special case where X has maximal Albanese dimension and f : X → A
is the Albanese mapping; this is the situation originally considered by Chen and
Jiang. In that case, the theorem is claiming that

f∗ωX ∼=
n⊕
i=1

Li ⊗ q∗iFi,

where qi : A→ Bi is surjective with connected fibers and Fi is an M-regular coher-
ent sheaf on the abelian variety Bi.

Functoriality of the Fourier-Mukai transform. But first, I want to prove a
result that we used near the end of the previous lecture. It describes how the
Fourier-Mukai transform behaves under morphisms between abelian varieties. Let
p : A → B be a morphism between two abelian varieties (hence, in particular,

a group homomorphism), and let p̂ : B̂ → Â denote the induced morphism from

B̂ = Pic0(B) to Â = Pic0(A). Denote by PA and PB the normalized Poincaré

bundles on A× Â and B × B̂.

Lemma 31.1. There are natural isomorphisms of functors

RΦPB
◦Rp∗ ∼= Lp̂∗ ◦RΦPA

and RΦPA
◦ Lp∗[d] ∼= Rp̂∗ ◦ ι∗B̂ ◦RΦPB

◦ ι∗B
where d = dimA− dimB is the relative dimension.

Proof. Let us first recall how the morphism p̂ : B̂ → Â is constructed. By the
universal property of Pic0(A), such morphisms are in one-to-one correspondence

with line bundles on the product A× B̂ (whose restriction to each copy of B̂ must
be of the same type as the trivial line bundle). The pullback (p× id)∗PB along the

morphism p × id : A × B̂ → B × B̂ is such a line bundle; consequently, there is a
unique morphism p̂ : B̂ → Â for which

(31.2) (p× id)∗PB ∼= (id×p̂)∗PA.

Now let K ∈ Db
coh(OA) be an object in the derived category on A. Then

RΦPB

(
Rp∗K

)
= R(p2)∗

(
p∗1Rp∗K ⊗ PB

)
,

and by using flat base change, we get p∗1Rp∗K
∼= R(p × id)∗p

∗
1K. Together with

the projection formula and the identity in (31.2), this lets us rewrite the expression
for the Fourier-Mukai transform of Rp∗K in the form

RΦPB

(
Rp∗K

) ∼= R(p2)∗R(p× id)∗
(
p∗1K ⊗ (p× id)∗PB

)
∼= R(p2)∗

(
p∗1K ⊗ (id×p̂)∗PA

) ∼= R(p2)∗L(id×p̂)∗
(
p∗1K ⊗ PA

)
.

Refer to the following commutative diagram for the morphisms:

Â B̂

A× Â A× B̂ B × B̂ B̂

A B

p̂

p2 p2

id×p̂

p1

p×id

p1

p2

p

After using flat base change again, this becomes

RΦPB

(
Rp∗K

) ∼= Lp̂∗R(p2)∗
(
p∗1K ⊗ PA

) ∼= Lp̂∗
(
RΦPA

(K)
)
.
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This proves the first identity. The second one follows by applying Mukai’s formula
for the inverse of the Fourier-Mukai transform (in Theorem 24.6). Indeed, if we
denote by ιA : A → A and ιB : B → B the inverse morphisms in the group law on
the two abelian varieties, we have

ι∗B ◦Rp∗[−dimB] ∼= RΨPB
◦RΦPB

◦Rp∗ ∼= RΨPB
◦ Lp̂∗ ◦RΦPA

and therefore

ι∗B ◦Rp∗ ◦RΨPA
[−dimB] ∼= RΨPB

◦ Lp̂∗ ◦ ι∗
Â
[−dimA].

After swapping the two morphisms p : A→ B and p̂ : B̂ → Â, this becomes

ι∗
Â
◦Rp̂∗ ◦RΦPB

[−dimA] ∼= RΦPA
◦ Lp∗ ◦ ι∗B [−dimB].

and if we rearrange the terms a bit more, we finally get

RΦPA
◦ Lp∗[dimA− dimB] ∼= Rp̂∗ ◦ ι∗B̂ ◦RΦPB

◦ ι∗B . □

Proof of the Chen-Jiang decomposition theorem. Let us now try to go
through the proof of Theorem 30.1. As in the original paper, we assume that X is
a smooth projective variety of maximal Albanese dimension, and that f : X → A
is generically finite over its image. We set n = dimX and g = dimA, so that
dim f(X) = n as well. Our goal is to construct a decomposition

f∗ωX ∼=
⊕
i

Li ⊗ q∗iFi,

where qi : A → Bi are surjective morphisms of abelian varieties with connected
fibers, Li ∈ Pic0(A) have finite order, and Fi is M-regular on the abelian vari-
ety Bi. We know from last time that each summand contributes a component of
codimension k to some Sk(A, f∗ωX), where k = dimA− dimBi.

The general idea is as follows. If we have codimSi(A, f∗ωX) ≥ i+1 for every i ≥
1, then f∗ωX is itself M-regular, and so there is nothing to prove. The obstruction
to this is the finite set of subvarieties of Pic0(A) that show up as components of
codimension exactly i in the set Si(A, f∗ωX), for some i ≥ 1. Each subvariety in
this set is a translate of a subtorus by a point of finite order. For each of these
subvarieties, we are going to construct a summand of f∗ωX of the desired kind that
accounts for that subvariety.

The construction of the summands works better if all the subvarieties in question
pass through the origin in Pic0(A). The following lemma allows us to reduce to
that case.

Lemma 31.3. There is an isogeny φ : A′ → A such that on the fiber product

X ′ X

A′ A,

φ′

f ′ f

φ

every irreducible component of every Si(A′, f ′∗ωX′) contains the origin.

Proof. Each irreducible component of Si(A, f∗ωX) is a translate of a subtorus by
a point of finite order, and there are finitely many such components. Let m ≥ 1 be
the least common multiples of the orders of the finitely many points that we get
in this way, and let φ : A → A be the isogeny φ(a) = m · a. Let f ′ : X ′ → A be
the base change. Then ωX′ is isomorphic to the pullback of ωX , and by flat base
change, we get f ′∗ωX′ ∼= φ∗f∗ωX . For any α ∈ Pic0(A), we have

Hi
(
A, f ′∗ωX′ ⊗ Pα

) ∼= Hi
(
A, f∗ωX ⊗ φ∗Pα

)
.
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Since φ : A → A is a finite covering space whose group of deck transformation is
the abelian group (Z/mZ)⊕2g, it is easy to see that

φ∗Pα ∼=
⊕
mβ=α

Pβ .

After substituting this into the identity from above, it follows that

Si(A, f ′∗ωX′) =
{
α ∈ Pic0(A)

∣∣ α = mβ for some β ∈ Si(A, f∗ωX)
}
,

and by our choice of m, every irreducible component of this set contains the origin.
□

The lemma reduces the proof of Theorem 30.1 to the case where all irreducible
components of the loci Si(A, f∗ωX) pass through the origin. Indeed, if we know
the result in that case, then f ′∗ωX′ has a Chen-Jiang decomposition. From that, it
is not hard to deduce that φ∗f

′
∗ωX′ also has a Chen-Jiang decomposition. But

φ∗f
′
∗ωX′ ∼= φ∗φ

∗f∗ωX ∼= f∗ωX ⊗ φ∗OA ∼= f∗ωX ⊗
⊕
mα=0

Pα

contains f∗ωX as a direct summand, and so we can apply the following lemma.

Lemma 31.4. If a coherent sheaf F on an abelian variety has a Chen-Jiang de-
composition, then any direct summand of F also has a Chen-Jiang decomposition.

Now let us fix one irreducible component of Sk(A, f∗ωX) of codimension exactly

k ≥ 1. It is the image of the closed embedding q̂ : B̂ → Â, where q : A → B is a
surjective morphism of abelian varieties with connected fibers, and dimB = dimA−
k. From this data, we need to construct a summand of f∗ωX . The construction
has two parts. The first is a computation that we have already done several times.
Because we are starting from an irreducible component of Sk(A, f∗ωX), we have

Hk(A, f∗ωX ⊗ q∗Pβ) ̸= 0

for every β ∈ B̂. The morphism f : X → A is generically finite over its image, and
therefore Rf∗ωX ∼= f∗ωX . Applying Kollár’s theorem, we get

Rq∗(f∗ωX) ∼= Rq∗(Rf∗ωX) ∼= R(q ◦ f)∗ωX ∼=
k⊕
j=0

Rjq∗(f∗ωX)[−j].

Together with the projection formula, this gives

Hk(A, f∗ωX ⊗ q∗Pβ) ∼=
k⊕
j=0

Hk−j(B,Rjq∗(f∗ωX)⊗ Pβ
)

Each sheaf Rjq∗(f∗ωX) ∼= Rj(q ◦ f)∗ωX is a GV-sheaf on B, and so only the term

with H0 can be nonzero for every β ∈ B̂. Consequently, the projection

Hk(A, f∗ωX ⊗ q∗Pβ) → H0
(
B,Rkq∗(f∗ωX)⊗ Pβ

)
is an isomorphism for general β ∈ B̂ (and always surjective).

The second part of the construction is more geometric. We aim to find a mor-
phism g : Y → B from a smooth projective variety Y of dimension dimY = n− k
that is generically finite over its image, such that Rkq∗(f∗ωX) ∼= g∗ωY . Let us start
by considering the Stein factorization of q ◦ f : X → B:

(31.5)

X A

Y B

f

p q

g
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Here p : X → Y has connected fibers and g : Y → B is finite, but Y is of course
only a normal projective variety in general. Let µ : Ỹ → Y be a resolution of
singularities, and consider the fiber product X̃ = Ỹ ×B A, as in the following
commutative diagram:

X̃ X A

Ỹ Y B

p1

ν f

p q

µ g

The morphism p1 : X̃ → Ỹ is smooth of relative dimension k, and all the fibers are
isomorphic to the k-dimensional abelian variety ker q. Since µ : Ỹ → Y is birational,
it is not hard to see that ν : X̃ → X is also birational. Since the original variety X
is smooth, this gives us

(f ◦ ν)∗ωX̃ = f∗(ν∗ωX̃) ∼= f∗ωX .

After replacing X by X̃, we may therefore assume without loss of generality that
the morphism p : X → Y in (31.5) is smooth of relative dimension k, with fibers
isomorphic to a fixed k-dimensional abelian variety. We obtain ωX ∼= p∗ωY ⊗ωX/Y ,
and so the projection formula gives

Rkq∗(f∗ωX) ∼= Rk(q ◦ f)∗ωX ∼= g∗
(
Rkp∗ωX

) ∼= g∗
(
ωY ⊗Rkp∗ωX/Y

) ∼= g∗ωY ,

since Rkp∗ωX/Y ∼= OY . Substituting this into the morphism that we constructed
in the first step, we find that

Hk(A, f∗ωX ⊗ q∗Pβ) → H0
(
B, g∗ωY ⊗ Pβ

)
̸= 0

is an isomorphism for general β ∈ B̂; in particular, H0(B, g∗ωY ⊗ Pβ) ̸= 0 for all

β ∈ B̂.
It remains to find the desired summand of f∗ωX . Recall that dimB = dimA−

k ≤ dimA − 1. By induction on the dimension of the abelian variety, the sheaf
g∗ωY therefore has a Chen-Jiang decomposition on B. As H0

(
B, g∗ωY ⊗ Pβ

)
̸= 0

for every β ∈ B̂, this decomposition must contain an M-regular summand. In
other words, there is an M-regular coherent sheaf F on B such that F is a direct
summand of g∗ωY and such that

Hk(A, f∗ωX ⊗ q∗Pβ) → H0
(
B, g∗ωY ⊗ Pβ

)
→ H0(B,F ⊗ Pβ)

is an isomorphism for general β ∈ B̂.
Now all we need is two morphisms

q∗F → f∗ωX and f∗ωX → q∗F

whose composition is the identity. For that, it suffices to construct morphisms

q∗(g∗ωY ) → f∗ωX and f∗ωX → q∗(g∗ωY )

with the same property. The first one is easy: we have

q∗(f∗ωX) ∼= g∗(p∗ωX) ∼= g∗
(
ωY ⊗ p∗ωX/Y

)
,

and because all fibers of p : X → Y are isomorphic to a fixed k-dimesional abelian
variety, we have p∗ωX/Y ∼= OY , and therefore q∗(f∗ωX) ∼= g∗ωY . Because q

∗ is the
left adjoint of q∗, we obtain the desired morphism

q∗(g∗ωY ) → f∗ωX .

For the other morphism, we use duality. We already know that Rkq∗(f∗ωX) ∼=
g∗ωY , and together with Kollár’s theorem, this gives us a morphism

Rq∗(f∗ωX) → Rkq∗(f∗ωX)[−k] ∼= g∗ωY [−k].
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The right adjoint of the functor Rq∗ is the exceptional pullback functor q!, which
is this case equals q∗ ⊗ ωX/Y [k]. We therefore have a morphism

f∗ωX → q!
(
g∗ωY [−k]

) ∼= q∗(g∗ωY )⊗ ωX/Y ∼= q∗(g∗ωY ).

Then one checks that the composition of the two morphisms is the identity; conse-
quently, q∗(g∗ωY ), and therefore q∗F , is isomorphic to a direct summand of f∗ωX .

The summand q∗F accounts for the entire component q̂(B̂) of Sk(A, f∗ωX),
because we know that

Hk(A, f∗ωX ⊗ q∗Pβ) → H0(B,F ⊗ Pβ)

is an isomorphism for general β ∈ B̂. The rest of the proof then proceeds as follows.
First, one argues that all the different summands are compatible, and hence that
there is a decomposition

f∗ωX ∼=
m⊕
i=0

q∗iFi,

where B0 = A and dimBi < dimA for i = 1, . . . ,m. This comes down to the
fact that the Fourier-Mukai transform of q∗iFi is the dual of a torsion-free sheaf

supported on q̂i(B̂i), and that there are no nontrivial morphism from a torsion sheaf
to a torsion-free sheaf. Since the summands q∗iFi with i = 1, . . . ,m account for all
the components of codimension k in Sk(A, f∗ωX), we must have codimSk(A,F0) ≥
k + 1 for k ≥ 1, which means that F0 is M-regular on A.

An application. One interesting application of the Chen-Jiang decomposition in
Theorem 30.1 is the following global generation result.

Corollary 31.6. Let f : X → A be a morphism from a smooth projective variety
to an abelian variety. Then there is an isogeny φ : A → A such that φ∗Rjf∗ωX is
globally generated for every j ∈ N.

Proof. This follows from Proposition 30.5. □

In particular, this means that if f : X → A is generically finite over its image,
then the sheaf f∗ωX is essentially globally generated. This result is very useful for
studying the birational geometry of varieties of maximal Albanese dimension.
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Lecture 32

There are several other interesting applications of the theory we have developed
in this course. At this point, it should be possible for you to read those papers!

Numerical characterization of theta divisors. In the spirit of Theorem 27.3,
there is also a numerical characterization of theta divisors in principally polarized
abelian varieties, due to Hacon. The precise result is that a smooth projective
variety X with χ(X,ωX) = 1 and dimX < dimH1(X,OX) is birational to a
theta divisor if and only if codimSi(X,ωX) > i + 1 for all 0 < i < dimX. A
simplified proof, based on the theory of GV-sheaves, is explained in the last section
of Pareschi’s survey.

Holomorphic Euler characteristic. As I mentioned during Lecture 13, an open
problem is to classify smooth projective varieties of general type that have maximal
Albanese dimension and satisfy χ(X,ωX) = 0. The first such example (in dimension
three) was found by Ein and Lazarsfeld; other examples were constructed by Chen
and Hacon. In arXiv:1105.3418, Chen, Debarre, and Jiang propose a conjecture
about the structure of such varieties.

Regularity on abelian varieties. In a series of articles, Pareschi and Popa have
developed the theory of M -regularity on abelian varieties (similar to Castelnuovo-
Mumford regularity on projective space); a good survey is arXiv:0802.1021. It is
closely related to the theory of GV-sheaves: by definition, a coherent sheaf F on
an abelian variety A is M -regular if

codimSi(A,F ) ≥ i+ 1 for all i ≥ 1.

An equivalent condition is that RΦP (F ) ≃ RHom(G ,OÂ), where the coherent
sheaf G is torsion-free. The theory of M -regularity has many applications to the
study of linear series on curves and abelian varieties.

Pluricanonical maps. Chen and Hacon were the first to study the pluricanonical
maps ϕm on varieties of maximal Albanese dimension. In arXiv:1111.6279, Zhi
Jiang, Mart̀ı Lahoz, and Sofia Tirabassi subsequently proved the optimal result, by
showing that ϕ4 induces the Iitaka fibration, and that ϕ3 is birational when X is of
general type. An interesting result along the way is that, for varieties of maximal
Albanese dimension, one can read off the Kodaira dimension κ(X) from S0(X,ωX).

Abundance conjecture. Recall from Theorem 15.2 that all components of{
L ∈ Pic0(X)

∣∣ dimH0(X,ωX ⊗ L) ≥ m
}

are translates of abelian varieties by points of finite order. Using some clever
arguments with branched coverings, one can extend this result to the sets{

L ∈ Pic0(X)
∣∣ dimH0(X,ωkX ⊗ L) ≥ m

}
with k ≥ 1 (see arXiv:0912.3012 for the case m = 1). In arXiv:1002.2682,
Kawamata used this to prove the simplest case of the abundance conjecture: if the
numerical Kodaira dimension ν(X) is equal to zero, then also κ(X) = 0.

Positive characteristic. There are two recent papers that explore generic van-
ishing in positive characteristic. In arXiv:1212.5105, Hacon and Kovács show
that the generic vanishing theorem does not remain true in characteristic p. The
issue seems to be the failure of Kollár’s theorem: there are birational morphisms
f : X → Y with X nonsingular but Rif∗ωX ̸= 0 for i > 0. In arXiv:1310.2996,
Hacon and Zsolt Patakfalvi prove a weaker result, which is still good enough for
certain applications (such as Kawamata’s theorem in characteristic p).
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Generic vanishing for Hodge modules. One can get many additional examples
of GV-sheaves by looking at Hodge modules on abelian varieties. Hodge modules are
basically pairs (M, F•M) with special properties, where M is a regular holonomic
DA-module, and F•M a filtration by coherent subsheaves. In arXiv:1112.3058,
Popa and I showed that the coherent sheaves

grFk M = FkM/Fk−1M
are always GV-sheaves; we also proved that their cohomology support loci

Sim(A, grFk M)

are finite unions of translates of abelian varieties by points of finite order, provided
that the Hodge module is “of geometric origin”. A special case of this are the results
about Rif∗ωX that we discussed in class. There are several new applications: the
generic vanishing theorem for holomorphic forms in Theorem 9.8; and the proof
that, on a smooth projective variety of general type, every holomorphic one-form
has nonempty zero locus.
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