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Lecture 9 (February 25)

Cohomology and base change. Our next goal is to study line bundles and their
cohomology on abelian varieties. In the complex case, we saw that line bundles
come in big families – because we can always tensor by line bundles in Pic0(X) –
and so we need to first understand how cohomology groups of line bundles behave
in families. A family of line bundles parametrized by a variety T is of course just a
line bundle L on the product X ⇥ T , and we are interested how the cohomology of
the restrictions Lt = L|X⇥{t} depends on t 2 T . The technical tool is cohomology
and base change, which Mumford treats very nicely in his book.

Here is the general setting. Let f : X ! Y be a morphism of schemes, and let
F be a quasi-coherent sheaf on X. For every point y 2 Y , we have the fiber

Xy = X ⇥Y Spec k(y),

which is a scheme over the field field k(y) = OY,y/my. Let’s denote by

Fy = F |Xy = F ⌦OY k(y)

the restriction of F to the closed subscheme Xy. Cohomology and base change is
about the cohomology groups Hk(Xy, Fy), and how they relate to the higher direct
image sheaves Rkf⇤F . The key assumption is flatness.

Definition 9.1. We say that F is flat over Y if, for every point x 2 X, the OX,x-
module Fx is flat over OY,f(x), via the ring homomorphism OY,f(x) ! OX,x. Since
F is quasi-coherent, this is equivalent to saying that for every pair of a�ne open
subsets U ✓ X and V ✓ Y with f(U) ✓ V , the OX(U)-module F (U) is flat over
OY (V ), via the ring homomorphism OY (V ) ! OX(U).

Example 9.2. If A ! B is a ring homomorphism, and M is a B-module, then M̃ is
a quasi-coherent sheaf on SpecB; it is flat if and only if M is flat as an A-module.

Example 9.3. The second projection p2 : X ⇥ T ! T is flat, and any locally free
sheaf on X ⇥ T (such as a line bundle) is therefore flat over T .

The geometric part of cohomology and base change is the following theorem by
Grothendieck. In class, I just outlined the proof, but I filled in most of the details
in the notes.

Theorem 9.4. Let f : X ! Y be a proper morphism between noetherian schemes,

with Y = SpecA a�ne. Let F be a coherent sheaf on X, flat over Y . Then there

is a bounded complex K•
of finitely-generated projective A-modules, of the form

0 ! K0
! K1

! · · · ! Kn
! 0,

such that for every B-algebra A, one has a functorial isomorphism

Hp
�
X ⇥Y SpecB, F ⌦A B

�
⇠= Hp

�
K•

⌦A B
�

for all p 2 Z.

Note that K• is a complex of A-modules, and so its cohomology groups

Hp(K•) =
ker dp : Kp

! Kp+1

im dp�1 : Kp�1 ! Kp

are again A-modules. The complex K• gives us a functorial way to describe all the
objects we are interested in. For example, if we take B = A, we get

Hp(K•) ⇠= Hp(X, F ),
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which is the A-module corresponding to the sheaf Rpf⇤F . On the other hand, we
can take B = k(y), where y 2 Y is any closed point; then X ⇥Y Spec k(y) = Xy

and F ⌦A k(y) = Fy, and so

Hp
�
K•

⌦A k(y)
�
⇠= Hp(Xy, Fy).

So the theorem translates the whole problem of cohomology and base change
into understanding how the cohomology groups of a bounde complex of finitely-
generated projective A-modules (= locally free sheaves) change from point to point.

Here is an outline of the proof, in four steps.

Step 1. The morphism f is proper, and F is coherent on X, and so all the higher
direct image sheaves Rpf⇤F are coherent on Y . (This theorem is also due to
Grothendieck.) Because Y = SpecA is a�ne, Rpf⇤F is the quasi-coherent sheaf
associated to the A-module Hp(X, F ), and the theorem is saying that Hp(X, F )
is a finitely-generated A-module. (If you want to see the proof, have a look at Tag
02O3 in the Stacks Project.)

Step 2. We can compute the cohomology of quasi-coherent sheaves using Čech co-
homology. Because f is proper and Y is a�ne, we can cover X by finitely many
a�ne open subsets; let U = {Ui}i2I be the open covering. Let C• = C•(U , F ) be
the Čech complex, with terms

Cp =
M

i0,...,ip

F
�
Ui0 \ · · · \ Uip

�
,

and the usual di↵erential. The intersections Ui0 \ · · · \ Uip are a�ne (because X
is separated), and so the flatness of F implies that each Cp is a flat A-module.
Because a�ne open coverings are acyclic (for quasi-coherent sheaves), the Čech
complex computes the sheaf cohomology of F :

Hp(X, F ) ⇠= Hp(C•)

are isomorphic as A-modules. Now suppose that B is any A-algebra. Then UB =
{Ui ⇥Y SpecB}i2I is an a�ne open covering of X ⇥Y SpecB, and it is easy to
deduce from the definition of the fiber product that

Cp
�
UB , F ⌦A B

�
⇠= Cp(U , F )⌦A B

as B-modules. This gives us isomorphisms

Hp
�
X ⇥Y SpecB, F ⌦A B

�
⇠= Hp

�
C•

⌦A B
�
,

which are clearly functorial in B.

Step 3 . The complex C• has almost all the properties we want, except that the
A-modules Cp are not finitely-generated. The following lemma allows us to replace
C• by a smaller complex that is finitely-generated.

Lemma 9.5. Consider a bounded complex of A-modules C•
, of the form

0 ! C0
! C1

! · · · ! Cn
! 0,

whose cohomology groups Hp(C•) are finitely-generated A-modules. Then there is

a bounded complex of finitely-generated A-modules K•
, of the form

0 ! K0
! K1

! · · · ! Kn
! 0,

and a morphism of complexes � : K•
! C•

that induces isomorphisms on cohomol-

ogy. We can arrange that K1, . . . , Kn
are finitely-generated free A-modules, and if

C0, . . . , Cn
are flat A-modules, then K0

is also flat, hence projective.

One piece of terminology. A morphism of complexes � : K•
! C• is called a

quasi-isomorphism if it induces isomorphisms on cohomology: for every p 2 Z, the
morphism � : Hp(K•) ! Hp(C•) is an isomorphism.

https://stacks.math.columbia.edu/tag/02O3
https://stacks.math.columbia.edu/tag/02O3
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Proof. This is a basic result in homological algebra, similar to the construction of
free resolutions for A-modules. We construct the desired complex step-by-step. For
simplicity, set Hp = Hp(C•), which are finitely-generated A-modules, nonzero only
for p = 0, . . . , n. Let’s denote the di↵erentials in the complex C• by �p : Cp

! Cp+1.
To begin with, Hn is finitely-generated, and so we can choose a finitely-generated
free A-module Kn and a surjection Kn

! Hn. Because Hn = Cn/ im �n�1, we can
lift this to a morphism �n : Kn

! Cn. We now have a commutative diagram with
exact rows

0 Kn

0
Kn Hn 0

0 im �n�1 Cn Hn 0

�
n

where we define Kn

0
= (�n)�1(im �n�1) as the preimage of im �n�1. Note that Kn

0

is again a finitely-generated A-module (because Kn and Hn are); we can therefore
choose a finitely-generated A-module Kn�1 and a surjection Kn�1

! Kn

0
. Because

im �n�1 = Cn�1/ ker �n�1, we can again lift the morphism from Kn�1 to im �n�1

to a morphism �n�1 : Kn�1
! Cn�1, giving us another commutative diagram

0 Kn�1

0
Kn�1 Kn

0
0

0 ker �n�1 Cn�1 im �n�1 0

�
n�1

�
n

�
n�1

with exact rows; of course, Kn�1

0
= (�n�1)�1(ker �n�1). Define dn�1 : Kn�1

! Kn

as the composition Kn�1
! Kn

0
! Kn; then ker dn�1 = Kn�1

0
and Kn/ im dn�1 ⇠=

Hn, and so �n induces an isomorphism between the n-th cohomology of our (partial)
complex K• and the n-th cohomology of C•.

The composition Kn�1

0
! ker �n�1

! Hn�1 may not be surjective, but because
Hn�1 is finitely-generated, we can add a finitely-generated free A-module to both
Kn�1

0
and Kn�1 (and let dn�1 act on it as zero); this makes sure that Kn�1

0
! Hn�1

is surjective. After this change, the diagram

0 Kn�1

1
ker dn�1 Hn�1 0

0 im �n�2 ker �n�1 Hn�1 0

�
n�1

is exact, where Kn�1

1
= (�n�1)�1(im �n�2). Since Kn�1

1
is finitely-generated, we

can map a finitely-generated free A-module Kn�2 onto it, and so on. In other words,
we keep repeating the whole procedure n times: for each p = 1, . . . , n, we get a
morphism �p : Kp

! Cp from a finitely-generated free A-module, and a di↵erential
dp : Kp

! Kp+1, such that the induced morphism from the p-th cohomology of
K• to the p-th cohomology of C• is an isomorphism. In the final step of the
construction, for p = 0, we need to define

K0 =
�
(x, y) 2 C0

⇥ K1

0

�� �0(x) = �1(y)
 

in order for the diagram

0 ker �0 K0 K1

0
0

0 ker �0 C0 im �0 0

�
0

�
1

�
0

to be exact. Because ker �0 = H0 is finitely-generated, the A-module K0 will be
finitely-generated, but not necessarily free.
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It remains to show that if C0, . . . , Cn are flat A-modules, then K0 is also flat; flat
and finitely-generated implies projective, so K0 will then be a projective A-module,
as claimed. For that, we consider the mapping cone complex L• for the morphism
� : K•

! C•. This is the complex with terms

Lp = Kp+1
� Cp

and with di↵erential

d : Lp
! Lp+1, d(x, y) =

�
�dx, �(y)� �(x)

�
.

It is easy to see that this fits into a short exact sequence of complexes

0 ! C•
! L•

! K•+1
! 0,

where the usual homological algebra convention is that the di↵erential in the com-
plex K•+1 is ��. The long exact sequence in cohomology reads

· · · Hp�1(L•) Hp(K•) Hp(C•) Hp+1(L•) · · ·
�

and because � is quasi-isomorphism, we get Hp(L•) = 0 for all p 2 Z, and so
the complex L• is exact. All the terms Lp are flat A-modules, with the possible
exception of L�1 = K0. From this and exactness, it follows readily that L�1 is also
flat; as we said earlier, this means that K0 is actually a projective A-module. ⇤

In fact, we can do a little bit better. Suppose we are interested in the local
behavior near a point y0 2 Y . We can localize at y0, meaning replace A by the local
ring OY,y0 . Now each time we need to choose a finitely-generated free A-module in
the construction above, we can choose a minimal one, using Nakayama’s lemma.
Indeed, suppose that M is a finitely-generated A-module, where (A,m) is a local
ring. Then M/mM is a finite-dimensional vector space over A/m, and if we choose
elements m1, . . . , mn 2 M whose images in M/mM form a basis, then m1, . . . , mn

generate M by Nakayama’s lemma. This gives us a surjection An
! M with n

minimal. If we use this device at each step, then K0 will also be a free A-module
(because every projective module over a local ring is free), and the di↵erentials dp

in the complex K• will have the property that im dp ✓ mKp+1. In other words,
the complex K• will be a minimal complex, in the following sense.

Definition 9.6. A complex of free A-modules K• over a local ring (A,m) isminimal

if im dp ✓ mKp+1 for every p 2 Z, or equivalently, if the tensor product K•
⌦AA/m

has trivial di↵erentials.

The complex K• will actually make sense on some a�ne open set SpecA0 con-
taining the point y0; at the cost of replacing SpecA by this smaller open set, we
can therefore always achieve that the complex K•

⌦ k(y0) has trivial di↵erentials
at a given point y0 2 Y .

Step 4 . It remains to show that we have

Hp
�
X ⇥Y SpecB, F ⌦A B

�
⇠= Hp

�
K•

⌦A B
�

for every A-algebra B. Since this holds for the Čech complex C• by construction,
we can apply the following general lemma.

Lemma 9.7. Suppose that � : K•
! C•

is a quasi-isomorphism. If C0, . . . , Cn

and K0, . . . , Kn
are flat A-modules, then

� ⌦A B : K•
⌦A B ! C•

⌦A B

is also a quasi-isomorphism.
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Proof. Consider again the mapping cone complex L•. The argument we gave earlier
shows that � is a quasi-isomorphism if and only if L• is exact. Because every
Lp = Kp+1

� Cp is flat, the tensor product L•
⌦A B is still exact. But this is the

mapping cone complex of � ⌦A B, and so � ⌦A B is a quasi-isomorphism. ⇤

Consequences of Grothendieck’s theorem. The rest of the theory is basically
just linear algebra. Let’s first investigate the dimensions of the fiberwise cohomology
groups.

Corollary 9.8. Let f : X ! Y be a proper morphism, and let F be a coherent

sheaf on X, flat over Y .

(a) The function y 7! dimk(y) Hp(Xy, Fy) is upper semicontinuous on Y .

(b) The Euler characteristic function

y 7! �(Fy) =
X

p2Z
(�1)p dimk(y) Hp(Xy, Fy)

is locally constant on Y .

Proof. The problem is local on Y , and so we may assume that Y = SpecA is a�ne,
and that we have a bounded complex K• of finitely-generated free A-modules as in
the theorem. (This works because projective A-modules are locally free.) So each
di↵erential dp : Kp

! Kp+1 is now just a matrix with entries in the ring A. For
every point y 2 Y , we have

dimHp(Xy, Fy) = dimHp
�
K•

⌦A k(y)
�

= dimker dp ⌦A k(y)� dim im dp�1
⌦A k(y)

= dimKp
⌦A k(y)� dim im dp ⌦A k(y)� dim im dp�1

⌦A k(y).

Taking the alternating sum over p 2 Z, we get
X

p2Z
(�1)p dimHp(Xy, Fy) =

X

p2Z
(�1)p dimKp

⌦A k(y)

which is independent of y because each Kp is a free A-module. This gives (b).
For (a), we need to prove that each set

�
y 2 Y

�� dimHp(Xy, Fy) � `
 

is the set of closed points of a closed subscheme of Y . By the computation above,
it su�ces to show that the same is true for the sets

�
y 2 Y

�� dim im dp ⌦A k(y)  `
 
.

But this set is defined by all the minors of size (` + 1) of the matrix representing
the di↵erential dp, and so it is a closed subscheme. ⇤

The next corollary is the actual base change theorem. It says that if the dimen-
sions of the cohomology groups Hp(Xy, Fy) are constant, then they fit together
into a locally free sheaf, namely Rpf⇤F .

Corollary 9.9. Let f : X ! Y be a proper morphism, with Y reduced. Let F be a

coherent sheaf on X, flat over Y . Then the following two conditions are equivalent:

(a) The function y 7! dimk(y) Hp(Xy, Fy) is constant.

(b) The coherent sheaf Rpf⇤F is locally free, and the base change morphism

Rpf⇤F ⌦OY k(y) ! Hp(Xy, Fy)

is an isomorphism for every y 2 Y .
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If this happens, then the base change morphism

Rp�1f⇤F ⌦OY k(y) ! Hp�1(Xy, Fy)

in the next lower degree is also an isomorphism.

Proof. The problem is again local on Y , and so we may assume that Y = SpecA is
a�ne, and that we have a complex K• as in the theorem. To simplify the notation,
let us set K•(y) = K•

⌦A k(y) and dp(y) = dp ⌦A k(y). This time, though, we also
choose a point y0 2 Y , and arrange that the complex K• is minimal at y0, in the
sense that K•(y0) has trivial di↵erentials. Obviously, this means that

Hp(Xy0 , Fy0

�
⇠= Hp

�
K•(y0)

�
⇠= Kp(y0).

Now suppose that dimHp(Xy, Fy) is constant, and therefore equal to dimKp(y0) =
dimKp(y). Because this is the cohomology of

Kp�1(y) Kp(y) Kp+1(y),
d
p�1

(y) d
p
(y)

we must have dp�1(y) = dp(y) = 0 for every y 2 Y , which means that the entries
of the matrices for dp�1 and dp vanish at every point y 2 Y . Because Y is reduced,
this means that dp�1 = dp = 0. But then

Hp(X, F ) = Hp(K•) = Kp

is a free A-module. The associated coherent sheaf is Rpf⇤F , which is therefore
locally free. It is clear from this that the base change morphism is an isomorphism.

Now let’s see where the (somewhat unexpected) additional assertion comes from.
We have dp�1 = 0, and so Rp�1f⇤F is the coherent sheaf associated to

Hp�1(X, F ) = Hp�1(K•) = Kp�1/ im dp�2.

In other words, we have an exact sequence

Kp�2 Kp�1 Hp�1(X, F ) 0d
p�2

Because tensor product is right exact, we can tensor with k(y) and

Kp�2(y) Kp�1(y) Hp�1(X, F )⌦A k(y) 0
d
p�2

(y)

is still exact. This gives the desired isomorphism between Hp�1(X, F )⌦A k(y) and
Hp�1

�
K•(y)

�
. ⇤

This has many nice consequences. For example, suppose that Hp+1(Xy, Fy) = 0
for every y 2 Y ; this will happen for example if p is the maximum of the fiber
dimensions dimXy. Then the base change morphism

Rpf⇤F ⌦OY k(y) ! Hp(Xy, Fy)

is an isomorphism for every y 2 Y . For that reason, base change always holds for the
cohomology groups in the largest possible degree. Similarly, suppose that we have
the vanishing Hp(Xy, Fy) = 0 for every y 2 Y and every p � p0. By repeatedly
applying Corollary 9.9, we conclude that Rpf⇤F = 0 for all p � p0. In this way,
we can turn a fiberwise vanishing statement into the vanishing of the higher direct
image sheaves, which will be useful if we are, for example, doing computations with
the Leray spectral sequence.
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The seesaw theorem. We now apply the base change theorem to the case of
line bundles. Let X be a complete variety, T an arbitrary variety, and suppose we
have a line bundle L on the product X ⇥ T . For every t 2 T , denote by Lt the
restriction of L to X ⇥ {t}. In the notation from above, we are working with the
second projection p2 : X ⇥ T ! T , which is clearly proper and flat.

Theorem 9.10. Under these assumptions, the set

T1 =
�

t 2 T
�� Lt is trivial on X ⇥ {t}

 

is closed in T , and there is a line bundle M on T1 such that

L|X⇥T1
⇠= p⇤

2
M.

Proof. We observe that a line bundle L on a proper variety X is trivial if and
only if H0(X, L) 6= 0 and H0(X, L�1) 6= 0. The reason is that a nonzero section
s 2 H0(X, L) gives a nonzero morphism s : OX ! L, and a nonzero section t 2

H0(X, L�1) gives a nonzero morphism t : L ! OX . Their composition t � s is a
nonzero morphism from OX to itself, hence a nonzero constant by properness. After
multiplying by the inverse of this constant, we can assume that t � s = 1. But then
s : OX ! L is an isomorphism with inverse t : L ! OX .

This observation proves that

T1 =
�

t 2 T
�� dimH0(X ⇥ {t}, Lt) � 1 and dimH0(X ⇥ {t}, L�1

t
) � 1

 
.

By Corollary 9.8, this is a closed subset of T . To prove the other half, we can
replace T by T1 and assume without loss of generality that Lt is trivial for every
t 2 T . Then dimH0(X ⇥ {t}, Lt) = 1 is constant, and so the direct image sheaf

M = (p2)⇤L

is a locally free sheaf of rank 1, hence a line bundle. By construction, the induced
morphism p⇤

2
M ! L is an isomorphism on every fiber X⇥{t} (because Lt is trivial),

and therefore an isomorphism on X ⇥ T . ⇤


