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Lecture 3 (February 4)

Cohomology of compact complex tori. Let X = V/� be a compact complex
torus of dimension n. This means that V is an n-dimensional complex vector space,
and � ✓ V is a lattice of rank 2n. Let’s see how to describe the cohomology of X
in terms of V and �. Observe that � generates the underlying R-vector space

VR ⇠= �⌦Z R,

because � ⇠= R2n and VR ⇠= R2n. Over the complex numbers, we have

�⌦Z C ⇠= VR ⌦R C ⇠= V � V̄ ,

where V̄ denotes the conjugate vector space: the underlying abelian group is still
(V,+), but the complex numbers act via z ·v = z̄v. This is true for the complexifica-
tion of any complex vector space. Indeed, let J 2 EndR(VR) be the endomorphism
J(v) = iv; then J2 = � id. The complexification

VR ⌦R C = Ei(J)� E�i(J)

decomposes into the ±i-eigenspaces of J , and the two maps

V ! Ei(J), v 7! v ⌦ 1� Jv ⌦ i

V̄ ! E�i(J), v 7! v ⌦ 1 + Jv ⌦ i

are isomorphisms of C-vector spaces.
As complex vector spaces, V ⇠= T0X is isomorphic to the holomorphic tangent

space at the point 0 2 X. Since X is a group, the holomorphic tangent bundle is
trivial; this means that we have a natural isomorphism

TX
⇠= OX ⌦C V.

Dually, we get ⌦1
X

⇠= OX ⌦C V ⇤, and therefore

⌦p

X
⇠= OX ⌦C

p^
V ⇤.

We can also describe the lattice � intrinsically:

� ⇠= ⇡1(X, 0) ⇠= H1(X,Z),
where an element � 2 � corresponds to the homotopy class (or homology class) of
the closed loop [0, 1] ! X, t 7! t · � + �. According to the universal coe�cients
theorem, we then have

H1(X,Z) ⇠= HomZ
�
H1(X,Z),Z

� ⇠= HomZ(�,Z) = �⇤.

The entire integral cohomology is equally easy to describe.

Lemma 3.1. We have Hk(X,Z) ⇠=
k^

H1(X,Z) ⇠=
k^
�⇤

.

Proof. The cup product gives us a natural map
k^

H1(X,Z) ! Hk(X,Z), �1 ^ · · · ^ �k 7! �1 [ · · · [ �k.

Since X ⇠= (S1)2n as smooth manifolds, the Künneth formula implies that the map
is an isomorphism. ⇤

We can also describe the de Rham cohomology and the Dolbeault cohomology,
by relating V and V̄ to di↵erential forms on X. Choose a basis v1, . . . , vn 2 V ,
and let z1, . . . , zn 2 V ⇤ be the dual basis; we view these linear functions as a
holomorphic system of coordinates on V ⇠= Cn. Their di↵erentials are invariant
under translation by �, and so they give us well-defined 1-forms

dz 1, . . . , dzn 2 A1,0(X), dz̄1, . . . , dz̄n 2 A0,1(X)
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on X = V/�. Every smooth form ↵ 2 Ap,q(X) of type (p, q) can then be written as

↵ =
X

|I|=p,|J|=q

↵I,Jdz I ^ dz̄J ,

with coe�cients ↵I,J 2 A0(X) that are smooth fuctions on X.

Lemma 3.2. The (p, q)-forms of the shape

X

|I|=p,|J|=q

cI,Jdz I ^ dz̄J

with cI,J 2 C give a basis for the Dolbeault cohomology group Hp,q(X) ⇠= Hq(X,⌦p

X
).

Proof. This is a consequence of the Hodge theorem that we proved last semester.
Choose a hermitian inner product h on V . It determines a hermitian metric on V
and on X = V/�, whose associated (1, 1)-form is

! =
i

2

nX

j,k=1

h(vj , vk)dz j ^ dz̄k.

This is obviously closed, and so the metric is Kähler. By the Hodge theorem, every
de Rham (and Dolbeault) cohomology class contains a unique harmonic represen-
tative. But the harmonic forms for this metric are exactly the forms with constant
coe�cients, as in the statement of the lemma. (Mumford’s book contains a more
elementary proof, using Fourier series.) ⇤

We can also say this without choosing coordinates. In degree 1, the isomorphism
V ⇤ ⇠= H1,0(X) sends a linear functional f : V ! C to the holomorphic 1-form df ;
the isomorphism V̄ ⇤ ⇠= H0,1(X) sends a conjugate-linear functional f : V ! C to
the anti-holomorphic 1-form df . In higher degrees, we have

Hp,q(X) ⇠=
p^

V ⇤ ⌦
q^

V̄ ⇤,

by taking wedge products.
The above description of integral cohomology (in terms of �) and de Rham

cohomology (in terms of V and V̄ ) are compatible in the following way: the diagram

H1(X,Z) H1(X,C) H1(X, OX)

HomZ(�,Z) HomZ(�,C) HomC(V̄ ,C)

⇠= ⇠= ⇠=

is commutative. The second arrow in the bottom row is the projection

HomZ(�,C) ⇠= HomC(�⌦Z C,C) ⇠= HomC(V � V̄ ,C) ! HomC(V̄ ,C).
The commutativity of the diagram requires a little bit of checking that I will skip.

Holomorphic line bundles. Our next goal is to describe all holomorphic line
bundles on X = V/�, in a way that is suitable for determining their spaces of
sections and deciding which line bundles are ample. In particular, this will tell us
which compact complex tori can be embedded into projective space.

One way to describe holomorphic line bundles is via the exponential sequence

0 Z OX O
⇥
X

0.e
2⇡i(�)

The long exact sequence in cohomology reads

0 ! H1(X,Z) ! H1(X, OX) ! H1(X, O⇥
X
) ! H2(X,Z) ! H2(X, OX).
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Let Pic(X) denote the set of isomorphism classes of holomorphic line bundles; this
is a group under tensor product. We have Pic(X) ⇠= H1(X, O⇥

X
), and so we get a

short exact sequence

0 Pic0(X) Pic(X) ker
�
H2(X,Z) ! H2(X, OX)

�
0,

c1

where Pic0(X) ⇠= H1(X, OX)/H1(X,Z) is the set of isomorphism classes of topo-
logically trivial holomorphic line bundles. The element c1(L) 2 H2(X,Z) is the
first Chern class of the holomorphic line bundle L 2 Pic(X).

Our starting point is the fact that on V ⇠= Cn, all holomorphic line bundles are
trivial. Let q : V ! X be the quotient map. Given L 2 Pic(X), the pullback

q⇤L ⇠= V ⇥ C
is trivial. The group � acts on q⇤L in a way that is compatible with the translation
action on V . We can write this action in the form

� · (v, z) =
�
v + �, e�(v) · z

�
,

where e� 2 �(V, O⇥
V
) is a nowhere vanishing holomorphic function on V . If we set

H⇥ = �(V, O⇥
V
), we can write this more concisely as e� 2 H⇥. The group � acts

on H⇥ by translation, according to the rule

(� · e)(v) = e(v + �).

Obviously, for �, � 2 �, we have

(� + �) · (v, z) = � · � · (v, z),

and this translates into the cocycle condition

(3.3) e�+�(v) = e�(v + �) · e�(v).
If we change the trivialization of q⇤L by multiplying pointwise by a nowhere van-
ishing holomorphic function g 2 H⇥, then our cocycle changes to

(3.4) e0
�
(v) = e�(v) · g(v + �)/g(v).

If you know the definition of group cohomology, you may recognize that these two
conditions are describing the first group cohomology H1(�, H⇥).

Group cohomology. Let’s put our discussion of line bundles on hold for a moment
and briefly review group cohomology. Let G be a group, and let M be a G-module;
this means that M is an abelian group with a left action by G, or in other words,
a left module over the group algebra ZG. The subspace of G-invariants

MG =
�

m 2 M
�� gm = m for all g 2 G

 
= HomZG(Z, M)

is a left-exact functor on G-modules, and group cohomology is the derived functors:

Hi(G, M) = ExtiZG(Z, M)

In practice, one uses a specific resolution of Z as a ZG-module to compute group
cohomology. We therefore define Hi(G, M) as the i-th cohomology of the following
complex. For each p 2 N, set

Cp = Cp(G, M) = {functions f : Gp ! M},
and define the di↵erential d : Cp ! Cp+1 by the formula

(df)(g0, . . . , gp) = g0 · f(g1, . . . , gp) +
p�1X

i=0

(�1)i+1f(g0, . . . , gigi+1, . . . , gp)

+ (�1)p+1f(g0, . . . , gp�1).

One checks that d � d = 0, and so this is indeed a complex.
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Example 3.5. We have C0 = M , and therefore

H0(G, M) =
�

m 2 M
�� gm = m for all g 2 G

 
= MG

is the space of G-invariants, as it should be. Let’s also compute H1(G, M). Now a
1-chain is just a function f : G ! M , and because

(df)(g, h) = gf(h)� f(gh) + f(g),

the cocycle condition df = 0 translates into the identity

f(gh) = gf(h) + f(g), for all g, h 2 G.

It follows that

H1(G, M) =

�
f : G ! M

�� f(gh) = gf(h) + f(g)
 

�
g 7! gm � m

�� m 2 M
 .

In the discussion above, H⇥ = �(V, O⇥
V
) is a �-module, but with the group structure

written multiplicatively. Taking this into account, the conditions in (3.3) and (3.4)
are therefore exactly describing H1(�, H⇥).

There are two other useful facts. The first is that a short exact sequence

0 ! M 0 ! M ! M 00 ! 0

of G-modules gives rise to long exact sequence in group cohomology (as usual for
the functors Exti). The second is that group cohomology can be used to compute
sheaf cohomology. Suppose that F is a sheaf on X = V/�. Assuming that the
pullback sheaf q⇤F has no higher cohomology, one has

Hi(X, F ) ⇠= Hi
�
�, H0(V, q⇤F )

�
,

where H0(V, q⇤F ) is a �-module. This says, for example, that

H1(X, O⇥
X
) ⇠= H1(�, H⇥),

as suggested by the discussion above.

Holomorphic line bundles, continued. We return to our study of holomorphic
line bundles. From L 2 Pic(X), we get a cohomology class in H1(�, H⇥), repre-
sented by the cocycle e� from (3.3). Conversely, a cocycle determines a holomorphic
line bundle by letting � act on V ⇥ C according to the rule

� · (v, z) =
�
v + �, e�(v) · z

�
.

The quotient (V ⇥ C)/� ! V/� is then a holomorphic line bundle on X = V/�.
So all we need is nice description of these cocycles.

Let’s start by describing the possible first Chern classes

c1(L) 2 ker
�
H2(X,Z) ! H2(X, OX)

�
.

We know that

H2(X,Z) ⇠=
2̂

H1(X,Z) ⇠=
2̂

�⇤,

and so each cohomology class is represented uniquely by an alternating form

E : �⇥ � ! Z.

When is such a class in the kernel of H2(X,Z) ! H2(X, OX)? We can extend E
uniquely to an alternating bilinear form on

�Z ⇥ C ⇠= V � V̄ ,

and since H2(X, OX) ⇠=
V

V̄ ⇤, this extension needs to be trivial on V̄ ⇥ V̄ . This
translates into the condition that

E
�
v ⌦ 1 + Jv ⌦ i, w ⌦ 1 + Jw ⌦ i

�
= 0



5

for v, w 2 V . Expanding and looking at the real part, we deduce that

(3.6) E(Jv, Jw) = E(v, w) for all v, w 2 V .

It is easy to see that this condition is equivalent to the existence of a hermitian
bilinear form

H : V ⇥ V ! C
such that E = ImH. Indeed, H must be given by the formula

H(v, w) = E(Jv, w) + iE(v, w),

and the condition in (3.6) ensures that H is hermitian symmetric. We can summa-
rize this in the following lemma.

Lemma 3.7. An alternating bilinear form E : �⇥� ! Z represents the first Chern

class of a holomorphic line bundle on X i↵ there is a hermitian form H : V ⇥V ! C
such that E = ImH.

Equivalently, we can start from the hermitian form H : V ⇥ V ! C, and then
the condition is that E = ImH needs to take integer values on the subset �⇥ �.

Note. If this seems too abstract, here is a more concrete way of thinking about
the lemma. Let’s start from a hermitian form H : V ⇥ V ! C. Choose a basis
v1, . . . , vn 2 V , and let z1, . . . , zn 2 V ⇤ be the dual basis. Setting hj,k = H(vj , vk),
we get a closed (1, 1)-form

! =
i

2

nX

j,k=1

hj,kdz j ^ dz̄k 2 A1,1(X),

and the fact that H is hermitian ensures that ! 2 A2(X,R). In order for ! to be the
first Chern class of a holomorphic line bundle, the cohomology class [!] 2 H2(X,R)
needs to be in the image of H2(X,Z), which means that the integral of ! over every
homology class in H2(X,Z) should be an integer. A basis for H2(X,Z) is given by
the images of the maps

c�,� : [0, 1]
2 ! X, (s, t) 7! s� + t� + �

for �, � 2 �. Writing � =
P

j
�jvj and � =

P
j
�jvj , the integral of ! over the image

of the map c�,� is then

Z

[0,1]2
c⇤
�,�

! =

Z 1

0

Z 1

0

i

2

nX

j,k=1

hj,k(�jds + �jdt) ^
�
�̄kds + �̄kdt

�
= ImH(�, �).

So the condition is precisely that E = ImH should take integer values on �⇥ �.

Now let’s compute the first Chern class from the cocycle e� in (3.3). Setting
H = �(V, OV ), we have a short exact sequence of �-modules

0 Z H H⇥ 0,e
2⇡i(�)

and therefore a long exact sequence in cohomology. The connecting homomorphism
� : H1(�, H⇥) ! H2(�,Z) fits into a commutative diagram

H1(�, H⇥) H2(�,Z)

H1(X, O⇥
X
) H2(X,Z)

V2 �⇤.

�

⇠= ⇠=

⇠=

c1 ⇠=
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Our cocycle e = {e�} is an element in C1(�, H⇥). To compute its image under the
connecting homomorphism, we need to lift it to f = {f�} 2 C1(�, H), and then
apply the di↵erential d : C1(�, H) ! C2(�, H). So we write

e�(v) = e2⇡if�(v)

with f� 2 H, and then

F (�, �) = (df)(�, �) = f�(v + �)� f�+�(v) + f�(v) 2 Z.

Under the isomorphism H2(�,Z) ⇠=
V2 �⇤, this 2-cocycle then goes to the alternat-

ing form E : �⇥ � ! Z given by the formula

(3.8) E(�, �) = F (�, �)� F (�, �) =
�
f�(v + �)� f�(v)

�
�
�
f�(v + �)� f�(v)

�
.

Since this is the first Chern class of a line bundle, we have E = ImH for a hermitian
form H : V ⇥ V ! C.

The Appel-Humbert theorem. We can now solve our problem in the following
way. Fix a hermitian form H : V ⇥V ! C such that E = ImH takes integer values
on �⇥�. Let’s describe all line bundles L 2 Pic(X) such that c1(L) 2 H2(X,Z) is
represented by E. There are two cases.

The first (and easier) case is when H = 0. Here we are looking for line bundles
L 2 Pic(X) with c1(L) = 0. Recall that

Pic0(X) ⇠= H1(X, OX)/H1(X,Z) ,! H1(X, O⇥
X
).

From Hodge theory, we have an isomorphism of R-vector spaces
H1(X,R) ! H1(X, OX)

and therefore Pic0(X) ⇠= H1(X,R)/H1(X,Z) ⇠= H1(X,R/Z). Since x 7! e2⇡ix

maps R/Z isomorphically to the circle group U(1) =
�

z 2 C
�� |z| = 1

 
, the image

of H1(X,R)/H1(X,Z) in Pic(X) ⇠= H1(X, O⇥
X
) is therefore isomorphic to

HomZ
�
H1(X,Z), U(1)

� ⇠= HomZ
�
�, U(1)

�
.

In terms of cocycles, this means that every group homomorphism

↵ : � ! U(1)

gives us a constant cocycle e�(v) = ↵(�); this obviously satisfies the cocycle condi-
tion in (3.3). So we get

HomZ
�
�, U(1)

� ⇠= Pic0(X), ↵ 7! e� ⌘ ↵(�).

The general case is when H 6= 0. Here the best possible choice of cocycle is

(3.9) e�(v) = e⇡H(v,�)+⇡
2 H(�,�) · ↵(�),

where ↵ : � ! U(1). This needs to satisfy the cocycle condition in (3.3), and so

e⇡H(v,�+�)+⇡
2 H(�+�,�+�)↵(� + �) = e⇡H(v+�,�)+⇡

2 H(�,�)↵(�)e⇡H(v,�)+⇡
2 H(�,�)↵(�).

After cancelling common factors and remembering that E = ImH, this turns into

(3.10) ↵(� + �) = ↵(�)↵(�) · ei⇡E(�,�).

So ↵ : � ! U(1) is no longer a group homomorphism, but it is not o↵ by very much
because ei⇡E(�,�) = ±1.

We also need to make sure that the first Chern class is represented by E = ImH.
Going back to (3.8), the condition is that

�
f�(v + �)� f�(v)

�
�
�
f�(v + �)� f�(v)

�
= E(�, �).

For e� as in (3.9), the lifting is

f� =
H(v, �)

2i
+

H(�, �)

4i
+

1

2⇡i
log↵(�),
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which is of course only determined up to Z (because of the logarithm). After
plugging this into the formula above, we get

H(�, �)� H(�, �)

2i
= E(�, �),

which is correct because E = ImH. (In fact, (3.9) is determined uniquely if we
look for a lifting f� that is a�ne linear in v and satisfies the equation above.)

Definition 3.11. Let H : V ⇥ V ! C be a hermitian form such that E = ImH
takes integer values on � ⇥ �. For any ↵ : � ! U(1) such that (3.10) holds, we
define the holomorphic line bundle

L(H, ↵) = (V ⇥ C)/�
over X = V/�, where the �-action is given by

� · (v, z) =
⇣
v + �, e⇡H(v,�)+⇡

2 H(�,�)↵(�) · z
⌘
.

Then (H, ↵) is called the Appel-Humbert datum for the line bundle L(H, ↵).

The main result (that we have almost proved at this point) is that

Pic(X) =
�

L(H, ↵)
�� (H, ↵) is an Appel-Humbert datum

 

describes all holomorphic line bundles on X. More on this next time.


