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Lecture 20 (April 10)

More on derived equivalences between abelian varieties. Let X and Y be
two abelian varieties (of the same dimension g). Last time, we associated to any
equivalence R�E : Db(X) ! Db(Y ) an isomorphism of abelian varieties

'E : X ⇥ X̂ ! Y ⇥ Ŷ .

The construction used the following commutative diagram:

(20.1)

Db(X ⇥ X̂) Db(Y ⇥ Ŷ )

Db(X ⇥ X) Db(Y ⇥ Y )

R�A(X)

FE

R�E⇥R�
�1
E

R�
�1
A(Y )

Here R�A(X) is the equivalence that takes the structure sheaf of a closed point

(x, ↵) 2 X(k)⇥ X̂(k) to the object (tx, id)⇤P↵ on X ⇥X, which is the kernel of the
auto-equivalence

T(x,↵) : D
b(X) ! Db(X), T(x,↵)(K) = L ⌦ t⇤

x
K.

We showed that the equivalence FE , defined as in the diagram above, has the form

FE(K) = R('E)⇤(NE ⌦ K)

for a line bundle NE 2 Pic(X ⇥ X̂). The isomorphism 'E records how R�E

interacts with translations and tensor product: one has 'E(x, ↵) = (y, �) i↵

R�E � T(x,↵)
⇠= T(y,�) �R�E .

Today, we are going to investigate this construction a bit further.

Property 1 . The first observation is that the construction of FE (and of 'E) is
compatible with composition, in the following sense. Suppose that

Db(X) Db(Y ) Db(Z)
R�E

R�E⇤G

R�G

are two equivalences of derived categories, with compositionR�G�R�E
⇠= R�E⇤G,

where E ⇤ G is the convolution of the two kernels. Then the induced equivalences

Db(X ⇥ X̂) Db(Y ⇥ Ŷ ) Db(Z ⇥ Ẑ)
FE

FE⇤G

FG

are compatible (up to natural isomorphism). Because of the shape of (20.1), this
comes down to the identity

�
R�G ⇥R��1

G

�
�
�
R�E ⇥R��1

E

�
⇠= R�E⇤G ⇥R��1

E⇤G
�
,

which holds because R�G �R�E
⇠= R�E⇤G. By looking at the kernels, we get

'G � 'E = 'E⇤G,

and so the construction of FE and 'E respects composition.
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Property 2 . The next question is which homomorphisms ' : X ⇥ X̂ ! Y ⇥ Ŷ can
show up. We can write such a homomorphism as a matrix

' =

Å
↵ �
� �

ã

where ↵ : X ! Y , � : X̂ ! Y , � : X ! Ŷ , and � : X̂ ! Ŷ . Each of these four
homomorphisms has a dual homomorphism: ↵̂ : Ŷ ! X̂, �̂ : Ŷ ! X, �̂ : Y ! X̂,
and �̂ : Y ! X. We can put these together into a sort of “adjoint” matrix

'⇤ =

Å
�̂ ��̂
��̂ ↵̂

ã

which then defines a homomorphism '⇤ : Y ⇥ Ŷ ! X ⇥ X̂.

Example 20.2. In the case of the Fourier transform R�P , we had

'P : X ⇥ X̂ ! X̂ ⇥ X, 'P (x, ↵) = (↵,�x).

Here we get '⇤
P
= �'P because

'P =

Å
0 id

� id 0

ã

Inside the group of all isomorphisms from X ⇥ X̂ to Y ⇥ Ŷ , consider the subset

U(X ⇥ X̂, Y ⇥ Ŷ ) =
�

' : X ⇥ X̂ ! Y ⇥ Ŷ
�� '⇤

� ' = id
 
.

It turns out that when R�E : Db(X) ! Db(Y ) is an equivalence, then the associ-
ated isomorphism 'E must lie in this set.

Lemma 20.3. One has 'E 2 U(X ⇥ X̂, Y ⇥ Ŷ ).

Proof. For any closed point (x, ↵) 2 X(k) ⇥ X̂(k), we have the auto-equivalence
T(x,↵) of D

b(X), and we let F(x,↵) be the associated auto-equivalence of Db(X⇥X̂).

One can check that '(x,↵) = id and N(x,↵) = P↵ ⇥ P̂�x; in fact, we did half of this
computation last time, when we looked at tensor products by line bundles.

The idea behind the proof is to use the fact that Orlov’s construction respects
compositions. Suppose that 'E(x, ↵) = (y, �). Then

R�E � T(x,↵)
⇠= T(y,�) �R�E ,

and therefore FE � F(x,↵)
⇠= F(y,�) � FE . Writing out both sides explicitly, we get

R('E)⇤
�
NE ⌦ N(x,↵) ⌦�

�
⇠= N(y,�) ⌦R('E)⇤

�
NE ⌦�)

and therefore '⇤
E

N(y,�)
⇠= N(x,↵) (by the projection formula). This gives

'⇤
E

�
P� ⇥ P̂�y

�
⇠= P↵ ⇥ P̂�x,

or in terms of the dual homomorphism '̂E : Ŷ ⇥ Y ! X̂ ⇥ X,

'̂E(�,�y) = (↵,�x).

Because of how we defined '⇤
E
, this becomes '⇤

E
(y, �) = (x, ↵), and so '⇤

E
� 'E is

indeed the identity. ⇤

Property 3 . In fact, Polishchuk and Orlov showed that every ' 2 U(X ⇥ X̂, Y ⇥ Ŷ )
is equal to 'E for some equivalence R�E : Db(X) ! Db(Y ). To prove this, one has
to construct su�ciently many kernels on X ⇥ Y ; in fact, they are all of the form, a
vector bundle supported on an abelian subvariety of X ⇥ Y .

Corollary 20.4. One has Db(X) ⇠= Db(Y ) i↵ U(X ⇥ X̂, Y ⇥ Ŷ ) 6= ;.
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Property 4 . Let’s prove that the kernel of any derived equivalence R�E : Db(X) !
Db(Y ) between abelian varieties must be a vector bundle supported on an abelian
subvariety. The first step is to compute the kernel of the induced equivalence FE

using convolutions, as in (20.1). We can then push this object forward along the
projection p13 : X ⇥ X̂ ⇥ Y ⇥ Ŷ ! X ⇥ Y . At the same time, we know that the
kernel is isomorphic to (id, 'E)⇤NE . If we use the diagram

X ⇥ X̂ X ⇥ X̂ ⇥ Y ⇥ Ŷ

X ⇥ Y

(id,'E)

fE
p13

to define a homomorphism fE = p13 � (id, 'E) from X ⇥ X̂ to X ⇥ Y , then the
result of this (big) computation is that

R(fE)⇤NE = R(p13)⇤
�
(id, 'E)⇤NE

�
⇠= E ⌦k E_

|(0,0).

Here E_
|(0,0) means that we take the dual complex E_ = RHom(E , OX⇥Y ) and

restrict it to the closed point (0, 0); this is just a complex of finite-dimensional
k-vector spaces. So up to this small “error term”, we can recover the kernel object
E from the isomorphism 'E and the line bundle NE .

Example 20.5. The Fourier transform R�P had 'P (x, ↵) = (↵,�x), and NP = P .
Here fP is the identity, because (id, 'P )(x, ↵) = (x, ↵, ↵,�x).

X ⇥ X̂ X ⇥ X̂ ⇥ X̂ ⇥ X

X ⇥ X̂

(id,'P )

id

p13

So it is indeed the case that P is the pushforward of NP .

We can now prove the following result, originally due to Orlov.

Proposition 20.6. Suppose that R�E : Db(X) ! Db(Y ) is an equivalence. Then
up to a shift, E is a locally free sheaf supported on an abelian subvariety of X ⇥ Y .

We are going to abstract a bit, in order to simplify the notation. Consider a
homomorphism f : X ! Y between two abelian varieties of the same dimension g.
Suppose that ker f has dimension n, so that Z = im f ✓ Y is an abelian subvariety
of codimension n. We are going to use the following morphisms:

X Z Y
p

f

i

Suppose that E 2 Db(Y ) is an object in the derived category, such that

E ⌦ E_
|0

⇠= Rf⇤L

for a line bundle L 2 Pic(X). Then we claim that, up to a shift, E must be a
locally free sheaf supported on Z.

Proof. After a shift, we may assume that HiE = 0 for i > 0, but that H0E 6= 0. On
a suitable a�ne open neighborhood of the point 0 2 Y (k), we can find a minimal
locally free resolution for E, of the form

0 ! Ep ! Ep�1 ! · · · ! E0 ! 0.

The dual complex E_ is then

0 ! (E0)
⇤
! (E1)

⇤
! · · · ! (Ep)

⇤
! 0,
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and by minimality, E_
|0 is the complex with terms (Ei)⇤|0 and trivial di↵erentials.

So in the derived category of k-vector spaces, E_
|0 decomposes as

E_
|0

⇠=

pM

i=0

H
i
�
E_

|0

�
[�i] ⇠=

pM

i=0

Vi[�i].

In particular, the 0-th cohomology V0 of the complex E_
|0 is nontrivial. Because

tensor product over k is exact, it follows that

Rif⇤L ⇠= H
i
�
E ⌦ E_

|0

�

contains HiE ⌦V0 as a direct summand. For obvious reasons, Rif⇤L = 0 for i < 0,
and therefore H

iE = 0 for i < 0; this means that E is isomorphic to a sheaf in
degree 0. Since

Rf⇤L ⇠= i⇤Rp⇤L,

this sheaf is isomorphic to a direct summand of i⇤Rp⇤L, and so it is annihilated
by the ideal sheaf IZ . Consequently, E ⇠= i⇤F , where F is a coherent sheaf on Z.
Moreover, F is isomorphic to a direct summand of Rp⇤L 2 Db(Z).

Now we argue that Z is actually locally free. Since Z is smooth projective of
dimension g � n, we can find a locally free resolution

0 ! Eg�n ! · · · ! E1 ! E0 ! F ! 0.

Consider the dual complex RHomOZ (F , OZ), which is isomorphic to

0 ! (E0)
⇤
! · · · ! (Eg�n)

⇤
! 0.

We are going to argue that the dual complex is a sheaf. The key point is that

RHomOZ (Rp⇤L, OZ) ⇠= Rp⇤HomOX (L, p!
OZ) ⇠= Rp⇤L

�1[n],

because p : X ! Z is smooth of relative dimension n and the canonical bundles
of X and Z are both trivial. For dimension reasons, the complex Rp⇤L�1[n] is
concentrated in degrees �n, . . . , 0. Because F is a direct summand of Rp⇤L, it
follows that RHomOZ (F , OZ) is a direct summand of Rp⇤L�1[n], and therefore
also concentrated in deegree �n, . . . , 0. It follows that RHomOZ (F , OZ) is a single
locally free sheaf in degree 0; dualizing back, we find that F is itself locally free. ⇤

Property 5 . One can use the results above to classify all auto-equivalences of the de-
rived category Db(X). Let’s write AutDb(X) for the group of all auto-equivalences.
We showed above that the function

AutDb(X) ! U(X ⇥ X̂, X ⇥ X̂), R�E 7! 'E ,

is a group homomorphism; we also know (from Property 3) that it is surjective.
One can show that the kernel consists exactly of the auto-equivalences T(x,↵), with

(x, ↵) 2 X(k)⇥ X̂(k), and of the shift functors [n] with n 2 Z. This makes precise
the heuristic from last time that X(k) ⇥ X̂(k) is the neutral component of the
automorphism group of Db(X).

Mukai’s SL2(Z)-action. Suppose now that X is a principally polarized abelian
variety; this means that we have an ample line bundle L such that h0(X, L) = 1.
Equivalently, the morphism

�L : X ! X̂, t⇤
x
L ⌦ L�1 ⇠= P�L(x),

is an isomorphism. (It is surjective by Theorem 11.7 and has degree h0(X, L)2 = 1.)
In this case, we get several interesting auto-equivalences of the derived category,
and Mukai noticed that they determine an action of the group SL2(Z) on Db(X).
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The first auto-equivalence S : Db(X) ! Db(X) is the composition

Db(X) Db(X̂) Db(X).
R�P �

⇤
L

Because of the formula (id⇥�L)⇤P ⇠= m⇤L ⌦ p⇤
1
L�1

⌦ p⇤
2
L�1, we can write this as

S(K) = �⇤
L
R(p2)⇤(p

⇤
1
K ⌦ P ) ⇠= R(p2)⇤

�
p⇤
1
K ⌦ m⇤L ⌦ p⇤

1
L�1

⌦ p⇤
2
L�1

�
.

We also have a second auto-equivalence

T : Db(X) ! Db(X), T (K) = L ⌦ K.

Both S and T have associated automorphisms 'S and 'T in Hom(X ⇥ X̂, X ⇥ X̂);
using the isomorphism �L between X and X̂, we may consider 'S and 'T as
elements of Hom(X ⇥ X,X ⇥ X). We showed last time that 'P (x, ↵) = (↵,�x),
and after making the identifications, we get

'S =

Å
0 id

� id 0

ã

We also computed last time that 'T (x, ↵) = (x, ↵ � �L(x)); after the appropriate
identifications, this tells us that

'T =

Å
id 0
� id id

ã
.

Now we observe that the modular group

SL2(Z) =
�

A 2 Mat2⇥2(Z)
�� detA = 1

 

embeds into Hom(X ⇥ X, X ⇥ X). Indeed, if

A =

Å
a b
c d

ã

with detA = ad � bc = 1, then A defines an automorphism of the abelian variety
X ⇥ X, represented by the matrix

Å
aX bX
cX dX

ã
;

on closed points, the formula is A · (x, y) = (ax + by, cx + dy). So 'S and 'T

represent the action of the two matrices

S =

Å
0 1
�1 0

ã
and T =

Å
1 0
�1 1

ã
.

It is known that these two matrices together generate SL2(Z); the relations are

S4 = id and (TS)3 = id .

Mukai’s observation is that these identities already hold (up to a shift) for the two
equivalences S and T . In this sense, the group SL2(Z) acts on Db(X).

Proposition 20.7. The two equivalences S, T : Db(X) ! Db(X) satisfy

S4 ⇠= [�2g] and (T � S)3 ⇠= [�g].

Proof. Let R�P : Db(X) ! Db(X̂) and R�
P̂
: Db(X̂) ! Db(X) be the two Fourier

transforms. From the proof of Mukai’s theorem, we know that

R�P �R�
P̂
⇠= (�1)⇤

X̂
[�g].
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The isomorphism �L : X ! X̂ is self-dual, in the sense that �̂L = �L. The identity
in (18.5) therefore tells us that the diagram

Db(X) Db(X̂)

Db(X̂) Db(X)

R�P

(�L)⇤ �
⇤
L

R�P̂

is commutative. This gives

S � S = �⇤
L
�R�P � �⇤

L
�R�P

⇠= �⇤
L
�R�P �R�

P̂
� (�L)⇤

⇠= �⇤
L
� (�1)⇤

X̂
[�g] � (�L)⇤ ⇠= (�1)⇤

X
[�g].

So clearly S4 ⇠= [�2g], which is the first identity.
For the second identity, we note that

(T � S)(K) = L ⌦ S(K) ⇠= R(p2)⇤
�
p⇤
1
K ⌦ m⇤L ⌦ p⇤

1
L�1

�
,

which means that T � S is an integral transform with kernel m⇤L ⌦ p⇤
1
L�1. The

kernel of (T � S)3 is therefore given by convolution: concretely, it is

R(p14)⇤
⇣
m⇤

12
L ⌦ m⇤

23
L ⌦ m⇤

34
L ⌦ p⇤

1
L�1

⌦ p⇤
2
L�1

⌦ p⇤
3
L�1

⌘
,

where p14 : X⇥X⇥X⇥X ! X⇥X is the projection to the first and fourth factor,
and mij is the morphism that adds the i-th and j-th coordinates. We can simplify
the line bundle in parentheses using the seesaw theorem. For any two closed points
x, y 2 X(k), its restriction to {x}⇥ X ⇥ X ⇥ {y} is

p⇤
1
t⇤
x
L ⌦ m⇤L ⌦ p⇤

2
t⇤
y
L ⌦ p⇤

1
L�1

⌦ p⇤
2
L�1 ⇠= m⇤L ⌦ p⇤

1
�L(x)⌦ p⇤

2
�L(y),

and under the natural isomorphism X ⇥ X ⇥ X ⇥ X ⇠= X̂ ⇥ X ⇥ X ⇥ X̂, this is
isomorphic to the restriction of p⇤

12
P ⌦m⇤

23
L⌦p⇤

34
P ⌦p⇤

4
L. Both bundles also have

the same restriction to X⇥{0}⇥{0}⇥X, and so they are isomorphic by the seesaw
theorem. Therefore the kernel of (T � S)3 is

R(p14)⇤
⇣
p⇤
12

P̂ ⌦ p⇤
23

m⇤L ⌦ p⇤
34

P ⌦ p⇤
4
L
�

⇠= p⇤
2
L ⌦R(p14)⇤

⇣
p⇤
12

P ⌦ p⇤
23

m⇤L ⌦ p⇤
34

P
�
⇠= p⇤

2
L ⌦R�P⇥P (m

⇤L).

The second factor is exactly the Fourier-Mukai transform of m⇤L 2 Db(X ⇥ X)
using the Poincaré bundle P ⇥ P on X̂ ⇥ X ⇥ X ⇥ X̂.

The homomorphism m : X ⇥X ! X is dual to the diagonal � : X̂ ! X̂ ⇥ X̂, in
the sense that m̂ = �. Because we know from Proposition 18.4 how the Fourier-
Mukai transform interacts with homomorphisms, we get

R�P⇥P (m
⇤L) ⇠= �⇤�P (L)[�g] ⇠= �⇤L

�1[�g].

Therefore the kernel of (T � S)3 simplifies to

p⇤
2
L ⌦�⇤L

�1[�g] ⇠= �⇤OX̂
[�g],

which shows that (T � S)3 ⇠= [�g]. ⇤

Exercise 20.1. As an exercise, you can try to figure out what the kernel for the
equivalence corresponding to a general matrix

A =

Å
a b
c d

ã
2 SL2(Z)
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might look like. As a starting point, consider the diagram from Proposition 20.6,
which now reads (after identifying X and X̂)

X ⇥ X X ⇥ X ⇥ X ⇥ X

X ⇥ X.

(id,A)

fA
p13

Here fA(x, y) = (x, ax+ by), and if b 6= 0, then fA is an isogeny of degree deg bX =
b2g, and so the kernel object must be a vector bundle on X ⇥X. What is its rank?
Can you describe this vector bundle in some cases? What happens when b = 0?


