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Lecture 18 (April 3)

Let X be an abelian variety, X̂ the dual abelian variety, and PX the Poincaré
bundle on X⇥X̂. Last time, we introduced the symmetric Fourier-Mukai transform

FMX = R�P �R�X : Db(X) ! Db(X̂)op ,

which is defined as the composition of the (contravariant) duality functor

R�X = RHomOX

�
�, !X [dimX]

�
: Db(X) ! Db(X)op

with Mukai’s original Fourier transform

R�P (K) = R(p2)⇤
�
Lp⇤

1
K ⌦ P

�
.

The main theorem is that the two contravariant functors

FMX : Db(X) ! Db(X̂)op and FM
X̂
: Db(X̂) ! Db(X)op

are mutually inverse equivalences of category.

Proof of Mukai’s theorem. For clarity, let’s denote the Poincaré bundle PX on
X ⇥ X̂ by the symbol P , and the Poincaré bundle P

X̂
on X̂ ⇥X by the symbol P̂ .

The symmetric description of the dual abelian variety (in Lecture 14) shows that

P̂ ⇠= �⇤P

where � : X ⇥ X̂ ! X̂ ⇥ X swaps the two factors.
Now let’s begin provin Mukai’s theorem. Since we can interchange the role of X

and X̂, we only need to prove that the functor

(18.1) FM
X̂
�FMX = R�

P̂
� R�

X̂
� R�P � R�X

is naturally isomorphic to the identity. We are going to use the standard derived
category tools (such as flat base change and Grothendieck duality) to show that
the composition is an integral transform (with a kernel on X ⇥ X); and then we’ll
use properties of the Poincaré bundle to prove that the kernel is the structure sheaf
of the diagonal (and hence that the composition is the identity).

Let’s first consider the last three terms; they give us a covariant functor

R�
X̂
� R�P � R�X : Db(X) ! Db(X̂).

A brief computation using Grothendieck duality shows that this functor is an inte-
gral transform, whose kernel is the complex

(18.2) P�1
⌦ p⇤

2
!
X̂
[g]

on X ⇥ X̂; here g = dimX. To see this, we take K 2 Db(X), and compute:

R�PR�X(K) = R(p2)⇤
�
Lp⇤

1
RHomOX (K, !X [g])⌦ P

�

⇠= R(p2)⇤
�
RHomOX⇥X̂

(Lp⇤
1
K, p⇤

1
!X [g])⌦ P

�
.

The local version of Grothendieck duality gives R�
X̂
�R(p2)⇤ ⇠= R(p2)⇤R�

X⇥X̂
.

If we apply this to the result of the preceding computation, we get

R�
X̂
R�PR�X(K) ⇠= R(p2)⇤R�

X⇥X̂

⇣
RHomOX⇥X̂

(Lp⇤
1
K, p⇤

1
!X [g])⌦ P

⌘

⇠= R(p2)⇤
�
Lp⇤

1
K ⌦ p⇤

2
!
X̂
[g]⌦ P�1

�
,

because !
X⇥X̂

⇠= p⇤
1
!X ⌦ p⇤

2
!
X̂
, and because the two RHom’s cancel each other.

This is an integral transform with kernel (18.2).
Now we need to compose this with R�

P̂
. By the computation from last time,

the composition is again an integral transform; the kernel is the convolution of
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(18.2) on X ⇥ X̂ with the line bundle P̂ on X̂ ⇥X. Thus (18.1) is also an integral
transform, with kernel

R(p13)⇤
⇣
p⇤
12

P�1
⌦ p⇤

2
!
X̂
[g]⌦ p⇤

23
P̂
⌘
.

In order to avoid ridiculous notation in the computation below, we now swap the
second and third factor in X ⇥ X̂ ⇥ X. Since P̂ ⇠= �⇤P , we can then rewrite the
kernel for (18.1) as

(18.3) R(p12)⇤
⇣
p⇤
3
!
X̂
[g]⌦ p⇤

13
P�1

⌦ p⇤
23

P
⌘

on X ⇥ X. Theorem 17.12 will be proved once we show that (18.3) is isomorphic
to the structure sheaf of the diagonal in X ⇥ X.

Let s : X ⇥ X ! X be defined as s = m � (i ⇥ id); the formula on closed points
is s(x, y) = y � x. The theorem of the cube shows that

p⇤
13

P�1
⌦ p⇤

23
P ⇠= (s ⇥ id)⇤P.

We can now apply flat base change in the commutative diagram

X ⇥ X ⇥ X̂ X ⇥ X

X ⇥ X̂ X

s⇥id

p12

s

p1

and conclude that the complex in (18.3) is isomorphic to

Ls⇤ R(p1)⇤
⇣
P ⌦ p⇤

2
!
X̂
[g]

⌘
= Ls⇤ FM

X̂
(O

X̂
) = Ls⇤k(0) = �⇤OX ,

where � : X ! X ⇥ X is the diagonal embedding. Here we used the fact that the
symmetric Fourier-Mukai transform of the structure sheaf O

X̂
is the structure sheaf

k(0) of the closed point 0 2 X(k), as in (17.13). Because the integral transform
with kernel �⇤OX is the identity, this concludes the proof of Theorem 17.12.

Properties of the Fourier-Mukai transform. If we wanted to summarize the
above proof in one line, it would be that the Fourier-Mukai transform is an equiva-
lence because of the identity p⇤

13
P�1

⌦ p⇤
23

P ⇠= (s ⇥ id)⇤P for the Poincaré bundle.
The other formulas involving the Poincaré bundle that we have proved also lead to
interesting properties of FMX .

The first topic is how the Fourier-Mukai transform interacts with pulling back or
pushing forward by a homomorphism between abelian varieties. Mukai only looked
at the case of isogenies; the general case is due to Chen and Jiang.

Proposition 18.4. Let f : X ! Y be a homomorphism of abelian varieties over
k. Then one has natural isomorphisms of functors

FMY �Rf⇤ ⇠= Lf̂⇤
� FMX and FMX �Lf⇤ ⇠= Rf̂⇤ � FMY ,

where f̂ : Ŷ ! X̂ is the induced homomorphism between the dual abelian varieties.

Proof. It will be enough to show that

FMY �Rf⇤ ⇠= Lf̂⇤
� FMX ;

the second identity in the theorem follows from this with the help of Theorem 17.12.
Using the definition of FMY and Grothendieck duality, we obtain

FMY �Rf⇤ ⇠= R�PX � R�Y � Rf⇤ ⇠= R�PY � Rf⇤ � R�X .

This reduces the problem to proving that

(18.5) R�PY � Rf⇤ ⇠= Lf̂⇤
� R�PX .
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We make use of the following commutative diagram:

X̂ Ŷ

X ⇥ X̂ X ⇥ Ŷ Y ⇥ Ŷ Ŷ

X Y

f̂

p2 p2

id⇥f̂

p1

f⇥id

p1

p2

f

The identity in (14.2), which followed from the universal property of the dual
abelian variety, gives us (f ⇥ id)⇤PY

⇠= (id⇥f̂)⇤PX . Using the projection formula
and flat base change, we can write the following chain of isomorphisms:

R�PY � Rf⇤ ⇠= R(p2)⇤
�
PY ⌦ p⇤

1
Rf⇤

�
⇠= R(p2)⇤

�
PY ⌦R(f ⇥ id)⇤p

⇤
1

�

⇠= R(p2)⇤
�
(f ⇥ id)⇤PY ⌦ p⇤

1

�
⇠= R(p2)⇤

�
(id⇥f̂)⇤PX ⌦ p⇤

1

�

⇠= R(p2)⇤L(id⇥f̂)⇤
�
PX ⌦ p⇤

1

�
⇠= Lf̂⇤ R(p2)⇤

�
PX ⌦ p⇤

1

�

⇠= Lf̂⇤
�R�PX

This calculation establishes Proposition 18.4. ⇤
The symmetric Fourier-Mukai transform also exchanges translations and ten-

soring by the corresponding line bundles. Any closed point x 2 X(k) determines
a translation morphism tx : X ! X; on closed points, it is given by the formula
tx(y) = x+y. Since X(k) ⇠= Pic0(X̂), it also determines a line bundle P̂x 2 Pic0(X̂).

Proposition 18.6. Let x 2 X(k) and ↵ 2 X̂(k) be closed points. Then one has
natural isomorphisms of functors

FMX �(tX)⇤ = (P̂X ⌦�) � FMX and FMX �(P↵ ⌦�) = (t↵)⇤ � FMX ,

where P̂x 2 Pic0(X), and P↵ 2 Pic0(X̂), are the corresponding line bundles.

Together with (17.13), this leads to the pleasant formulas

FMX

�
k(x)

�
= P̂x and FMX(P↵) = k(↵),

for any pair of closed points x 2 X(k) and ↵ 2 X̂(k). This symmetry is another
reason for the name “symmetric” Fourier-Mukai transform.

Proof. Once again, it su�ces to prove that

FMX �(tx)⇤ = (P̂x ⌦�) � FMX

because the other identity follows from this with the help of Theorem 17.12. Using
Grothendieck duality, we get a natural isomorphism of functors

FMX �(tx)⇤ = R�P �R�X � (tx)⇤ = R�P � (tx)⇤ �R�X ,

and so the problem is reduced to showing that

R�P � (tx)⇤ = (P̂x ⌦�) �R�P .

We use the following commutative diagram:

X ⇥ X̂ X ⇥ X̂ X̂

X X

tx⇥id

p1 p1

p2

tx
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Since (tx ⇥ id)⇤P ⇠= p⇤
2
P̂x ⌦ P (by the seesaw theorem), we have

R�P � (tx)⇤ = R(p2)⇤
⇣
P ⌦ p⇤

1
(tx)⇤

⌘
= R(p2)⇤

⇣
P ⌦ (tx ⇥ id)⇤p

⇤
1

⌘

= R(p2)⇤
⇣
(tx ⇥ id)⇤P ⌦ p⇤

1

⌘
= R(p2)⇤

⇣
p⇤
2
P̂x ⌦ P ⌦ p⇤

1

⌘

= P̂x ⌦R(p2)⇤
�
P ⌦ p⇤

1

�
= P̂x ⌦R�P ,

which is exactly what we need. ⇤

The third property is more of an extended example. Let L be an ample line
bundle on the abelian variety X. Mukai’s Fourier transform

R�P (L) = R(p2)⇤
�
p⇤
1
L ⌦ P

�

is a vector bundle of rank dimH0(X,L) on the dual abelian variety X̂. The reason
is that on each fiber of p2 : X ⇥ X̂ ! X̂, the line bundle L⌦P↵ is again ample, and
so all of its higher cohomology groups vanish; we know this at least over C, where
it follows from the Kodaira vanishing theorem. By cohomology and base change,
we therefore have Ri(p2)⇤

�
p⇤
1
L ⌦ P

�
= 0 for i 6= 0; for i = 0, we get a locally free

sheaf EL of rank dimH0(X, L).
To see what EL actually looks like, let’s pull it back by the isogeny

'L : X ! X̂;

recall that this has the property that t⇤
x
L ⇠= L⌦P�L(x) for all closed points x 2 X(k).

The key identity (which we used for the construction of the Poincaré bundle) is that

(id⇥'L)
⇤P ⇠= m⇤L ⌦ p⇤

1
L�1

⌦ p⇤
2
L�1.

Now let’s do the computation, using the following commutative diagram:

X ⇥ X X

X ⇥ X̂ X̂

X

id⇥'L

p2

'L

p1

p2

Applying flat base change and the projection formula, we get

'⇤
L
EL = L'⇤

L
R(p2)⇤

�
P ⌦ p⇤

1
L
�
⇠= R(p2)⇤

�
(id⇥'L)

⇤P ⌦ p⇤
1
L
�

⇠= R(p2)⇤
�
m⇤L ⌦ p⇤

2
L�1

�
⇠= L�1

⌦R(p2)⇤m
⇤L.

Now we need a small trick. We can write m : X ⇥ X ! X as a composition

X ⇥ X X ⇥ X X,
f p1

where f : X ⇥ X ! X ⇥ X is the automorphism f(x, y) = (x + y, y). Therefore

R(p2)⇤m
⇤L ⇠= R(p2)⇤Rf⇤(f

⇤p⇤
1
L) ⇠= R(p2)⇤p

⇤
1
L ⇠= H0(X, L)⌦ OX ,

where the second step is the projection formula, and the third flat base change. So

(18.7) '⇤
L
EL

⇠= H0(X, L)⌦ L�1.

Note that L was ample, but that Mukai’s Fourier transform R�P takes it to the
dual of an ample vector bundle.

Here is the result for the symmetric Fourier-Mukai transform; this is better,
because positivity is preserved.
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Proposition 18.8. Let L be an ample line bundle on X. Then FMX(L) is an
ample vector bundle of rank dimH0(X,L), and one has

'⇤
L
FMX(L) ⇠= i⇤L ⌦ H0(X,L)⇤,

where i : X ! X is the inversion morphism.

This follows directly from (18.7), together with the following formula (that gives
an alternative description of the symmetric Fourier-Mukai transform):

(18.9) FMX(K) ⇠= RHomOX

�
i⇤R�P (K), O

X̂

�

To prove it, we take an object K 2 Db(X) and start computing:

FMX(K) = R(p2)⇤
⇣
Lp⇤

1
RHomOX

�
K, !X [g]

�
⌦ P

⌘

We would like to interchange R(p2)⇤ and RHom, and for that, we need to move all
the terms on the right-hand side into the first argument of RHom. Here it helps
that !

X⇥X̂
⇠= p⇤

1
!X ⌦ p⇤

2
!
X̂

and that P ⇠= (i ⇥ id)⇤P�1. Accordingly,

Lp⇤
1
RHomOX

�
K, !X [g]

�
⌦ P ⇠= RHomOX⇥X̂

⇣
Lp⇤

1
K, p⇤

1
!X [g]

⌘
⌦ (i ⇥ id)⇤P�1

⌘

⇠= RHomOX⇥X̂

⇣
Lp⇤

1
K ⌦ (i ⇥ id)⇤P ⌦ p⇤

2
!
X̂
[g], !

X⇥X̂
[2g]

⌘

= R�
X⇥X̂

⇣
Lp⇤

1
K ⌦ (i ⇥ id)⇤P ⌦ p⇤

2
!
X̂
[g]

⌘

If we put this into the formula from above and use the relative version of Grothendieck
duality, we obtain

FMX(K) ⇠= R�
X̂
R(p2)⇤

⇣
Lp⇤

1
K ⌦ (i ⇥ id)⇤P ⌦ p⇤

2
!
X̂
[g]

⌘

⇠= R�
X̂

⇣
!
X̂
[g]⌦R(p2)⇤

�
Lp⇤

1
K ⌦ (i ⇥ id)⇤P

�⌘

⇠= RHomOX̂

⇣
R(p2)⇤

�
Lp⇤

1
K ⌦ (i ⇥ id)⇤P

�
, O

X̂

⌘

⇠= RHomOX̂

⇣
Li⇤R�P (K), O

X̂

⌘
.

The last step follows from the projection formula. So (18.9) is proved.
Note that L has rank 1 and h0(X, L) many global sections, wherease FMX(L)

has rank h0(X, L) and one global section (by Proposition 18.4). So the Fourier-
Mukai transform takes ample line bundles to ample vector bundles, but interchanges
“rank” and “dimension of the space of global sections”. More generally, FMX tends
to interchange “local” and “global” data. This can be very useful in geometric
applications of the Fourier-Mukai transform (such as “generic vanishing theory”).
The reason is that there are two sets of tools: local tools (such as commutative
algebra in regular local rings) and global tools (such as vanishing theorems), and
a local (or global) problem on X may become tractable once we convert it into a
global (or local) problem on X̂.


