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Lecture 13 (March 11)

Translation-invariant line bundles. Let X be an abelian variety. Over the
complex numbers, Pic0(X) is the space of holomorphic line bundles with trivial first
Chern class; this is again an abelian variety of the same dimension. Our goal today
is to construct this abelian variety over any field of characteristic zero. We showed
in Lecture 6 that all line bundles in Pic0(X) are translation-invariant, in the sense
that t⇤

x
L ⇠= L for every x 2 X. We use this property as the definition over other

fields (where we don’t have a good theory of first Chern classes in cohomology).

Definition 13.1. If X is an abelian variety, we define

Pic0(X) =
�

L 2 Pic(X)
�� t⇤

x
L ⇠= L for all x 2 X

 
,

the group of (isomorphism classes of) translation-invariant line bundles.

In terms of the group homomorphism

�L : X ! Pic(X), �L(x) = t⇤
x
L ⌦ L�1,

the subgroup Pic0(X) ✓ Pic(X) consists of all those line bundles for which �L ⌘ 0.
By the theorem of the square, we have

t⇤
y
�L(x) = t⇤

x+y
L ⌦ t⇤

y
L�1 ⇠= t⇤

x
L ⌦ L�1

and so �L(x) 2 Pic0(X). Therefore

�L : X ! Pic0(X)

takes values in the subgroup Pic0(X). We are going to construct an abelian variety
X̂ that is isomorphic to Pic0(X) as a group (in a functorial way).

We begin with series of observations about translation-invariant line bundles.

Observation 1 . We have L 2 Pic0(X) i↵ m⇤L ⇠= p⇤
1
L ⌦ p⇤

2
L on X ⇥ X. This

is a consequence of the seesaw theorem. Indeed, the restriction of the line bundle
m⇤L⌦p⇤

1
L�1

⌦p⇤
2
L�1 to the slice X⇥{x} is isomorphic to t⇤

x
L⌦L�1, and therefore

trivial when L 2 Pic0(X). Because the line bundle is also trivial on {0} ⇥ X, it
must be trivial on X ⇥ X by Theorem 9.10.

Observation 2 . If f, g : S ! X are two morphisms from a variety (or scheme) S,
then (f +g)⇤L ⇠= f⇤L⌦g⇤L. This follows from Observation 1 by pulling back along
the morphism (f, g) : S ! X ⇥ X.

Observation 3 . Let nX : X ! X be the morphism nX(X) = n · x. By induction,
the previous observation implies that n⇤

X
L ⇠= Ln. In particular, (�1)⇤

X
L ⇠= L�1,

and so L is anti-symmetric.

Observation 4 . For every L 2 Pic(X), we have n⇤
X

L⌦L�n
2

2 Pic0(X). By rewriting
the identity in Corollary 11.4, we get

n⇤
X

L ⌦ L�n
2
⇠=
�
L ⌦ (�1)⇤

X
L�1

�(n�n
2
)/2

,

and so it is enough to prove that L ⌦ (�1)⇤
X

L�1
2 Pic0(X). We compute

t⇤
y

�
L ⌦ (�1)⇤

X
L�1

�
⇠= t⇤

y
L ⌦ (�1)⇤

X
t⇤�y

L�1

⇠= t⇤
y
L ⌦ (�1)⇤

X

�
t⇤�y

L�1
⌦ L

�
⌦ (�1)⇤

X
L�1

⇠= t⇤
y
L ⌦

�
t⇤�y

L ⌦ L�1
�
⌦ (�1)⇤

X
L�1

⇠= L2
⌦ L�1

⌦ (�1)⇤
X

L�1 ⇠= L ⌦ (�1)⇤
X

L�1,

where we used the fact htat t⇤�y
L⌦L�1

2 Pic0(X) (and Observation 2) to go from
the second to the third line; and the identity t⇤

y
L⌦ t⇤�y

L ⇠= L2 from the theorem of
the square to go from the third to the fourth line.
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Observation 5 . If L 2 Pic(X) has finite order, then L 2 Pic0(X). Indeed, if Ln is
trivial for some n � 1, then one has

0 = �Ln(x) = n�L(x) = �L(nx)

for every x 2 X, and because X is divisible, this implies that �L ⌘ 0 and hence
that L 2 Pic0(X).

Observation 6 . Let S be a variety, and let L be a line bundle on X ⇥ S; as usual,
we think of this as a family of line bundles Ls = L|X⇥{s} on X, parametrized by

the variety S. Then for any two points s0, s1 2 S, one has Ls1 ⌦ L�1

s0
2 Pic0(X).

What this means is that the connected components of Pic(X) are copies of Pic0(X),
in the sense that an irreducible (hence connected) family of line bundles can only
change Ls0 by line bundles in Pic0(X).

Proof. After replacing L by L ⌦ p⇤
1
L�1

s0
, we may assume that Ls0 is trivial; then

the claim is that Ls 2 Pic0(X) for all s 2 S. The restriction of L to {0} ⇥ S is
a line bundle on S, hence locally trivial; after replacing S by an open subset, we
may therefore assume in addition that L|{0}⇥S is trivial. In order to show that

Ls 2 Pic0(X), it is enough to prove that m⇤Ls ⌦ p⇤
1
L�1

s
⌦ p⇤

2
L�1

s
is trivial. To do

that, we go to the product X ⇥ X ⇥ S, and consider the line bundle

M = µ⇤L ⌦ p⇤
12

L�1
⌦ p⇤

13
L�1,

where µ : X ⇥ X ⇥ S ! X ⇥ S is the morphism µ(x, y, s) = (x + y, s). The
assumptions on L imply that M is trivial on X ⇥ X ⇥ {s0}, on {0}⇥ X ⇥ S, and
on X ⇥ {0}⇥ S. The theorem of the cube implies that M is trivial, and this gives
the result we want after restricting to X ⇥ X ⇥ {s}. ⇤

Observation 7 . If L 2 Pic0(X) is nontrivial, then Hi(X, L) = 0 for every i 2 Z.

Proof. We prove this by induction on i � 0. Suppose that s 2 H0(X, L) is a
nontrivial global section. Then (�1)⇤

X
s is a nontrivial global section of (�1)⇤

X
L ⇠=

L�1, and so s ⌦ (�1)⇤
X

s is a nontrivial global section of L ⌦ L�1 ⇠= OX , hence a
nonzero constant (because X is complete). But then the original section s cannot
vanish anywhere, and so L is trivial, contrary to our initial assumption.

For i > 0, consider the composition

X X ⇥ X X

id

j m

where j(x) = (x, 0) and m(x, y) = x + y. It gives us a factorization

Hi(X,L) Hi(X ⇥ X, m⇤L) Hi(X, L).

id

m
⇤ j

⇤

From Observation 1, we know that m⇤L ⇠= p⇤
1
L ⌦ p⇤

2
L, and so

Hi(X ⇥ X, m⇤L) ⇠=
M

p+q=i

Hp(X, L)⌦ Hq(X, L)

by the Künneth formula. But now all summands are trivial (by induction), and so
Hi(X ⇥X, m⇤L) = 0; the above factorization then gives Hi(X, L) = 0 as well. ⇤
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Observation 8 . If L is an ample line bundle, the homomorphism

�L : X ! Pic0(X)

is surjective. This is the key result for describing Pic0(X).

Proof. Fix a translation-invariant line bundle M 2 Pic0(X). We need to find a
point x 2 X such that M ⇠= t⇤

x
L⌦L�1. Suppose to the contrary that no such point

exists. We’ll derive a contradiction by looking at the line bundle

K = m⇤L ⌦ p⇤
1
L�1

⌦ p⇤
2
(L�1

⌦ M�1)

on the product X ⇥ X. We have

K|{x}⇥X
⇠= t⇤

x
L ⌦ L�1

⌦ M�1,

and because t⇤
x
L ⌦ L�1 is not isomorphic to M , this line bundle is nontrivial,

and therefore has no cohomology (by the previous observation). According to
Corollary 9.9, applied to the first projection p1 : X ⇥ X ! X, it follows that
Ri(p1)⇤K = 0 for every i 2 Z. By the Leray spectral sequence (or an exercise in
Hartshorne), we now get

Hi(X ⇥ X, K) = 0

for all i 2 Z.
Now let’s consider the second projection p2 : X ⇥ X ! X. Here we have

K|X⇥{x} ⇠= t⇤
x
L ⌦ L�1,

which is trivial exactly when x belongs to the subgroup K(L) = ker�L. Since
L is ample, K(L) is a finite group by Theorem 11.7. Therefore K|X⇥{x} has no
cohomology except when x 2 K(L). Another application of base change shows
that the support of the coherent sheaves Rq(p2)⇤K is contained in K(L), and so
Hp(X,Rq(p2)⇤K) = 0 for p � 1 for dimension reasons. The Leray spectral sequence
therefore degenerates and gives us isomorphisms

0 = Hi(X ⇥ X, K) ⇠= H0
�
X, Ri(p2)⇤K

�
.

It follows that Ri(p2)⇤K = 0, and hence (by Corollary 9.9) that KX⇥{x} has no
cohomology for every x 2 X. But this is absurd because this bundle is isomorphic
to OX when x = 0, and H0(X, OX) = k. ⇤

If we take L to be an ample line bundle – which exists because X is projective
(by Corollary 11.9) – then the homomorphism

�L : X ! Pic0(X)

is surjective, and its kernel is the finite subgroup K(L). As a group, Pic0(X) is
therefore isomorphic to the quotient X/K(L).

Example 13.2. Suppose that dimX = 1, so that X is an elliptic curve, with zero
element x0 2 X. The line bundle L = OX(x0) is ample, and the homomorphism

�L : X ! Pic0(X)

takes a point x 2 X to the line bundle OX(x � x0) corresponding to the divisor
x � x0; it is well-known that this is an isomorphism.
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Construction of the dual abelian variety. According to the results from last
time, the quotient X̂ = X/K(L) is actually an abelian variety. So we get an
isomorphism of groups X̂ ⇠= Pic0(X). The abelian variety X̂ should therefore be a
“moduli space” for translation-invariant line bundles on X. What extra structure
do we need to make that statement precise?

(A) We need a “universal” line bundle P on the product X ⇥ X̂. For every
point ↵ 2 X̂, we want the line bundle

P↵ = P |X⇥{↵}

to represent the element of Pic0(X) corresponding to ↵ under the isomor-
phism X̂ ⇠= Pic0(X). If we impose the additional condition that P |{0}⇥X is
trivial, then P is determined up to isomorphism (by the seesaw theorem).
This line bundle is called the Poincaré bundle.

(B) All families of line bundles in Pic0(X) should come from P , in the following
sense. Suppose that S is a normal variety (for technical reasons), and that
K is a line bundle on X ⇥ S such that

Ks = K|X⇥{s} 2 Pic0(X)

for every s 2 S, and such that K|{0}⇥X is trivial. We then get a function

f : S ! X̂

by sending a point s 2 S to the unique point f(s) 2 X̂ such that Ks
⇠= Pf(s).

(There is a unique point because X̂ ⇠= Pic0(X) as groups.) Then we want
the function f to be a morphism of varieties, and K ⇠= (id⇥f)⇤P .

The two conditions actually determine the pair (X̂, P ) up to isomorphism. The
reason is that if we have another pair (Y, Q) with the same properties, then (B),
applied to the line bundle Q on X ⇥ Y , gives us a unique morphism

f : Y ! X̂

such that (id⇥f)⇤P ⇠= Q. For the same reason, (B) applied to the line bundle P
on X ⇥ X̂ gives us a unique morphism

g : X̂ ! Y

such that (id⇥g)⇤Q ⇠= P . Uniqueness then implies that f �g = id
X̂

and g�f = idY ,

and so Y is isomorphic to X̂, and the pullback of Q is isomorphic to P .

Remark. The properties above make X̂ a so-called “fine” moduli space. This way
of describing moduli spaces – where families of objects parametrized by S are in
one-to-one correspondence with morphisms from S into the moduli space – is due to
Grothendieck. The fact that this determines the moduli space up to isomorphism
is then basically Yoneda’s lemma: a scheme (or variety) is uniquely determined by
knowing all morphisms from other schemes (or varieties) into it.

Now let’s actually construct the dual abelian variety X̂. As explained above, we
choose an ample line bundle L on the abelian variety X, and then define

X̂ = X/K(L)

as the quotient by the finite subgroup K(L) = ker�L. Let ⇡ : X ! X̂ be the
quotient map; this is a surjective homomorphism with finite kernel, hence an
isogeny. The mapping �L : X ! Pic0(X) then induces an isomorphism of groups
X̂ ⇠= Pic0(X).

Next, we construct the Poincaré bundle P on X ⇥ X̂. If we set

K = m⇤L ⌦ p⇤
1
L�1

⌦ p⇤
2
L�1,
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then the Poincaré bundle must satisfy

(id⇥⇡)⇤P ⇠= K.

This is dictated by (B), applied to the line bundle K on the product X ⇥ X: we
have Kx

⇠= t⇤
x
L ⌦ L�1 = �L(x), and this exactly corresponds to the point ⇡(x)

under our isomorphism X̂ ⇠= Pic0(X). So the question becomes whether there is a
line bundle P on X ⇥ X̂ such that (id⇥⇡)⇤P ⇠= K. Now

id⇥⇡ : X ⇥ X ! X ⇥ X̂

is an isogeny with kernel {0} ⇥ K(L), and so according to Proposition 12.4 from
last time, all we need is to lift the translation action by the finite group {0}⇥K(L)
on X ⇥ X to an action on the line bundle K.

So let’s take a point a 2 K(L) and compute:

t⇤
(0,a)

K ⇠= t⇤
(0,a)

m⇤M ⌦ t⇤
(0,a)

p⇤
1
L�1

⌦ t⇤
(0,a)

p⇤
2
L�1

⇠= m⇤t⇤
a
L ⌦ p⇤

1
L�1

⌦ p⇤
2
t⇤
a
L�1 ⇠= m⇤L ⌦ p⇤

1
L�1

⌦ p⇤
2
L�1 = K,

because t⇤
a
L ⇠= L, due to the fact that a 2 K(L). This means that we can choose a

collection of isomorphisms
�a : t⇤

(0,a)
K ! K.

Each �a is of course only unique up to a nonzero constant. In order for K to be
equivariant, we need �a � �b = �a+b, and so we need to make the right choice of
�a. This can be done as follows. Observe that

K|{0}⇥X
⇠= m⇤L|{0}⇥X ⌦ p⇤

1
L�1

|{0}⇥X ⌦ p⇤
2
L�1

|{0}⇥X

⇠= L ⌦
�
OX ⌦ L�1

|0

�
⌦ L ⇠= OX ⌦ L�1

|0

is a trivial line bundle with fiber the 1-dimensional k-vector space L�1
|0. We can

normalize each �a by requiring that it acts trivially (meaning, as the identity) on
the fiber of this line bundle. This uniquely determines �a, and the uniqueness
also gives �a+b = �a � �b. So we get a line bundle P on X ⇥ X̂, unique up to
isomorphism, such that

(13.3) (id⇥⇡)⇤P ⇠= m⇤L ⌦ p⇤
1
L�1

⌦ p⇤
2
L�1

It is easy to see that (A) holds: write a given point ↵ 2 X̂ as ↵ = ⇡(x) for some
x 2 X, and observe that

P↵ = P |X⇥{↵} ⇠= (id⇥⇡)⇤P |X⇥{x} ⇠= t⇤
x
L ⌦ L�1,

which is correct because ↵ go to �L(x) under our isomorphism X̂ ⇠= Pic0(X).
It remains to check (B), and here we are going to use the fact that k has char-

acteristic 0. Suppose that S is a normal variety, and that K is a line bundle on
X ⇥ S with the property that

Ks = K|X⇥{s} 2 Pic0(X)

and such that K|{0}⇥X is trivial. We need to construct a morphism f : S ! X̂
such that Ks

⇠= Pf(s) for every s 2 S. We’ll do this by constructing the graph of f

inside S ⇥ X̂. To that end, consider the line bundle

E = p⇤
12

K ⌦ p⇤
13
(P�1)

on the product X ⇥ S ⇥ X̂. For a pair (s, ↵) 2 S ⇥ X̂, we have

E|X⇥{s}⇥{↵} ⇠= Ks ⌦ P�1

↵
,

and we want ↵ = f(s) exactly when this line bundle is trivial. So let

� =
�
(s, ↵) 2 S ⇥ X̂

�� E is trivial on X ⇥ {s}⇥ {↵}
 
.
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According to Theorem 9.10, this is a closed subset of S⇥X̂. Because Ks 2 Pic0(X),
and X̂ ⇠= Pic0(X), for every s 2 S, there is a unique point ↵ 2 X̂ such that
(s, ↵) 2 �, and so the first projection p1 : � ! S is bijective. Now � is a reduced
variety, and S is a normal variety, and because we are in characteristic zero, it
follows that p1 is birational. Because S is normal, p1 is then an isomorphism (by
Zariski’s main theorem). This shows that � is the graph of a morphism f : S ! X̂.
By the seesaw theorem, the restriction of E to X ⇥ � is trivial; pulling back along
the morphism X ⇥ S ! X ⇥ S ⇥ X̂, (x, s) 7! (x, s, f(s)), we then get

K ⇠= (id⇥f)⇤P

as desired.


