The Killing form and Cartan's criteria

MAT 552

March 30, 2020

Our current topic is the structure of (abstract) Lie algebras. We had introduced two important classes:

1. \mathfrak{g} is solvable if the chain

$$\mathfrak{g} \supseteq [\mathfrak{g}, \mathfrak{g}] \supseteq [[\mathfrak{g}, \mathfrak{g}], [\mathfrak{g}, \mathfrak{g}]] \supseteq \cdots$$

goes to zero. Example: upper triangular matrices

2. g is semisimple if the only solvable ideal is the zero ideal. Example: $\mathfrak{sl}(n, \mathbb{C})$

Brief review: radical

The radical $rad(\mathfrak{g})$ is the largest solvable ideal in \mathfrak{g} .

- The quotient $\mathfrak{g}/\operatorname{rad}(\mathfrak{g})$ is semisimple.
- Lie's theorem: $\mathfrak{g} \cong \mathsf{rad}(\mathfrak{g}) \oplus \mathfrak{g}/\mathsf{rad}(\mathfrak{g})$.
- Every Lie algebra has a solvable and a semisimple part.
- \mathfrak{g} is reductive if $rad(\mathfrak{g}) = \mathfrak{z}(\mathfrak{g})$, the center of \mathfrak{g} .
 - Example: $\mathfrak{gl}(n,\mathbb{R})$
 - $\mathfrak{g}/\mathfrak{z}(\mathfrak{g})$ is semisimple
 - ▶ $\mathfrak{g} \cong$ (abelian Lie algebra) \oplus (semisimple Lie algebra)

Brief review: invariant bilinear forms

Before the break, we showed that the classical Lie algebras are reductive/semisimple using invariant bilinear forms. Given a representation $\rho: \mathfrak{g} \to \operatorname{End}(V)$, define

$$B_V(x,y) = \operatorname{tr}(\rho(x) \circ \rho(y)).$$

The bilinear form B_V is

- Symmetric: B_V(x, y) = B_V(y, x) Reason: tr(AB) = tr(BA)
- ► invariant: $B_V([z,x],y) + B_V(x,[z,y]) = 0$ Reason: tr((CA - AC)B) + A(CB - BC)) = 0

Theorem

If B_V is nondegenerate (for some V), then \mathfrak{g} is reductive.

The Killing form

Most important case: the adjoint representation

$$\mathsf{ad} \colon \mathfrak{g} o \mathsf{End}(\mathfrak{g}), \quad \mathsf{ad} \, x.y = [x,y]$$

The bilinear form

$${\mathcal K}(x,y)={\mathcal K}^{\mathfrak g}(x,y)={\rm tr}({\rm ad}\, x\circ {\rm ad}\, y)$$

is called the Killing form of \mathfrak{g} . It is symmetric and invariant.

Homework problem

If $I \subseteq \mathfrak{g}$ is an ideal, then $K^I = K^{\mathfrak{g}}|_{I \times I}$.

The Killing form

Example

Take $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{C})$. In the basis e, h, f, we have

$$\begin{aligned} &\mathsf{ad} \ e = \begin{pmatrix} 0 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathsf{ad} \ f = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & -2 & 0 \end{pmatrix}, \\ &\mathsf{ad} \ h = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}. \end{aligned}$$

Thus K(h, h) = 8, K(e, f) = 4, K(e, e) = K(f, f) = 0. In fact, $K(x, y) = 4 \operatorname{tr}(xy)$. (Since $\mathfrak{sl}(2, \mathbb{C})$ is simple, the invariant bilinear form is unique up to scaling.) The Killing form tells us the structure of \mathfrak{g} .

Theorem (Cartan's criterion for solvability)

A Lie algebra \mathfrak{g} is solvable if and only if $K([\mathfrak{g},\mathfrak{g}],\mathfrak{g})=0$.

Theorem (Cartan's criterion for semisimplicity)

A Lie algebra \mathfrak{g} is semisimple if and only if K is nondegenerate.

Many theoretical consequences (next time). Today, the proof.

Jordan decomposition

Main tool: Jordan decomposition (= fancy version of JCF) Let V be a finite-dimensional \mathbb{C} -vector space. Every $A \in \text{End}(V)$ can be uniquely written as

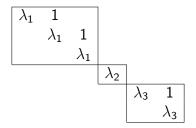
$$A=A_s+A_n,$$

with A_n nilpotent and A_s semisimple (= diagonalizable).

- ► *A_s* and *A_n* commute.
- A_s and A_n can be written as polynomials in A.

Jordan decomposition: proof

Let $A \in \text{End}(V)$. Put A in Jordan canonical form.



Let A_s be the diagonal part, and $A_n = A - A_s$. Then A_n is clearly nilpotent.

Jordan decomposition: proof

Decomposition into (generalized) eigenspaces

 $V=V_1\oplus\cdots\oplus V_n,$

with A_s acting as multiplication by λ_j on V_j . Want a polynomial $P(t) \in \mathbb{C}[t]$ such that $A_s = P(A)$.

• Choose $P(t) \in \mathbb{C}[t]$ such that

$$P(t) \equiv \lambda_j \mod (t - \lambda_j)^{\dim V_j}$$

- This exists by the Chinese Remainder Theorem.
- Since (A − λ_j id)^{dim V_j} = 0 on V_j, the matrix P(A) acts as multiplication by λ_j on V_j.
- Therefore $P(A) = A_s$.

Jordan decomposition: consequences

Define ad A: $End(V) \rightarrow End(V)$ by $B \mapsto AB - BA$. Then

• $(\operatorname{ad} A)_s = \operatorname{ad} A_s$

• ad $A_s = P(ad A)$, for some $P(t) \in t \mathbb{C}[t]$.

Define $\bar{A}_s \in \text{End}(V)$: same eigenspaces as A_s , but \bar{A}_s acts as multiplication by $\bar{\lambda}$ on the λ -eigenspace of A_s . Then

• ad
$$\overline{A}_s = Q(\operatorname{ad} A)$$
, for some $Q \in t \mathbb{C}[t]$.

Theorem (Cartan's criterion for solvability)

A Lie algebra \mathfrak{g} is solvable if and only if $K([\mathfrak{g},\mathfrak{g}],\mathfrak{g})=0$.

If $\mathfrak g$ is real, then $\mathfrak g$ is solvable iff $\mathfrak g_{\mathbb C}$ is solvable. So only need to consider complex $\mathfrak g.$

"⇒" Suppose that \mathfrak{g} is solvable. We need to show that K([x, y], z) = 0 for every $x, y, z \in \mathfrak{g}$.

- Since g is solvable, there is a basis in g in which every ad x is upper triangular (Lie's theorem).
- ▶ Then ad[x, y] = [ad x, ad y] is strictly upper triangular.
- ► Therefore ad[*x*, *y*] ∘ ad *z* is also strictly upper triangular.
- It follows that $K([x, y], z) = tr(ad[x, y] \circ ad z) = 0.$

" \Leftarrow " Suppose that K([x, y], z) = 0 for every $x, y, z \in \mathfrak{g}$. We need to show that \mathfrak{g} is solvable.

- Consider $\operatorname{ad} \colon \mathfrak{g} \to \operatorname{End}(\mathfrak{g})$.
- ker ad $= \mathfrak{z}(\mathfrak{g})$ is solvable.
- Thus enough to show that $\operatorname{ad}(\mathfrak{g}) \cong \mathfrak{g}/\mathfrak{z}(\mathfrak{g})$ is solvable.
- Follows from lemma (with $V = \mathfrak{g}$).

Lemma

Let $\mathfrak{g} \subseteq \operatorname{End}(V)$ be a Lie subalgebra. If $\operatorname{tr}(xy) = 0$ for every $x \in [\mathfrak{g}, \mathfrak{g}]$ and every $y \in \mathfrak{g}$, then \mathfrak{g} is solvable.

Now we prove the lemma. Take $x \in [\mathfrak{g}, \mathfrak{g}]$. Jordan decomposition $x = x_s + x_n$. Then

$$\operatorname{tr}(x\bar{x}_s) = \operatorname{tr}(x_s\bar{x}_s) = \sum_j |\lambda_j|^2,$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of x_s . Since $x \in [\mathfrak{g}, \mathfrak{g}]$, have $x = \sum_k [y_k, z_k]$, hence

$$\operatorname{tr}(x\bar{x}_s) = \sum_k \operatorname{tr}([y_k, z_k]\bar{x}_s) = -\sum_k \operatorname{tr}(z_k[y_k, \bar{x}_s]).$$

But now $[\bar{x}_s, y_k] = \operatorname{ad}(\bar{x}_s).y_k = Q(\operatorname{ad} x).y_k \in [\mathfrak{g}, \mathfrak{g}].$ By assumption, we get $\operatorname{tr}(z_k[y_k, \bar{x}_s]) = 0.$ Thus $\lambda_1 = \cdots = \lambda_n = 0$, and so x is nilpotent. By Engel's theorem, $[\mathfrak{g}, \mathfrak{g}]$ is nilpotent, hence \mathfrak{g} is solvable.

Cartan's criterion for semisimplicity: proof

Theorem (Cartan's criterion for semisimplicity)

A Lie algebra \mathfrak{g} is semisimple if and only if K is nondegenerate.

" \Leftarrow " Suppose that *K* is nondegenerate. We need to show that \mathfrak{g} is semisimple.

- The Killing form is $B_{\mathfrak{g}}$ for the adjoint representation.
- So K nondegenerate implies that \mathfrak{g} is reductive.
- If $x \in \mathfrak{z}(\mathfrak{g})$, then $\operatorname{ad} x = 0$, hence $x \in \ker K$.
- Since K is nondegenerate, get x = 0.
- So $\mathfrak{z}(\mathfrak{g}) = \{0\}$, which means \mathfrak{g} is semisimple.

Cartan's criterion for semisimplicity: proof

" \Longrightarrow " Suppose that \mathfrak{g} is semisimple. We need to show that K is nondegenerate.

- Let $I = \ker K$; this is an ideal in \mathfrak{g} .
- The Killing form K^{I} is the restriction of K, hence $K^{I} = 0$.
- ▶ By Cartan's criterion for solvability, *I* is solvable.
- But \mathfrak{g} is semisimple, and so $I = \{0\}$.